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What are the neural properties that make spatial contexts effective scaffolds
for storing and accessing memories? Here we hypothesized that spatial
locations with stable and distinctive (that is, reliable) neural representations
would best support memory for new experiences. To test this, participants
learned the layout of a custom-built 23-room virtual reality ‘memory palace’
that they explored using a head-mounted display. The next day, participants
underwent whole-brain fMRI while watching videos of the rooms, allowing
us to measure the reliability of the neural activity pattern associated with
each room. Participants then returned to virtual reality to encode 23 objects
placedin each of the 23 rooms and later recalled the rooms and objects
during fMRI. We found that our roomreliability measure (computed before
encoding) predicted object reinstatement during recall across cortex; this
was driven not only by group-level reliability across participants but also

by idiosyncratic reliability within participants. Moreover, this effect did not
arise through enhanced retrieval of reliable rooms during recall, because
therelationship between reliability and object reinstatement remained
significant when controlling for room reinstatement during retrieval; this
suggests that, instead, roomreliability promotes improved binding of
rooms to objects at encoding. Together, these results showcase how the
quality of the neural representation of a spatial context can be quantified
and used to ‘audit’its utility as amemory scaffold for future experiences.

Many of our memories areintrinsically tied to the locations where they
occurred. Thinking about (or actually revisiting) places from our past
canimmediately bring to mind the meaningful events that occurred
there. In this way, our spatial memories can serve as a map not only
of physical spaces but also of our remembered experiences in those
spaces.Inwhatways canaspatial context (thatis, thelocationin which
anexperience takes place) serve as ascaffold for storing and accessing
the details of past episodes? Are there spatial contexts that are more

or less effective for attaching event memories, and can we neurally
measure the usefulness of alocation as a memory cue even before an
event hasoccurred?

Decades of research have found that the representation and
retrieval of episodic memories is profoundly tied to spatial location.
Prior behavioural research on the context-dependent memory effect
suggests thatitemslearnedina particular physical context canbe better
remembered when the retrieval context matches the encoding context'?,
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Environment learning

Participants become familiar with environment by playing foraging games.
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Fig. 1| Experimental paradigm. Participants played a set of foraging games to
learn the layout of the 23-room VR environment (photograph of alaboratory
member demonstrating the VR set-up used with permission). At the end of each
foraging game, to test learning of environment, participants drew a bird’s-eye-
view map of the environment (see Supplementary Fig.1for more examples).
Twenty-four hours later, participants were shown room videos in the scanner,
with each room presented twice. Participants then re-entered immersive VR and

Time

Participants explore the environment in VR and learn the room
and object pairings. Room-object pairings were randomized
across participants.

Participants describe the
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Participants recalled the name of the room that was paired to the object.

Object-video room recall 2

were given 15 min to learn the identities and locations of 23 new objects that had
been added to the environment, one per room. Finally, participants returned
tothe scanner andrecalled theitems they had seenin afree recall task, a guided
recall task (in which they recalled items along specific five-room paths) and a
room video task (in which they recalled the item for each presented room). They
were also presented with videos of each object and attempted to recall the room
inwhich each object appeared.

even for contexts that are experienced only throughvirtual reality (VR)
or that are mentally reinstated rather than physically re-experienced*.
Recentbehavioural work has also suggested a privileged role for spatial
contexts as cues for memory retrieval. For example, spatial context cues:
(1) enhance episodic recallwhen compared with temporal, thematic (for
example, romantic experience), person or object cues forimagined or
real autobiographical memories®%; (2) are spontaneously generated
evenwhen not cued by experimenters®’, sometimesleading to quicker
access to episodicinformation®’ (butseeref.10); (3) are associated with
richer episodic memory when highly familiar to participants®*" " and
(4) are associated with preserving long-term recollection of initially low

detail memories for both young and older adults™. This behavioural
work is complemented by neuroimaging studies of autobiographical
memory showing that spatial contexts have a strong influence on the
neural representations of remembered or imagined autobiographical
events”™', among others; for a review, see ref. 17. The networks associ-
ated with spatial contexts are maintained during multiple phases of
memory retrieval, possibly acting as ascaffold for accessing additional
event details'®. For example, spatial contexts can be reinstated before or
concurrently with the retrieval of an item or episode™*.

Beyond retrieval, prior theoretical work on episodic memory sug-
gests that—at encoding—features of an ongoing experience are bound
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to the contextin which they occur®*, allowing spatial contexts to serve

as structured ‘containers’ that organize and support the integration
of new experiences**”. Consistent with this view, explicitly binding
objectstotheir spatial context during encoding enhances subsequent
memory for those objects®. In another recent study?, participants
encountered words within two distinct spatial contexts (each associ-
ated with a separate schema) and judged each word’s relevance to its
context withoutknowingthere would be alater memory test. If reinstat-
ing the context at retrieval were sufficient to boost memory, all words
should have benefitted equally. Instead, only context-relevant words
showed amemory advantage, suggesting that these items were more
effectively bound to the spatial context during encoding.

Despite the centrality of spatial contextinmemories, itisunknown
whether (1) some specific spatial locations are more effective memory
cues than others and, if so, (2) whether this is related to properties of
their neural representation. In general, two requirements for robust rep-
resentation of amemory are thought to be stability over time (allowing
for faithful reactivation of the features of the original experience) and
distinctiveness (to preventinterference with other similar memories®?*).
We hypothesized that these two properties would also be important
specifically for building an effective spatial context scaffold—that is,
that spatial locations with more stable and distinctive representations
wouldsupportbetter encoding of new information encounteredinthese
locations and allow easier access to this information at retrieval. This
implies that having a stable and distinctive neural representation for a
location before associating an object to that location will be predictive
of subsequent reinstatement for that object representation.

Our primary mechanistic hypothesis for why this would occur was
that reliable room representations facilitate the binding of room to
object information at encoding (for example, the sturdier a wall is, the
easieritistohanga painting onit). However, facilitated binding at encod-
ingis not the only way that having astable and distinctive roomrepresen-
tation could facilitate subsequent object reinstatement; an alternative
possibility is that having a stable and distinctive room representation
has no effect on room-object binding at encoding and that instead it
boostsobjectrecallindirectly by boosting the degree to which the room
representationisreinstated at test, which—inturn—boosts reinstatement
ofassociated objectinformation (forexample, the brighter thelightina
darkroom, theeasieritis tosee whatisinside). We will present the results
of analyses that control for this alternative possibility.

To test whether reliable spatial contexts scaffold subsequent
memory, we custom-built a VR ‘memory palace’ environment of 23
perceptually distinct rooms each with distinct soundtracks, interiors
and room-congruent objects, which participants explored using a
head-mounted VR display (Fig.1). After participants learned the layout
of the virtual environment, we used functional magnetic resonance
imaging (fMRI) to compute a neural room reliability score for each
of the 23 rooms (Fig. 2). This score reflected both the stability and
distinctiveness of neural representations, measuring the degree to
which repeated presentations of a room evoked patterns that were
more similar to each other than to patterns evoked by other rooms.
Participantsthenreturnedtothe VR environment, where they observed
(and were asked to memorize) anew salient object that had now been
placed into each room. Finally, they performed recall tasks for these
items in the fMRI scanner (Fig. 3). Overall, our results confirmed our
hypothesis: room reliability, measured before any room-object pair-
ing occurred, predicted the degree of object reinstatement during
verbal recall, showing that it is possible to neurally diagnose whether
aroom will serve as an effective memory scaffold, before objects are
placed inthe room.

Results
Overview
How effective are spatial memory representations as containers for
subsequently bound objects? We sought to answer this question by

using the reliability of a prelearning room representation to predict the
degree of reinstatement evidence for recalled objects during self-paced
verbal recall. To do this, we needed to quantify (1) the reliability of a
roomrepresentation and (2) the reinstatement of object information
during recall. We defined room reliability as the similarity of aroom
representation to itself (that is, stability) minus its average similarity
to every other room (that is, distinctiveness); importantly, this was
measured before any room-object associations had beenformed (that
is,inthe prelearning phase; Fig. 2). Our strategy for quantifying object
reinstatement during recall was as follows: We firstidentified anetwork
of regionsinvolvedin theretrieval of objects (the retrieved object clas-
sifier network; ROCN) during a cued-recall task in which participants
watched videos of room interiors and were asked to recall the objects
that had been randomly assigned to those rooms in VR (Fig. 4). We
then measured the average classifier evidence for object reinstate-
ment within this network during self-paced verbal recalls, in which
participants were instructed to verbally describe with as much detail as
possible the rooms and the randomly placed objects inthem (Fig. 5a).
Afterwards, to determine how well the reliability of a prelearning room
representation predicted object reinstatement, we correlated prelearn-
ing room reliability scores with object classifier evidence within the
ROCN during self-paced recall trials (Figs. 5b and 6). We identified a
set of regions whose prelearning room reliability predicted object
reinstatement during verbal recall, including the precuneus, posterior
parietal cortex, and prefrontal cortex—specifically, the superior frontal
gyrus. Importantly, using amodel comparison analysis, we also found
that some of these regions provided a participant-specific predictive
benefit, including the posterior parietal cortex, posterior ventral tem-
poral cortex and superior frontal gyrus (Fig. 6b). Lastly, to identify
whether room reliability supported object reinstatement indirectly
by promoting room reinstatement at recall, we conducted a partial
correlation analysis controlling for room reinstatement. Even after sta-
tistically controlling for roomreinstatement, the relationship between
roomreliability and ROCN object reinstatement remained significant
(Fig. 6¢). Furthermore, no areas showed a significant decrease in the
size of this relationship when we controlled for room reinstatement
(see ‘Partial correlation analysis controlling for room reinstatement’
section in the Methods).

Room reliability
Toidentify brainregions withreliable room representations for every
participant, we compared the similarity of aroom’s representation
across runs to its similarity with representations of other rooms
(Fig.2a). Weran this analysis on searchlights and hippocampal regions
of interest (ROIls; full hippocampus, anterior hippocampus and poste-
rior hippocampus). We found significant room reliability across most
ofthe cortex. Unsurprisingly, given the audiovisual nature of theroom
videos, we found high reliability scores in the auditory and visual cor-
tex, as well asin the precuneus and posterior hippocampus (Fig. 2¢).
Are there particular room properties, such as size, complexity
or connectedness, that contribute to the reliability of room repre-
sentations? To identify which room features contribute to room reli-
ability, we ran a searchlight analysis where, within each searchlight,
we ran a multiple regression predicting room reliability based on six
different room features; we generally found that, in default mode
networkregions, the most reliableroomstended to be those that were
small, had many corners and had an opening with a view to the outside
(Supplementary Fig. 2).

Behavioural recall

On the second day, participants performed two types of self-paced
verbal recall task. During the guided recalls (11 runs), participants were
presented with the names of 5 rooms that followed a path within the
virtual palace and were asked to freely recall details of the rooms and
therandomly added objects. During the freerecalls, participants were
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Fig. 2| Roomreliability. a, lllustration of room reliability methodology.

(1) Participants first explored the memory palace inimmersive VR and learned its
spatial layout by playing a foraging game. (2) In the prelearning scanning session,
before learning room-object pairings, participants watched and listened

to videos of each room twice (prelearning room videos 1and 2). Eachroom
representation was correlated across runs with every other room, in asearchlight
analysis. (3) Room reliability was computed by taking the difference between

the similarity of aroom pattern toitself (green) and the average similarity of

the room with every other room (red). (4) Room reliability was computed for
every room, leaving aroom reliability score for each of the 23 rooms. The entire
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procedure outlined in a was computed for every participant such that, for every
searchlight, there were 23 room reliabilities for each of the 25 participants. b, An
example room pattern similarity matrix for one participant, in the searchlight
denoted with adotted circle. This matrix was used to extract room reliability
scores asdescribedin a, such that, for each room (row), the average room
similarity to other rooms (red) was subtracted from the room similarity to itself
(green). ¢, Room reliability across the brain. Coloured vertices on the surface
indicate regions in which room reliabilities were significantly above zero at the
group level (g < 0.05), with brighter colours indicating greater reliability.

presented with ablank screen and were simply asked to freely recall, in
as much detail as possible, the rooms and the added objects. For the
guided recalls, we computed accuracy by counting whether a partici-
pant recalled the randomly placed objects in that path regardless of
whether they were correctly recalled in order of the path or with the
correctroom-object pairing. Inother words, an object was marked as
correctlyrecalled (out of 5) if it was recalled at any point during the trial.
Similarly, for the free recalls, regardless of when an object was recalled,
we marked an object as correctly recalled (out of 23) if it was recalled
at any point during the free recall. Across both recall types, partici-
pants’recalls were at ceiling, with 92% and 80% of participants scoring
higher than 90% recall accuracy for guided and free recalls, respec-
tively (Fig. 3d). We also found that, in both guided and free recalls,
participants spent less time speaking about the ‘empty room’ than the
across-participant average (Supplementary Fig. 3)—probably because
theroomwas empty (other than the randomly placed object) and there
was less to recall. We also measured the proportion of contiguous room
transitions during free recall. Across participants, spatially adjacent

rooms wererecalled more often than expected by chance (¢(24) = 14.19,
P<0.001), suggesting an unprompted bias towards contiguous mental
traversal (Supplementary Fig. 3f).

ROCN

Tomeasure evidence of object reinstatement during self-paced (guided
and free) verbal recall, we first needed to identify anetwork of regions
thatrepresentinformation about specific objects that were retrieved
from memory; to select these regions in a non-circular fashion, we
defined these regions using data from room-video object recall tri-
als (Fig. 4a). In these trials, participants viewed videos of all rooms
and verbally recalled the object that had been assigned to each room
as it was presented (Fig. 4a). We used a leave-one-participant-out
cross-validation procedure, whereby we made a neural template for
each object (using data from a separate phase of the study in which
participants viewed object videos) based on object videos from
N -1participants, and then we used these templates to classify the
(not-visibly-present) objects being recalled during room viewing in
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the held-out participant (Fig. 4a). We opted for this across-participanta
approach (rather than classifying within-participants) because objects
and rooms are confounded within participants, so room information
could ‘leak’ into training of a within-participant object classifier; this
confound does not exist if training and testing are done across partici-
pants, each of whom has their own random set of room-object pairings.
In other words, the left-out participant’s object templates were never
used to classify their own object recall during room videos. We used
this procedure toidentify the top 50 best object classifier searchlights
(-3% of all searchlights) to make our ROCN (Fig. 4b), which we used as
amask (Fig. 4d) when measuring object reinstatement evidence dur-
ing the guided and free recall tasks. We found that the top classifier
searchlights were spread throughout cortex and included regions in
the anterior temporal cortex, frontal gyrus, posterior temporal cortex,
posterior medial cortex and superior parietal cortex, among others
(Fig.4c,d). Wealso conducted additional analyses to extract two other
networks: For one, we classified object patterns while participants
watched videos of objects (rather than retrieving object memories)
to extract the perceived object classifier network (POCN), which was
entirely, and unsurprisingly, due to the visual task, concentrated in
early visual cortex (Supplementary Fig. 4). For the other, we classified
room patterns while participants watched videos of objects (analogous
to ROCN, which classified object memories during room videos) to
extracttheretrieved room classifier network (RRCN), which was widely
distributed and included the precuneus, medial prefrontal cortex,
anterior temporal cortex and visual cortex (Supplementary Fig. 5).

Relationship of room reliability and ROCN object
reinstatement evidence

Does room reliability predict future object reinstatement during free
and guidedrecalls? Using the object classifier and ROCN searchlights
fromthe previous analysis, we measured the degree of object reinstate-
ment as each participant performed verbal recalls (Fig. 5a). Note that
using neural object reinstatement provided a more sensitive index
of successful retrieval than behavioural recall accuracy, as almost all
participants were near-ceilingin their retrieval accuracy as described
above. Specifically, at each searchlight, we correlated each participant’s
room reliability with their own composite ROCN object reinstatement
score (Fig. 6a; see Supplementary Fig. 8 for an example searchlight).
We then averaged these correlations across participants to obtain a
searchlight map that we then statistically averaged across recall task
types (that is, guided and free recalls) to get a composite map that
indicated regions where room reliability in those regions correlated
with subsequent object reinstatement (throughout the ROCN network;
Fig. 6a). Notable positive relationships were observed throughout
the parietal cortex, prefrontal cortex, superior frontal gyrus, insula
and precuneus. We also found notable negative relationships in the
right parahippocampal cortex, parts of the motor system, auditory
cortex and ventral visual regions. Importantly, when looking at this

relationship separately for guided and free recalls (before generating
our composite map), theregions revealed were highly similar, provid-
inganinternal replication of this relationship across two categorically
different recall task types (Supplementary Fig. 7).

Lastly, to determine whether room reliability’s relationship with
object reinstatement was driven by room reinstatement, we ran a
partial correlation analysis where we regressed room reinstatement
scoresin RRCN fromboth ROCN object reinstatement and prelearning
roomreliability, and then correlated the residuals. After controlling for
room reinstatement at retrieval, the relationship between room reli-
ability and ROCN object reinstatement evidence remained significant
(Fig. 6¢). The pattern of results across the brainshownin Fig. 6¢ (when
we controlled for room reinstatement) was almost identical to the
pattern of results shown in Fig. 6a (when we did not control for room
reinstatement), and there were not any areas where the effect signifi-
cantly differed between the two maps. Taken together, these results
indicate that fluctuationsin roomreinstatement during retrieval were
not responsible for the effects shownin Fig. 6a. For completeness, we
also did this for POCN object reinstatement; similarly to what we found
for the ROCN, after controlling for room reinstatement at recall, the
relationship betweenroomreliability and POCN object reinstatement
remained significant, and there were no areas where this relationship
significantly decreased when we controlled for room reinstatement
(Supplementary Fig. 6c).

To what extent do the effects in Fig. 6a reflect group-level differ-
encesacross rooms (whereby some rooms have both high reliability and
highitemreinstatementin all participants) versus participant-specific
differencesinwhichrooms are mostreliable in their individual mental
maps? To answer this question, we compared the coefficient of deter-
mination (R?) between (1) our original participant-specific model,
where each participant’s object classifier evidence was predicted using
their ownroomreliability values, and (2) the average R* of N - 1models
where—in each model—the left-out participant’s object classifier evi-
dence was predicted using a different participant’s room reliability
values (that is, one model for each of the N -1 other participants). We
then took the regions where there was a positive and statistically sig-
nificant participant-specific effect (that is, better prediction with the
original model) and intersected them with the correlational analysis
performedinFig. 6a. This process revealed a participant-specific ben-
efit of roomreliability in the posterior parietal cortex (near the angular
gyrus), insulaand superior frontal gyrus (Fig. 6b). Interestingly, there
was also a participant-specific effect where room reliability in a small
section of right parahippocampal cortex was negatively associated
with ROCN reinstatement evidence.

Inasimilar fashion to how we related room reliability with object
evidence within the ROCN, we ran a supplementary analysis in which
we quantified object reinstatement within the POCN; largely composed
of visual regions) during verbal recall (Supplementary Fig. 6). Across
participants, we found generally similar results to the ROCN results,

Fig. 3| Behavioural recall scoring. On the second day after learning room-object
associations in VR, participants went back into the scanner where they performed
afreerecalland 11guided recall tasks. In the free recall task, participants were
asked to recall and describe with as much detail as possible the rooms and the
objects paired to them. By contrast, during the guided recall tasks, participants
were presented with five contiguously connected rooms and asked to describe
the rooms and the objects in them. a, Example guided recall transcription.
Participant recalls were transcribed manually for the onset and offset
timestamps of when rooms and objects were recalled. b, Example transcribed
recall event matrix. Timestamps of the onsets and offsets of participant recalls
were theninterpolated from seconds into TRs and organized as event matrices
that could then be used to index BOLD recall timeseries. Green and yellow
barsindicate room and object recalls, respectively. Object recall timepoints

were used to calculate object evidence scores in neural analyses (for example,

the timepoints where participants talked about the dartboard object (‘Darts’)

were used to measure neural object evidence for recall of the Darts). ¢, Guided
recall task, pairings, objects recalled and accuracy calculation. First column:
this participant was presented with a five-room path and asked to sequentially
describe the rooms and the objects in them. Second column: calculation of
behavioural accuracy for guided recalls. Participants were scored based on
whether they recalled the objects that were paired to the roomsin the presented
path. Although this participant recalled four objects, only three were associated
with the corresponding cued five-room path. For both guided and free recalls,
points were awarded based on whether participants recalled the relevant objects
atany pointin time during the recall period, regardless of the order in which

the objects were recalled or whether they were recalled in association with the
correctroom.d, Guided recall (GR) and free recall (FR) accuracy distributions.
With these scoring schemes, participants were able to recall objects with high
accuracy. Participants’ recalls were at ceiling, with 92% and 80% of participants
scoring higher than 90% recall accuracy for guided and free recalls, respectively.
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Fig. 4| ROCN methodology and surface maps. a, During the postlearning
room-video object recall task, participants watched a video of aroomand
verbally recalled the object that was paired to it. In a leave-one-participant-

out cross-validation procedure, the characteristic object patterns of the N - 1
group—evoked during a separate phase of the study in which participants viewed
object videos—were used to train a multinomial logistic classifier. This classifier
was then applied to each timepoint on the left-out participant’s room-video
objectrecall data. In the pictured example, the left-out participant, Fernando,
isrecalling the carrot object that was paired with the hexagon room currently
being presented. The object classifier, trained on patterns evoked when other
participants viewed the objects, was applied to each timepoint of Fernando’s
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recall. We then measured the fraction of timepoints during the hexagon-room
video that were classified as activating the carrot representation. b, For each
searchlight, object classification accuracies for both room-video object

recall videos for each participant were averaged together and then averaged
across participants and z-scored relative to a null distribution. The 50 top-
performing searchlights were then selected to form the ROCN. ¢, Average object
classification accuracy during room-video object recall. The colour map shows
the relative classification accuracy across all searchlights (thresholded to show
only searchlights with above-chance accuracy).d, ROCN. The top 50 searchlights
that were most sensitive to object reinstatement (yellow) were defined as the
ROCN for subsequent analyses.

with a positive relationship between POCN reinstatement evidence
and room reliability in the parietal cortex, superior frontal gyrus,
insula, posterior medial cortex and dorsal occipital cortex. Across both
recall tasks, there was a participant-specific benefit of room reliability
in the posterior parietal cortex, posterior medial cortex, right insula
and portions of the right lateral superior and middle frontal gyrus
(Supplementary Fig. 6; refer to Supplementary Fig. 7 for guided and
freerecalls separately)

Discussion

In this study, we posited that a cognitive map of spatial contexts is
most useful as a container for future memories when locations have
reliable representations, providing specific and consistent cues
every time they are accessed. To test how the neural properties of
a spatial context memory support new memories, we developed a
paradigm that allowed us to quantify the within-participant reliability
of aspatial context memory before it became the locationinwhicha

new memory was formed, and then used this measure to predict the
extent to which that new memory was remembered. We did this by
having participants develop spatial context memories of a 23-room
immersive VR memory palace, scanning them to extract the neural
properties of their spatial memories for ‘empty’ rooms within the
palace (prelearning phase) and then scanning them again afterwards,
as they verbally recalled the ‘filled’ rooms and the objects that filled
them (postlearning phase). We found that prelearning room reliabil-
ity—therepresentational quality of an ‘empty’ memory scaffold—was
predictive of postlearning object reinstatement in two types of verbal
recall. We further showed that, in some regions, a participant’s idi-
osyncratic room reliability values provided a predictive advantage
beyond what could be inferred from room reliability patterns shared
across participants. Finally, we showed that this relationship between
roomreliability and object reinstatement persists even after statisti-
cally controlling for room reinstatement at recall. By ruling out the
alternative hypothesis that fluctuations in room reinstatement are
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Fig. 5| Methodology for using room reliability to predict object
reinstatement. a, lllustration of methodology for how ROCN object
reinstatement evidence was calculated from guided and free recalls. A leave-
one-participant-out cross-validation procedure was used with a multinomial
logistic classifier to predict object patterns at every timepoint of the left-out
participant’s recalls. To extract a single composite score of reinstatement
evidence within the ROCN for every object and every participant, the classifier
evidence for each object recalled was averaged within the ROCN mask across
the timepoints when each object was verbally recalled. This yielded a single
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score for each object and each participant that represented the average object
reinstatement evidence in the ROCN during guided or free recall. b, lllustration
of methodology for how object reinstatement evidence was predicted by room
reliability. In a searchlight analysis, reliability for aroom (in that searchlight)
was correlated with the corresponding composite score of reinstatement
evidence (within the ROCN mask) for the object paired to that room. This
correlation was computed across room-object pairs within each participant,
and then those correlations were averaged across participants and, finally,
across recall task types.

(fully) driving the effect, this control analysis provides indirect evi-
denceinsupport of our preferred hypothesis—namely, that reliable
room representations scaffold memory for objects by facilitating the
binding of objects to rooms at encoding.

Theories in cognitive psychology have long argued that we
develop knowledge structures that help to organize new informa-
tion during encoding and later serve as a scaffold to recall specific
details®; for example, prior work has discussed how event schemas™,
which describe the prototypical sequence of events associated with
well-learned experiences (for example, restaurant visits), can support
memory for new life events. Ina similar fashion, knowledge about the
structure and affordances of a spatial context can scaffold memories
for experiences that occur in that context®*.. Our results support this
general framework but also argue that all schematic containers are
not equally effective at organizing memories; contexts that are only
weakly learned and/or suffer interference from other contexts will
not be effective scaffolds, consistent with work showing that repeated
exposuretoasingle room versus distributed exposure to many rooms
creates amore effective contextual cue®. Inaddition, our findings here
also provide further support on the utility of VR as a tool for studying
how spatial contexts can shape memory and behaviour®.

Room reliability is predictive of object reinstatement

There are two important features that make this study uniquely placed
toinvestigate therole of spatial context scaffolds in episodic memory.
First, the virtual rooms in this study are experienced inimmersive VR
and vary widely along many dimensions (room size and geometry,
decoration, background soundtrack and so on), allowing participants

tocreaterichand uniquerepresentations ofindividual rooms. Second,
unlike other studies, neural patterns for each of the spatial contexts
were acquired before the key learning event took place (here, the newly
placed objectin eachlocation). These two features provided us with the
opportunity to relate the neural patterns for ‘empty’ spatial contexts
with the reinstatement of the objects that had been placed inthemin
asubsequent part of the experiment.

Specifically, our paradigm allowed us to relate the reliability of
aroom representation (the ‘empty’ scaffold) across the cortex to the
reinstatement of the objects that had been placed in rooms explored
in VR. In general, we found that object reinstatement was predicted
by roomreliability in the precuneus, insula, frontal cortex and regions
throughout lateral parietal cortex (Fig. 6), suggesting that measuring
thestructuralintegrity of aspatial context representation before alife
episode is predictive of how well that episode will be reinstated later.
Moreover, these effects were found separately for both guided and free
recall, providing an internal replication of our results and suggesting
that stable context representations are useful for retrieval across mul-
tiple kinds of memory tasks. We observed strong effects in regions that
are wellknown to support mental and virtual navigation®**, including
the precuneus and the dorsal occipital lobe. Similar regions have also
been identified in many types of tasks involving spatial knowledge:
during spatially cued retrieval of real or imagined autobiographical
memories™'®*, during recognition or retrieval of the spatial contextin
whichanitemwas encountered***¢, during the recollection of spatial
relationships in two and three dimensions*°, during reinstatement
of spatial contexts during item retrieval® and during the encoding and
retrieval of items bound to a spatial context®>*,
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a, Relationship between ROCN object reinstatement and room reliability.
Shown are regions where room reliability predicted ROCN object reinstatement
across both guided and free recall. Objects placed in rooms with the most
prelearning neural stability in these regions were reinstated the most strongly
during retrieval. b, Model comparison results. Shown are regions in which

room reliability predicted ROCN object reinstatement across both guided and
free recall and where participant-specific room reliability provided additional
predictive value. In these regions, the rooms that were most reliable for a specific
participant (rather than rooms that were generally reliable across the group)
were predictive of object recall for that specific participant. The surface maps
presented in b show the intersection of the participant-specific models shown
inaand the regions where there was a significant positive difference in the
coefficient of determination between the original participant-specific model
and the N -1group model. Statistical significance for the differences between
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the coefficients of determination was determined by comparing the differences
with a null distribution and FDR-correcting for g < 0.05. ¢, Controlling for room
reinstatement. Left column: schematic illustrating how room reinstatement
evidencein RRCN (during timepoints in which participants verbally recalled a
room or its paired object) was regressed out of room reliability and ROCN object
reinstatement scores. Room reliability residuals were then correlated at each
searchlight with ROCN object reinstatement residuals. Right column: regions
where room reliability predicted ROCN object reinstatement after controlling
for roomreinstatement during room and object recall. The surface maps
presented in aand c were statistically thresholded by comparing correlations
toanulldistribution and then FDR-correcting for g < 0.05. All three surface
maps are coloured based on the magnitude of the z-scored correlation values of
the participant-specific model, with blue showing negative and red showing
positive relationships.

Although these studies highlight theimportance of spatial knowl-
edge in a diverse range of learning and memory tasks, most of these
studies focused on univariate or functional connectivity changes dur-
ing the tasks, with few leveraging multivoxel pattern analyses (for
example, refs.15,51,54), and none quantifying the quality of the specific
spatial representations used in these tasks. Thus, our work here, in
combination with these prior studies, adds to the vast literature on
spatialmemory and provides a potential prerequisite for the successful
completion of any spatial task: spatial context representations need to
bereliable to be useful for subsequent memory storage.

Insome other brain regions, we observed that room reliability in
those regions was negatively related to subsequent object reinstate-
ment. How can we explain these negative relationships? Because these
regions are primarily in lower-level auditory and visual cortex, one
possibility is that these regions code for lower-level sensory features,
notspatial contexts, and theroomreliability observedin these regions
was actually ameasure of how strongly these sensory properties were
being represented. In this case, stronger representation of isolated
features could be at odds with larger-scale and gist-like representa-
tions of the room geometry and semantic properties, making aroom
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less useful as a contextual anchor for subsequent object memory.
Further work investigating object representation in the brain and its
relationship to roomreliability isrequired to aid in parsing the negative
relationships we found.

What underlying mechanisms explain the relationship between
object reinstatement and room reliability? Our hypothesis was that
reliable room representations scaffold memory for objects by facili-
tating the binding of objects to rooms at encoding. Our finding that
room reliability (measured before encoding) correlates with object
reinstatement (measured during recall) is compatible with this ‘facili-
tated binding at encoding’ hypothesis. An alternative possibility is that
successful reinstatement of reliable rooms during recall promotes
object reinstatement for these rooms; this could give rise toa correla-
tion between room reliability and object reinstatement, even in the
absence of facilitated binding at encoding. We addressed this alterna-
tive hypothesis by controlling for room reinstatement during verbal
recall and found that the relationship between room reliability and
objectreinstatement remained significant; furthermore, there were no
areasthat showed asignificant decreasein the size of the effect whenwe
controlled for roomreinstatement. The results of this control analysis
provideindirect support for our hypothesis that room reliability sup-
ports improved room-object binding at encoding; namely, a reliable
spatial context representation may provide astable schematic map that
facilitates the integration of new episodic content—the more reliable
the container, the easier it is to populate it with information. Future
workinwhich participants are scanned during object-location encod-
ing would help shed additional light on how room reliability enhances
the creation of episodic memories.

Room reliability

We described the representational stability and distinctiveness of a
spatial context through areliability score that measured the speci-
ficity of aroom’s representation across runs. These spatial contexts
were designed to be visually and auditorily rich to reflect real-world
contexts. Given that room reliability was derived from audiovisual
stimuli, it was not surprising to find the strongest reliability in the
visual and auditory cortex. In addition to these sensory regions, we
found significant room reliability in other regions that have been
implicated in higher-level processing: the parietal cortex (includ-
ing the intraparietal sulcus), posterior medial cortex (including the
precuneus) and lateral prefrontal cortex (including the premotor
cortex). In other studies, these regions have been shown to main-
tain specific scenes or events within stories along various timescales
during movie watching® . These regions may help to ensure stable
and distinctive representations of the high-level properties of the
current situation that go beyond low-level sensory properties—an
idea consistent with prior work showing that these regions represent
event types shared across stories, regardless of whether the story is
presented as anaudio narrative or an audiovisual movie***°. Although
some of this event structure can arise from the temporal dynamics
of the stimulus itself, internal schemas can also be used to actively
organize an experience into stable events®. Our results suggest that
this kind of top-down stabilization may be most effective when the
schemaitselfis highly reliable, providing a robust starting point for
building episodic event representations.

Although high pattern similarity across identical trials is related
to better subsequent memory®, purposefully increasing variability
in item encoding by varying the encoding context has been shown
to improve item memory®>*, perhaps by increasing the number of
possible retrieval cues for the item (see, for example, refs. 65,66). It
is therefore possible that there are some situations in which unstable
context representations would be useful for creating memories, for
example, if items are studied multiple times in a context and then
recognition memory is tested in anovel context. However, in our para-
digm, participants were explicitly using a context-based strategy for

retrieving items, mentally simulating rooms and trajectories through
rooms to reinstate item memories. In this case, we would expect that
having a reliable contextual index for episodic memories would be
critical for effective recall of items, consistent with our findings that
stability inscene-related brain regions predicted item reinstatement.
Future work could investigate whether this relationship disappears
or reverses in other situations, such as when many items are paired
with the same room (reducing the usefulness of rooms as memory
cues), or when rooms have features that vary, for example, with time
of day (such that representational variability might reflect meaningful
changesin contextual features), or when the recall task requires report-
ing only objects while suppressing recall of room features. Similarly,
novelty may influence how room reliability scaffolds memory: a new
context may be less stable than a highly familiar location but could still
enhance memory because its novelty promotes additional attention
and processing. Future work examining how repeated exposure and
contextual novelty interact with reliability could shed new light on
their contributions to memory.

Our experimental paradigm and the method of loci

Our ‘memory palace’ paradigm draws inspiration from the mnemonic
technique called the method of loci (MOL), in which items are associ-
ated with animagined sequence of spatial locations in a prelearned
map. However, our study diverges from this technique in several key
ways. Unlike many implementations of MOL, participants were not
required to encode or recall to-be-remembered items in an explicit
linear sequence of rooms, nor were they instructed to use any particular
mnemonic during room-object binding. Instead, participants explored
the virtual environment freely and developed their own strategies
for memorization.

Despite these differences, the motivation for this technique is
related to the hypothesis tested in this study: that a well-learned spa-
tial map consisting of many distinct locations s the optimal encoding
environment for new item memories. The learnability of this technique
suggests thatitmay rely oninherent spatial memory structures shared
across people. Infact, the ability toimprove memory through this spa-
tially based technique has been shown across multiple studies behav-
iourally and neurally (behavioural®*”7°, among many; neural*>**"*"7"),
Generally, neuroimaging studies of this technique have largely focused
on the impact of MOL (at varying levels of training or compared with
other mnemonics) duringitemencoding” ", with only a few perform-
ing univariate contrasts during recall’*>”*””7, and only one, to our knowl-
edge, examining multivariate pattern activity for loci, items and their
conjunctive associations®*. The univariate results during recall have
shown enhanced engagement of regions including retrosplenial cor-
tex and precuneus after instruction in MOL*?, suggesting that spatial
representations of loci are strategically activated during retrieval. A
recent study measuring multivariate activity patterns during MOL>*
found robust representations for individual loci during the creation
and retrieval of item-locus pairs in regions including the precuneus
and posterior parietal cortex, suggesting potentially overlapping
mechanismsinhow our naive participants and MOL-trained individu-
als use spatial information for item memorization. It remains an open
questionwhether enhanced room reliability helps support memoriza-
tion when using MOL.

Conclusion

After participants learned a complex spatial environment in VR, we
measured the neural reliability of each spatial location within this map.
When participants later used this environment to learn a new set of
room-object associations, we showed that this room reliability measure
could predict the degree to which objects associated with each room
successfully came online during naturalistic recall. Together, these
results showcase how the quality of a spatial context can be quantified
and used to ‘audit’its utility as amemory scaffold for future memory.
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Methods

Participants

Datawere collected fromatotal of 30 participants between the ages of 21
and 32 years (16 females, 14 males) with normal or corrected-to-normal
visual acuity. At the end of the study, participants were paid and
debriefed about the purpose of the study. Every effort was made to
recruitan equal number of female and male participants and to ensure
that minorities were represented in proportion to the composition
of the local community. The experimental protocol was approved by
the institutional review board (IRB) of Princeton University, and all
participants provided their writteninformed consent (IRB #7225). Due
to technical difficulties (corrupted and missing files), 5 participants
were excluded, leaving a total of 25 participants (11 females, 14 males).

Stimuli

VR stimuli. Environment. A custom-built VR environment made up of 23
interconnected distinct rooms with distinct soundtracks was explored
by participants using a head-mounted VR display. Each of the rooms was
built to be as visually and aurally distinct as possible. To that end, for
visual distinctiveness, each room followed a different theme (for exam-
ple, planetarium and computer store) with theme-congruent objects
carefully placed throughout, and the rooms had different shapes (for
example, oval and rectangle) and different sizes (for example, large
and small). To promote auditory distinctiveness, each room had a
distinct soundtrack on loop that was audible only when a participant
entered each room and some rooms contained specific sound effects
that matched the room context (for example, bird chirps if the room
had awindow facing the outside).

The majority of rooms were connected with only two other con-
necting rooms, while a few, ‘hubs’, had more than two connecting
rooms. Among all 23 rooms, 16 rooms (70%) were connected with 2
otherrooms, 6 rooms (26%) were connected with 3 other rooms and1
room (4%) was connected with 4 other rooms.

Toreduce the potential for motion sickness, participants explored
thevirtualworld while seatedina360°-rotatable chair, and any instance
of participant-initiated teleportation was followed by a short and
smooth fade-in-and-out of black. Participants teleported within and
betweenrooms by pressing abutton onawireless controller that would
appear digitally reconstructed in VR as athree-dimensional (3D) object.
The range of teleportation was limited to force teleportation across
small distances and to avoid fast teleportation across rooms. Rooms
were connected by doorways; given the current rooma participant was
in, only theimmediately connected rooms were visually accessible via
the doorways, while further-away rooms were culled from view.

Music and sounds. Sounds of birds, ambience, firewood crackling and
others were manually recorded or freely downloaded from the internet.
Musicfor each room was either custom-composed in Ableton Live soft-
ware, downloaded from the internet or requested from professional
composers (Supplementary Table1).

All tasks were presented on a wired HTC Vive head-mounted
display (1,080 x 1,200 resolution per eye, with a 90-Hz refresh rate,
built-inheadphones andintegrated microphone), which was connected
with awire to a computer running 64-bit Windows 10 on an Intel Core
i7-6800K CPU @ 3.40 GHz with 32 GB random access memory and an
Nvidia GeForce GTX 1080 graphics card.

Alltasks and visual presentations were created and coded in Uni-
ty3D5.5.2f1(and 2017.1.2f1), agame-development platform, with Virtual
Reality Toolkit (VRTK; vrtk.io), a virtual-reality programming tool kit for
Unity3D. The majority of 3D models, textures, environments and other
assets were custom-built using SketchUp (sketchup.com) or Blender
(blender.org). Theremaining assets were downloaded from the Unity
Asset Store (assetstore.unity.com), Turbosquid (turbosquid.com) or
other publicly available online repositories and then modified using
Blender to reduce model complexity and size.

Scanning stimuli. During scanning, participants were presented with
videos of rooms and videos of objects. These videos were generated
beforehand and presented to participantsin a pseudorandom order.

Roomvideos. To generate the room videos using Unity, a virtual camera
was placed in the centre of each room. The camera was scripted to
rotate a full 360° to capture the panorama of each room within 10 s.
OBS Studio (obsproject.com) was used to screen capture the output
ofthevirtual camera. Eachroomvideo lasted 10 s and was followed by
aS-sinterstimulusinterval before the next video.

Object videos. To generate the object videos, a virtual photography
studiowas created withablank backdrop and a3-pointlighting set-up.
All23 objectswere placed inthe centre of the virtual studio and scripted
torotate 360°in front of avirtual camerafacing themwithin10 s. OBS
studio was used to screen capture the output of the virtual camera.
Similarly to the room videos, each object video lasted 10 s and was
followed by a 5-s interstimulus interval before the next video.

Stimulus presentation. All generated stimuli were presented to par-
ticipants in the scanner using PsychoPy’® to time task and stimulus
presentations with the scanner trigger. Every presented video or task
instruction was preceded by a 5-s black screen.

Dataacquisition and preprocessing

MRI acquisition and preprocessing. MRI data were collectedon a
3T full-body scanner (Siemens Prisma) with a 64-channel head coil.
Functional images were acquired using an interleaved multiband
echo-planar imaging (EPI) sequence (repetition time (TR) 1,300 ms,
echotime (TE) 33 ms, flip angle 80°, whole-brain coverage, 2 mmslice
thickness, field of view (FOV) 192 mm?, simultaneous multislice (SMS)
factor4). Anatomicalimages were acquired using a T1-weighted (T1w)
magnetization-prepared rapid-acquisition gradient echo (MPRAGE)
pulse sequence (1mm?®resolution). Anatomical images were acquired
in a 6-min scan before the functional scans; during this scan, partici-
pants watched videos of paragliding from YouTube. Field maps were
collected but not used in our preprocessing pipeline.

Allraw dataacquired from MRIwere converted to BIDS formatting
(BIDS version 1.0.1), anatomical images were defaced using pydeface
(version 2.0.0) and resulting data were subsequently preprocessed
using fMRIPrep version1.0.3,aNipype”**°-based tool. Each TIlw volume
was corrected for intensity non-uniformity using N4BiasFieldCorrection
v2.1.0%' and skull-stripped using antsBrainExtraction.shv2.1.0 (using the
OASIS template). Brain surfaces were reconstructed using recon-all
from FreeSurfer v6.0.0%, and the brain mask estimated previously was
refined withacustom variation of the method toreconcile cortical gray
matter segmentations derived from Advanced Normalization Tools
(ANTs) and FreeSurfer, asimplemented in Mindboggle®. Volume-based
spatial normalization to the ICBM 152 Nonlinear Asymmetrical template
version 2009¢** was performed through nonlinear registration with
the antsRegistration tool of ANTs v2.1.0%, using brain-extracted ver-
sions of both T1w volume and template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white matter and grey matter was performed
on the brain-extracted T1w using fast® (FSL v5.0.9). Surface-based
normalization based on nonlinear registration of sulcal curvature was
applied using the fsaverage6 surface template from FreeSurfer.

Functional data were slice time corrected using 3dTshift from
AFNIv16.2.07%” and motion corrected using mcflirt (FSL v5.0.9%).
‘Fieldmap-less’ distortion correction was performed by coregistering
the functional image to the same-participant Tlw image with inten-
sity inverted®°, constrained with an average fieldmap template”,
implemented with antsRegistration (ANTs). This was followed by
coregistration to the corresponding T1lw using boundary-based
registration® with nine degrees of freedom, using bbregister (Free-
Surfer v6.0.0). Motion-correcting transformations, field distortion
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correcting warp, blood oxygenation level-dependent (BOLD)-to-T1lw
transformation and T1lw-to-template (MNI) warp were concatenated
and applied in asingle step using antsApplyTransforms (ANTs v2.1.0)
using Lanczos interpolation.

Physiological noise regressors were extracted applying CompCor®.
Principal components were estimated for the two CompCor variants:
temporal (tCompCor) and anatomical (aCompCor). A mask to exclude
signalwith cortical origin was obtained by eroding the brainmask, ensur-
ingit contained only subcortical structures. SixtCompCor components
were then calculated including only the top 5% variable voxels within
thatsubcortical mask. ForaCompCor, six components were calculated
withintheintersection of the subcortical mask and the union of CSF and
white matter masks calculated in T1w space, after their projection to
the native space of each functional run. Framewise displacement® was
calculated for each functional run using the implementation of Nipype.

Additional preprocessing. After fMRI data were aligned and pre-
processed tofsaverage6 resampling, the resampled data were further
preprocessed using a custom Python script that removed nuisance
regressors, including the six degrees of freedom motion correction
estimates; framewise displacement (the estimated bulk head motion);
head motion estimates from white matter and CSF; and cosine bases
for high-pass filtering to account for low-frequency signal drifts (up
to 0.008 Hz, or 125 s). Within the same Python script, the resulting
timeseries datawere z-scored for each run (thatis, task), such that there
was asingle preprocessed timeseries per task (for example, prelearning
roomvideos, postlearning object videos, recall and so on).

Experimental paradigm
The study took place on two consecutive days and was composed of
a behavioural session on day 1and a behavioural and two scanning
sessionsonday 2.

Day1l

Onday 1, participants were familiarized with the virtual environ-
ment and exposed to two VR foraging games and hand-drawing tasks
tofacilitate thelearning of the spatial layout. Specifically, on day 1, after
participants read and signed the consent and screening documents,
participants were informed about what they would be experiencing
in VR and about the safety measures taken to ensure their safety and
comfort. They were told that they would be seated to decrease potential
dizziness that arises more commonly during VR that involves standing.
They were also informed that at any time the experiment could be
stopped ifthey are feeling uncomfortable or dizzy. They were told that
they would play two foraging games in VR that involve freely moving
through the VR environment with the goal of collecting floating cubes.
In the first game, they had to collect a cube from every room. In the
second game, they had to repeatedly navigate to designated rooms to
collectadditional cubes. They played the second game twice. Between
eachgame, participants were asked to draw abird’s-eye-view map based
ontheir current knowledge of the environment (Supplementary Fig.1).
We did this to ensure participants were learning the spatial layout of
the environment. By the end of the behavioural session, participants
had completed atotal of three games and three maps. Throughout the
experimental session, the experimenter checked on the participant’s
overall comfortand reminded them that if they felt dizzy or nauseous,
the experiment could be stopped at any time without consequence.
After the completion of the foraging tasks, the participants were com-
pensated and reminded to return the next day for the two scanning
sessions and the additional VR behavioural session.

Day2

Onday2 (1daylater), three sessionstook place: Inthefirst session,
participants were scanned with fMRI for a small battery of encoding
tasks (prelearning scan); in the second session, participants learned
room-objectassociationsin VR for randomly placed objectsin each of
the 23 rooms (learning behavioural session), and in the third session,

participants were scanned again with fMRI as they proceeded through
abattery of encoding and retrieval tasks (postlearning scan).

Session1(prelearningscan): Onday 2, participants were greeted at
the MRIroom, asked to draw a bird’s-eye-view map of the environment
(ashadbeen done the day before). After listening to ashort unrelated
audioclipinthe scanner to verify volume level, participants were told
that they would be presented with two sets of audiovisual stimuli of
therooms. Inthefirst set they saw 360° room rotation videos of all the
rooms (that is, prelearning room videos) and were instructed to ver-
bally recall the name of the room when they recognized it. The second
set, which was viewed after the first, was exactly the same as the first,
except the room order was randomized for each participant. Every
stimulus presentation was preceded by a 5-s blank screen.

Session 2 (learning behavioural session): After participants fin-
ished the prelearning scan, they were taken out of the scanner bore
and instructed to carefully stand up. They were then guided back to
the behavioural roomwith the VR equipment to complete the second
session of VR. Inthis session, participants were refamiliarized with the
environment by playing the first foraging game again. Afterwards, they
drew a bird’s-eye-view map once again and then were told that, when
they returned to the virtual world, they would find 23 different 3D
objectsscatteredineach ofthe 23 rooms. They were thengiven 15 min
to memorize the room-object pairings.

Session 3 (postlearning scan): After the 15 min that participants
were given to memorize the room-object pairings had elapsed, par-
ticipants were guided back into the MRI room. Before getting into the
scanner, participants were told that they would be asked to verbally
recallin as much detail as possible the 23 room-object pairings. They
were also told that they would be presented with the same audiovisual
stimuli from session 1, and they would also view an additional set of
videos thatincluded objects. Inthe first task (free recall), participants
were asked to describe in as much detail as possible all the rooms
and objects that they saw in VR. In the second task (guided recall),
participants were asked to recall with as much detail as possible the
appearance of the rooms and objects along specific five-room paths
within the environment. The names of the five rooms were visible on
screen. They did this guided recall task 11 times, each time with a differ-
entfive-room path. When they had completed recalling the rooms and
objects to the best of their ability for the free recall and guided recall
tasks, they were told to inform the experimenter by saying ‘done’. In
the third task (which we label as room-video object recall), partici-
pants were exposed to the same 360° room rotation videos from the
aforementioned prelearning room video tasks, but this time, when
they were shown a room video, they were tasked to recall the novel
object that had been placed in it (that is, room-video object recall).
They did this task twice for all rooms. Because room-object pairings
were generated randomly for each participant, the objects recalled
duringthis task were usually different across participants. Afterwards,
inthe fourthin-scanner task, participants saw the postlearning object
videos. During these, participants performed the object-video room
recall tasks: participants were shown 360° object rotation videos and
instructed to say the name of the room that was paired with that object.
They did this task twice for all objects.

Searchlights

Our searchlights were generated by constructing them with every valid
vertex as their centre, then iteratively removing the most-redundant
searchlights untilnomore could be removed while covering each vertex
with at least ten searchlights. This process yielded 1,483 searchlights
per hemisphere.

Hippocampus

Our full hippocampus ROl was extracted from a freesurfer subcortical
parcellation. This ROl was then splitinto an anterior portion (y > -20)
and posterior portion (y < -20) in MNI space***>*,
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Behaviour

Behavioural event matrices. Prelearning and postlearning room, and
objectvideos. The timing of stimulus presentations for every room and
object was logged, and a custom Python script was used to convert
the timestamps to abehavioural timeseries event matrix that marked
thestartand end of every stimulus presentation for every participant.
The resulting matrix that contained the timing (in milliseconds) and
room or object identity was then downsampled to 1.3-s TRs and used
in subsequent analyses to index into a participant’s BOLD timeseries
data to identify the moments in time participants were encoding a
specific video. Insum, the Python script generated six different behav-
ioural event matrices, two prelearning room event matrices (that is,
prelearningroomvideos), two postlearning room event matrices (that
is, room-video object recall tasks) and two postlearning object event
matrices (thatis, object-video roomrecall tasks).

Postlearning free recall and guided recall. Participants were asked to
recalland describe theroomsinthe virtualenvironment and the objects
paired to the rooms. Using TotalRecall (https://memory.psych.upenn.
edu/TotalRecall), audio files of participant’s recalls were imported
and transcribed by timestamping the start of a room or object verbal
description. For example, if a participant said, “I remember walking
throughthe chessroom, it had large chess pieces. The objectinthere was
abasketball...”, thestart and end of the ‘chess room’ timestamps would
havebeen at the start and end of the first sentence, respectively. Thisis
because we assumed that the room would have come to mind at the start
of the sentence rather than midway. Similarly, the object start times-
tamp would have been considered the start of the second sentence. For
every participant, these timestamps were thenimportedinto acustom
Python script that generated a behavioural timeseries event matrix
that marked the start and end of each verbal room or object recall. This
resultedinllguidedrecalland1freerecall behavioural timeseries event
matrices thatindicated the trajectory of room or object recalls. These
were thendownsampledto1.3-s TRs and used in subsequent analyses to
indexintoaparticipant’sBOLD timeseries datato identify the moments
intime a participant was recalling a particular room or object.

Timespentrecallingroomsorobjects. To assess whether certain rooms
or objects were discussed significantly more than others during recall,
we conducted an across-participant global mean comparison. For each
room and object, we computed the mean time spent speaking across
participants. We then performed a one-sample ¢-test for each room (or
object), testing whether its average recall time significantly deviated
fromthe grand mean (thatis, the average across all rooms or objects).
Next, we applied a Bonferroni correction to the resulting P values to
account for multiple comparisons.

Contiguity in free recall. To assess whether participants tended to
recall spatially connected rooms in sequence, we computed, for each
participant, the proportion of times each room transition was to an
adjacent room (that is, graph distance of 1 in the adjacency matrix
of the virtual environment). Self-loops, where the same room was
recalled consecutively, were excluded. To calculate the baseline prob-
ability that a participant may have recalled an adjacent room just by
chance, for each transition, we counted the number of currently adja-
cent rooms divided by the 22 possible other rooms (excluding the
current room) and then averaged across all transitions. To test for
significance, we ran a paired-sample ¢-test where we compared each
participant’s proportion of contiguous recall with their chance baseline
(Supplementary Fig. 3f).

fMRI analysis

Characteristic object patterns. To acquire the characteristic neural
patterns for objects (‘object templates’) we created 23 regressors to
modelthe neural responseto each of the 23 objects. We placed each of

the 23 objectregressorsinadesign matrix that marked the transitions
between object videos across both postlearning object video tasks;
the matrix was convolved with a haemodynamic response function
(HRF) from AFNI(Cox, 1996) and then z-scored. We then extracted the
characteristic spatial pattern across vertices for each object by fitting
a general linear model (within each participant) to the timeseries of
eachvertexusing these 23 regressors. Doing this simultaneously across
both postlearning object videos yielded a single set of 23 characteris-
tic object spatial patterns across vertices for each participant. These
object templates, which were obtained for every participant, were
then used in subsequent analyses for training multinomial logistic
classifiers. All object classifiers described in this Article were trained
onthese perception-evoked patterns.

Characteristic room patterns. To acquire the characteristic neural
patterns for rooms (‘room templates’), we followed the same proce-
dure that we used for extracting object templates, but here—instead
of using postlearning object videos—we used the prelearning room
videos obtained from the first scanning sessionon day 2 to obtain the
characteristic spatial pattern across vertices for every room.

Room reliability. We hypothesized that, for aroom to serve as an
effectiveretrieval cue for associated memories (that is, objects paired
torooms), the neural representation for that room must be stable over
time and distinct from other room patterns. We captured these prop-
erties with a composite measure we called room reliability. Crucially,
this measure was computed based on data that were collected before
participantslearning the room-object associations. This ensured that
ourroomtemplates, and therefore our room reliability measure, were
not confounded with object information.

To compute room reliability, we obtained the characteristic spa-
tial pattern for each room for each participant, using the procedure
outlined above (inthe ‘Characteristic object patterns’section), but for
roomvideosinstead of object videos. Doing this for both prelearning
room video tasks yielded 2 sets of 23 characteristic spatial patterns
across vertices (separated in time) for each participant.

Wethen created aroom pattern similarity matrix by correlating the
characteristic neural patterns for the rooms fromthe first prelearning
room video set with the neural patterns for the rooms from the sec-
ond set. This yielded a 23 x 23 correlation (similarity) matrix for each
participant. Because the two prelearning room videos were separated
by a delay, the principal diagonal indicated the similarity of the room
representations over time—this was our measure of the stability of the
room representations. Similarly, the off-diagonal entries indicated
the similarity of one room to another over time, reflecting greater
distinctiveness. To create our composite room reliability score for
each room, we subtracted the average similarity of the off-diagonal
entries (how similar room A is to other rooms over time) from the
principal diagonal entry (how similar room A is to itself over time). A
large positive difference indicated that a particular room (for example,
roomA)was more similar toitself over time thanit wastoother rooms,
indicatingits stability and its distinctiveness from other rooms. We did
this procedure to obtainaroomreliability score for each room of each
participant. To quantify significance, for each participant, we averaged
reliability across all rooms to get a single difference score per vertex,
and performed a one-sample t-test on these differences against zero
before running false discovery rate (FDR) correction on the resulting
Pvalues and thresholding at g < 0.05.

Obiject classifier network selection. To identify which regions across
the brain are involved in the retrieval of object information during
guided or free recall, we first needed to identify regions across the
brain that could discriminate between objects. To do this, we used
two separate phases of the experiment to extract networks that could
classify objects during retrieval (when perceptual details of an object
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were not available) and during perception (when the perceptual
details of an object were available). After participants had learned
the room-object associations in VR, they were scanned while they
watched videos of rooms and asked to recall the objects that were in
them (room-video object recall task/postlearning room videos). We
used this cued-recall task to identify the retrieval networks (ROCN)
involved in classifying objects during room videos. Similarly, we identi-
fied the networks (POCN) involved in perception of objects, by classify-
ing objects during postlearning object videos. Importantly, to avoid
circularityinouranalyses, all object classifiers (whether those made for
ROCNor POCN) were trained with N - 1 object perception data using a
leave-one-participant-out procedure 25 times, where testing occurred
onthe left-out participant. The fact that each of the 24 participantsin
the training dataset had their own set of random room-object pairings
ensured that the classifier was able to learn object representations
that were not contaminated with room information (by contrast, if
we had used a within-participant classification approach, room and
object information would have been confounded, because objects
were scanned only after they had been paired withaparticular room).In
otherwords, because room-object pairings were randomized for every
participant, and object evidence for each participant was classified
based onobject templates derived from the other N - 1participants, any
room-related informationin the object templates would be unrelated
to the room-related information in this left-out participant.

Network selection procedure

In brief, we ran object classifiers on postlearning room videos,
where participants had been asked to recall the name of the object
paired tothe shownroom, toidentify anetwork of regionsinvolvedin
retrieving non-visible objectidentity. This processinvolved the follow-
ingsteps: (1) acquiring the characteristic neural pattern for each object
(postlearning object templates); (2) using aleave-one-participant-out
multinomial logistic classifier, trained on the object template patterns
forthe (N-1) group, to predict object identity in the excluded partici-
pant’s postlearning room videos (to identify the ROCN) or postlearn-
ing object videos (to identify the POCN); and (3) averaging classifier
performance (thatis, accuracy) across all validation searchlights and
thenselecting the top 50 best classifier searchlights (=3%). This proce-
dure was done on each searchlight plus the hippocampus ROIs for all
participants. Further details are outlined below.

(1) Characteristic object patterns (object templates): To extract
characteristic neural patterns for objects (‘object templates’) we
used the procedure previously described in the ‘Characteristic object
patterns’ section.

(2) Classifier cross-validation procedure: We applied a leave-
one-out cross-validation procedure to predict the left-out participant’s
object reinstatement at every timepoint during postlearning room
viewing after fitting (that is, training) a multinomial logistic classifier
with the other participants’ object pattern templates (thatis, the char-
acteristic spatial patterns estimated from the general linear model).
More specifically, we shifted the left-out participant’s postlearning
room video’s BOLD timeseries by four TRs to approximate the HRF
delay and then trained the classifier with the other participants’ object
templates before predicting the object class for every timepoint of
every room video. To assess the significance of classifier accuracy, we
compared the classifier predictions with the correct object class labels
and generated a null distribution of accuracies by shuffling the correct
labels 1,000 times without replacement while preserving their tempo-
ral contiguity; this null distribution was used later to identify search-
lights that had above-chance accuracy. We did this procedure across
all participants such that every participant served as atest participant.

(3a) ROCN selection: Postlearning room videos were shown twice
to each participant. We ran the leave-one-out cross-validation proce-
dure described in the previous section for both runs of the postlearning
room viewing separately and then, across all participants and both
runs, averaged the classifier accuracy including the corresponding null

distributions. We then z-scored the searchlights’ (and hippocampus
ROIs’) performance by comparing the true average accuracies to the
average null distribution of accuracies. Afterwards, we extracted the
top 50 ROIs with the highest zscores. This resulted in 50 searchlights
(distributed unevenly across hemispheres and excluding hippocam-
pus) corresponding to the searchlights with the top performing clas-
sifier performance; these 50 searchlights made up the object retrieval
network that we used as an ROl mask in subsequent analyses.

(3b) POCN: We applied the same procedure described inthe 'ROCN
selection’section, butinstead of classifying non-visible object identity
from postlearning roomvideos, we classified objectidentity from the
postlearning object videos where objects were perceptually visible. In
asimilar fashion, we extracted the top 50 ROIs by sorting the zscore of
accuracies to obtainthe networkinvolved in classifying visible objects.
Unsurprisingly, this network was focused on primary visual cortex.

(3¢c) RRCN selection: We applied a similar procedure described
inthe ‘ROCN selection’ section, but instead of classifying non-visible
object identity from postlearning room videos, we classified room
identity from the postlearning object videos where objects (but not
rooms) were perceptually visible. Inasimilar fashion, we extracted the
top 50 ROIs by sorting the zscore of accuracies to obtain the network
involved in classifying room memories. Importantly, the room classi-
fiers were trained on the prelearning room template patterns for the
(N-1) groupto predict the recalled room during the held-out partici-
pant’s postlearning object videos. This ensured that (1) the held-out
participant’sown room templates were never used for testing, avoiding
circularity and (2) theroomtemplates of the group were sourced before
anyroom-object associations were learned, eliminating the potential
for these room templates to be contaminated by object information.

Object evidence during guided and free recall. We used the same
leave-one-out cross-validation procedure described previously to
predict object identity during guided and free recalls. As described
previously, we shifted each recall timeseries (11 guided recalls and 1
free recall) by 4 TRs to approximate the HRF delay, and used the multi-
nomial classifier to predict object classes at every timepoint for every
participant’srecalls. Given that that multiclass classifier was trained on
all 23 object classes, we obtained a probability distribution across all
23 classesthat described the evidence of each class being reinstated at
each timepoint. For any specific guided or free recall, we collected the
total object evidence across all timepoints when a participant verbally
recalled that object, regardless of whether the associated room was
also recalled. We did not condition our object reinstatement measure
onrecall of the correctly associated room because we were interestedin
studying how prelearning roomreliability affects object recall in general
(asopposedto studying how reinstatement of aroomrepresentation at
recalltriggers retrieval of the associated object). We thenaveraged these
timepoints across recall runs (guided and free recalls separately). For
example, if during thefirst guided recall a participant verbally recalled
the object ‘teddy bear’ in two separate chunks of time for a total of 16
TRs, we collected the classifier probability for ‘teddy bear’ across those
16 TRs. We then did the same for every TR in which ‘teddy bear’ was
recalled in all other guided recalls and averaged the results to obtain
the total ‘teddy bear’ evidence. For a given participant, we did this for
each object combining across all 11 guided recalls and, separately, for
the participant’s single free recall, yielding 23 mean object probabilities
foreachtype ofrecall task (guided and free recall) for each searchlight.

We wanted to obtain a single value for each object in each par-
ticipant (separately for guided and free recall), indicating how well
that object was reinstated during recall. We did this in two ways: by
averaging an object probability across all searchlights that were part
of ROCN or POCN to obtain an overall ROCN or POCN reinstatement
score, respectively, for each object and each participant. These scores
were then used as our overall network object reinstatement measures
insubsequent analyses.
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Relationship between room reliability and object reinstatement.
We hypothesized that rooms with more reliable representationsin the
prelearning scans would be associated with higher levels of object rein-
statement during self-paced verbal recall. To do this, we ran a search-
light analysis where we correlated the reliability of aroom (see ‘Room
reliability’ section) with the network’s evidence for the object paired
tothat room (see ‘Object classifier network selection’ section). We did
this for every room-object pair within a participant. For example, for
aparticular participant, the 23 roomreliabilities were correlated with
the corresponding 23 object reinstatement probabilities from the
retrieval network. Afterwards, we averaged the Fisher-z-transformed
correlations across participants and recall task types (that is, guided
versus free recall) to generate a single composite correlation map. To
test for statistical significance, we ran a non-parametric permutation
test in which we randomly shuffled the object labels 1,000 times to
generate anull distribution of correlations within participants and for
both recall types. Significance testing was then performed using the
combined null distribution, and resulting Pvalues were FDR-corrected
(Fig. 6a). For reference, the results for each recall task type individually
are presented in (Supplementary Fig. 7).

Benefit of participant-specific room reliability. The analysis shown
in Fig. 6a assesses whether there is a within-participant relationship
betweenroomreliability (inaparticular searchlight) and object reinstate-
ment. Importantly, there are two possible explanations for this effect
(not mutually exclusive). The firstis that, withina particular participant,
thereareidiosyncratic differencesinroomreliability that predict object
reinstatement for that participant; we call this a participant-specific
effect. However, there is a second possible explanation: some rooms
may be more reliable than others (averaging across the whole group),
andthese generally more reliable rooms may supportbetter object rein-
statement on average (for example, the chess room might consistently
bebetterrepresented across people and support better object recall); we
callthisagroup-wise effect. Both kinds of effect are important, but they
have different connotations: if the relationship between roomreliability
and object reinstatement is driven by idiosyncratic (participant-specific)
factors, then there is predictive value in doing a ‘personalized audit’
of the person’s memory palace by scanning them; but if there is only a
group-wise relationship, there isno need to collect scanning data from
anew person, so long as you already have data on room reliability from
therest of the group. To assess whether the observed within-participants
relationship between room reliability and object reinstatement has a
participant-specific component, we compared the predictive perfor-
mance of an ordinary least-squares regression derived from a partici-
pant’s own room reliability values with one based on other individuals’
reliability values. Specifically, for the participant-specific model (as in
Fig. 6a), we calculated the coefficient of determination (R?) of amodel
where the participant’s object reinstatement probabilities were pre-
dicted by their own room reliability values. For the group-wise model, we
iteratively predicted that participant’s reinstatement probabilities from
everysingle other participantand averaged the resulting N - 1R?values.
We then ran a model comparison test where we took the difference
between the R? of the participant-specific model and the average R* from
the other-participant predictionmodels. A significant positive difference
inthisanalysis indicates that the participant-specific model explains the
variability in object evidence better than other individuals (and thus
the observed results cannot be entirely due to the group-wise effect).
To test for statistical significance, we ran a non-parametric permuta-
tion test where the object labels were randomly shuffled 1,000 times
to generate a null distribution of model performance for each model.
To generate a single composite map summarizing model performance
acrossrecall tasks, we averaged R*values across guided and free recalls
foreach modelseparately, computed the difference in R?and tested for
significance using anon-parametric permutation test on the combined
null distribution of R differences, followed by FDR correction on the

resulting P values. For completeness, separate results for guided and
free recall are provided in Supplementary Fig. 7, while the main results
reflect the combined composite analysis (Fig. 6).

Partial correlation analysis controlling for room reinstatement. To
test whether room reliability predicted subsequent object reinstate-
ment when controlling for room reinstatement at recall, we conducted
a partial correlation analysis. Specifically, we asked whether the cor-
relation between room reliability and object reinstatement (Fig. 6a)
remained significant after regressing roomreinstatement at recall out
ofboth of these other variables.

To do this, we first constructed a RRCN. As described in the ‘Net-
work selection procedure’ section, we followed a similar approach to
identify ROCN and POCN. Inbrief, we used aleave-one-participant-out
cross-validation procedure in which we classified room recall during
the held-out participant’s perception of object videos. The top 50
best-performing searchlights were used to define the RRCN, which
was then used as a mask to extract room reinstatement evidence for
our partial correlation analysis.

Inthis analysis, we wanted to control for room reinstatement that
occurred on timepoints when participants verbally recounted room
details and on timepoints when they verbally described the objects
that were paired to a particular room; in principle, room reinstate-
mentduring either set of timepoints could be acting to scaffold object
retrieval. To this end, we computed two separate room reinstatement
scores within the RRCN:

RRCN-room-recall: Room evidence extracted with the RRCN mask
during timepoints in which participants were speaking about aroom
during free and guided recall.

RRCN-object-recall: Room evidence extracted within the RRCN
mask during timepoints in which participants were speaking about
the object that had been associated with a given room during guided
and freerecall.

To isolate the unique relationship between room reliability and
object reinstatement, we regressed out both RRCN measures from
each variable. Specifically, we fitted a linear model with ROCN object
reinstatement as the dependent variable and both RRCN-room-recall
and RRCN-object-recall as predictors. The ROCN residuals from this
modelrepresented object reinstatement variance unexplained by room
reinstatement. Similarly, we fit a second linear model with room reli-
ability asthe dependent variable and the same two RRCN measures as
predictors. Theroom reliability residuals from this model represented
roomreliability variance unexplained by roomreinstatement. Finally,
we computed a Pearson correlation between these two residuals. To
test for significance, we ran a non-parametric permutation test in
whichwe shuffled the ROCN residuals and recomputed the correlation
1,000 times to generate anull distribution of correlation values before
running FDR correction for g < 0.05.

Toidentify regions where therelationship between roomreliability
and object reinstatement had a significant positive or negative change
after controlling for room reinstatement, we ran a contrast in which
the correlation values of the partial correlation were subtracted from
the correlation values of our original model. To test for this difference,
we computed a composite score of each correlation by averaging the
results of each searchlight across recall task types (that is, guided
and free recalls) and participants. Next, we computed the difference
between the results of our original model and the partial correlation as
well as on their permutations to get a null distribution of differences.
To test for significance, we ran a non-parametric permutation test
where we compared the true differences from the null distribution of
differences and FDR-corrected for g < 0.05.

Relationship between room reliability and room features. Do prop-
erties of aroom contribute to the reliability of their representation?
We sought to identify whether physical or graph theoretical features
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of aroom contributed to the reliability of their representation. To do
this, we used the 3D Unity model of the environment to compute alist
of physicalfeatures such astotal room volume, total volume occupied
by background objects, the proportion of occupied volume and total
room volume, area, object count, number of corners and whether
the room has a window (that is, a view to the outside) and used the
roomadjacency matrix to compute graph-theoretical features such as
degree, betweenness, closeness, eigenvector and pagerank. We then
selected six features (degree, ratio of occupied volume, background
object count, floor area, number of corners and ‘has window’) that were
theleast collinear and provided conceptually non-overlapping proper-
ties (for example, betweenness and degree are collinear). We z-scored
eachfeature (except thebinary ‘haswindow’) and thenran asearchlight
analysis where we regressed room reliability oneach of the six z-scored
features for every participant. To test for statistical significance of each
oftheresulting beta coefficients, we rana non-parametric permutation
test whereroomreliability was shuffled 1,000 times within participants
beforeregressing again onthe features togenerate anull distribution of
beta coefficients. We then averaged across participants before running
FDR correction on the resulting z values and thresholding at g < 0.001.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are openly available at https://openneuro.org/datasets/
ds005704.

Code availability
Scripts used for analysis are available via GitHub at https://github.com/
rmasiso/MemoryPalaceReliability.
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groupings population. _ _ _ _ .
Race or ethnicity were not collected as experimental variables and were not included in any analyses, as the study objectives
concerned general principles of spatial memory and neural reinstatement.

Population characteristics Healthy adults aged 21-32 years, with normal or corrected-to-normal vision, and no reported neurological or psychiatric
disorders.
All participants were fluent in English and had prior experience using computers or gaming interfaces.
The final analyzed sample comprised 25 participants (11 female, 14 male).

Recruitment Participants were recruited through the Princeton University research participation system, local flyers, and online postings.
Eligibility criteria included normal or corrected-to-normal vision and no history of neurological or psychiatric illness.
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Study description This study investigated how reliable neural representations of spatial contexts (rooms) support memory reinstatement of associated
objects. Participants learned a 23-room virtual environment in virtual reality (VR), after being scanned for neural snapshots of the
rooms, they returned to VR to learn newly placed objects in each room, and then recalled the rooms and objects during fMRI
scanning. The research combined immersive behavioral learning (in VR) with whole-brain fMRI analyses to link stable room
representations (“spatial context reliability”) to subsequent object reinstatement.

Research sample Thirty healthy adults aged 21-32 years (16 female, 14 male) participated. All had normal or corrected-to-normal vision and no history
of neurological or psychiatric conditions. Five participants were excluded due to missing or corrupted MRI data, leaving n = 25 for
analysis.

Sampling strategy Participants were recruited from the Princeton University community and surrounding area through flyers, mailing lists, and online

postings. The target sample size was based on prior fMRI memory and reinstatement studies using similar within-subject designs
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gender representation and reflect local demographic diversity.

Data collection Behavioral and VR data were collected in the Princeton Neuroscience Institute behavioral labs; MRI data were collected on a Siemens
Prisma 3 T scanner with a 64-channel head coil.
Virtual reality tasks were implemented in Unity 3D using custom code and the Virtual Reality Toolkit (VRTK). Stimuli were presented
in the scanner via PsychoPy. Speech recall data were recorded with the scanner’s integrated microphone and annotated using
TotalRecall. Data were preprocessed using fMRIPrep, FreeSurfer, FSL, AFNI, ANTs, and custom Python scripts.

Timing Each participant completed the experiment across two consecutive days:
Day 1: Behavioral VR learning and map-drawing sessions (~1.5 hours).

Day 2: Two fMRI scanning sessions (pre-learning and post-learning, ~3 hours total) and an intermediate VR session (~0.5 hours).
Data collection occurred between 2018 and 2019 at Princeton University.
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Data exclusions Five participants were excluded due to missing or corrupted MRI files that prevented preprocessing and analysis.
No exclusions were made based on demographic characteristics. All other participants (n = 25) were included in every reported
analysis.

Non-participation All enrolled participants completed the full experimental protocol across both days, except those excluded due to technical data loss.

No participant withdrew voluntarily.

Randomization Room—object pairings were randomized independently for each participant to prevent systematic associations between specific
rooms and objects.
The order of room and object videos during scanning was pseudorandomized within task blocks.
Classifier analyses used leave-one-participant-out cross-validation to eliminate circularity and ensure unbiased generalization across
subjects.
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Seed stocks Plants were not used in this study.

Novel plant genotypes  Plants were not used in this study.

Authentication Plants were not used in this study.

Magnetic resonance imaging

Experimental design

Design type Within-subjects, cross-participant design. Participants completed both behavioral (VR) and fMRI tasks across two
consecutive days. Day 1 focused on spatial learning in VR; Day 2 included pre- and post-learning fMRI scans as well as a
short VR task in which participants had to learn the newly placed objects in the virtual environment rooms.




Design specifications

All participants underwent identical task sequences (VR environment learning, pre-learning scan, VR newly placed
objects learning, and post-learning scan).

Stimulus order within each scanning task was pseudorandomized.

Classifier analyses used leave-one-participant-out cross-validation.

Behavioral performance measures VR foraging scores, map-drawing accuracy, verbal recall duration, and recall contiguity were logged and analyzed for

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software

Normalization
Normalization template

Noise and artifact removal

Volume censoring

learning progression and memory retrieval structure.

Functional and structural MRI (BOLD EPI and T1-weighted anatomical imaging).

3 Tesla (Siemens Prisma scanner, 64-channel head coil).

Multiband EPI sequence (TR = 1300 ms, TE = 33 ms, flip angle = 80°)
Slice thickness: 2 mm

Field of view: 192 mm?

Multiband factor (SMS) = 4

Whole-brain coverage

T1-weighted anatomical: MPRAGE, 1 mm? isotropic resolution

Whole brain, including cortical and subcortical regions.

& Not used

fMRIPrep 1.0.3 (Nipype-based pipeline)

FreeSurfer 6.0.0 for surface reconstruction

ANTs 2.1.0, FSL 5.0.9, AFNI 16.2.07 for motion correction and registration

Custom Python scripts (NumPy, SciPy, MNE-Python) for nuisance regression and z-scoring
Surface- and volume-based normalization using ANTs nonlinear registration.

ICBM 152 Nonlinear Asymmetrical template (2009c) and fsaverage6 surface template.
Motion correction via MCFLIRT

Slice-timing correction via AFNI 3dTshift

“Fieldmap-less” distortion correction (Huntenburg et al., 2014)

CompCor (aCompCor, tCompCor) noise regressors

High-pass filtering (0.008 Hz cutoff)

Regression of CSF, WM, and motion parameters

No volume deletion; motion regressors were included as nuisance covariates.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Voxel-wise GLMs for object and room regressors; searchlight-based multivariate analyses.

Subsequent analyses used multivariate classification (multinomial logistic regression) and correlation-based reliability
measures.

Neural stability and distinctiveness of room representations (“room reliability”)

Relationship between pre-learning room reliability and post-learning object reinstatement

Searchlight-based regressions predicting reliability from room features

Specify type of analysis: [ | whole brain || ROI-based Both
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Our full hippocampus region of interest (ROI) was extracted from a freesurfer subcortical parcellation.
Anatomical location(s) This ROI was then split into an anterior portion (y > -20) and posterior portion (y <= -20) in MNI space
(Guo et al., 2020; Poppenk et al., 2013; Masis-Obando et al., 2022).

Statistic type for inference t-tests and Pearson correlations; nonparametric permutation tests for validation.

(See Eklund et al. 2016)
Correction False Discovery Rate (FDR) correction applied at q < 0.05 (q < 0.001 for feature regressions).

Models & analysis

n/a | Involved in the study
IZ |:| Functional and/or effective connectivity

|:| Graph analysis

|:| Multivariate modeling or predictive analysis
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Graph analysis Conducted on room adjacency structure (degree, betweenness, closeness, pagerank) from VR environment

Multivariate modeling and predictive analysis = Multinomial logistic classifiers (leave-one-participant-out cross-validation) and correlation-based predictions
linking room reliability to object reinstatement
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