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Spatial contexts with reliable neural 
representations support reinstatement  
of subsequently placed objects
 

Rolando Masís-Obando    1,2  , Kenneth A. Norman    1,3 & 
Christopher Baldassano    4

What are the neural properties that make spatial contexts effective scaffolds 
for storing and accessing memories? Here we hypothesized that spatial 
locations with stable and distinctive (that is, reliable) neural representations 
would best support memory for new experiences. To test this, participants 
learned the layout of a custom-built 23-room virtual reality ‘memory palace’ 
that they explored using a head-mounted display. The next day, participants 
underwent whole-brain fMRI while watching videos of the rooms, allowing 
us to measure the reliability of the neural activity pattern associated with 
each room. Participants then returned to virtual reality to encode 23 objects 
placed in each of the 23 rooms and later recalled the rooms and objects 
during fMRI. We found that our room reliability measure (computed before 
encoding) predicted object reinstatement during recall across cortex; this 
was driven not only by group-level reliability across participants but also 
by idiosyncratic reliability within participants. Moreover, this effect did not 
arise through enhanced retrieval of reliable rooms during recall, because 
the relationship between reliability and object reinstatement remained 
significant when controlling for room reinstatement during retrieval; this 
suggests that, instead, room reliability promotes improved binding of 
rooms to objects at encoding. Together, these results showcase how the 
quality of the neural representation of a spatial context can be quantified 
and used to ‘audit’ its utility as a memory scaffold for future experiences.

Many of our memories are intrinsically tied to the locations where they 
occurred. Thinking about (or actually revisiting) places from our past 
can immediately bring to mind the meaningful events that occurred 
there. In this way, our spatial memories can serve as a map not only 
of physical spaces but also of our remembered experiences in those 
spaces. In what ways can a spatial context (that is, the location in which 
an experience takes place) serve as a scaffold for storing and accessing 
the details of past episodes? Are there spatial contexts that are more 

or less effective for attaching event memories, and can we neurally 
measure the usefulness of a location as a memory cue even before an 
event has occurred?

Decades of research have found that the representation and 
retrieval of episodic memories is profoundly tied to spatial location. 
Prior behavioural research on the context-dependent memory effect 
suggests that items learned in a particular physical context can be better 
remembered when the retrieval context matches the encoding context1,2, 
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detail memories for both young and older adults14. This behavioural 
work is complemented by neuroimaging studies of autobiographical 
memory showing that spatial contexts have a strong influence on the 
neural representations of remembered or imagined autobiographical 
events9,15,16, among others; for a review, see ref. 17. The networks associ-
ated with spatial contexts are maintained during multiple phases of 
memory retrieval, possibly acting as a scaffold for accessing additional 
event details18. For example, spatial contexts can be reinstated before or 
concurrently with the retrieval of an item or episode19,20.

Beyond retrieval, prior theoretical work on episodic memory sug-
gests that—at encoding—features of an ongoing experience are bound 

even for contexts that are experienced only through virtual reality (VR)3 
or that are mentally reinstated rather than physically re-experienced4. 
Recent behavioural work has also suggested a privileged role for spatial 
contexts as cues for memory retrieval. For example, spatial context cues: 
(1) enhance episodic recall when compared with temporal, thematic (for 
example, romantic experience), person or object cues for imagined or 
real autobiographical memories5–8; (2) are spontaneously generated 
even when not cued by experimenters6,9, sometimes leading to quicker 
access to episodic information6,9 (but see ref. 10); (3) are associated with 
richer episodic memory when highly familiar to participants6,9,11–13; and 
(4) are associated with preserving long-term recollection of initially low 

Learning session

Postlearning session

Day 1

Participants become familiar with environment by playing foraging games.

Participants encode two sets of room videos across a delay.

Environment learning

Prelearning session 

VR memory palace (outside view) Map of all 23 rooms Experimental set-up
for immersive VR

Postforaging 
bird’s-eye-view drawing

Day 2

VR

fMRI

VR

fMRI

Prelearning room videos 1 Prelearning room videos 2

Room–video object recall 1

Object–video room recall 1

Postlearning object videos

Postlearning room videos

Postlearning recall tasks

Object–video room recall 2

Room–video object recall 2

Free
recall

Chess room,
human portraits
room, firepit
room, applecrate
room, colorful
wall room

Empty room, 
chess room, 
storage boxes 
room, painting 
room, computer 
room

‘Guided recalls’ (11)‘Free recall’ (1)

Participants face a blank screen and 
freely recall to the best of their ability 
the details of each room and the 
object that was paired with it.

Participants recalled the name of the object that was placed in the room.

Participants recalled the name of the room that was paired to the object.

Participants explore the environment in VR and learn the room 
and object pairings. Room–object pairings were randomized 
across participants.

Participants describe the 
5 rooms presented on the 
screen and the objects 
paired with them.

Time

Time

Time

Start of scan

End of scan

Fig. 1 | Experimental paradigm. Participants played a set of foraging games to 
learn the layout of the 23-room VR environment (photograph of a laboratory 
member demonstrating the VR set-up used with permission). At the end of each 
foraging game, to test learning of environment, participants drew a bird’s-eye-
view map of the environment (see Supplementary Fig. 1 for more examples). 
Twenty-four hours later, participants were shown room videos in the scanner, 
with each room presented twice. Participants then re-entered immersive VR and 

were given 15 min to learn the identities and locations of 23 new objects that had 
been added to the environment, one per room. Finally, participants returned 
to the scanner and recalled the items they had seen in a free recall task, a guided 
recall task (in which they recalled items along specific five-room paths) and a 
room video task (in which they recalled the item for each presented room). They 
were also presented with videos of each object and attempted to recall the room 
in which each object appeared.
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to the context in which they occur21–23, allowing spatial contexts to serve 
as structured ‘containers’ that organize and support the integration 
of new experiences24,25. Consistent with this view, explicitly binding 
objects to their spatial context during encoding enhances subsequent 
memory for those objects26. In another recent study3, participants 
encountered words within two distinct spatial contexts (each associ-
ated with a separate schema) and judged each word’s relevance to its 
context without knowing there would be a later memory test. If reinstat-
ing the context at retrieval were sufficient to boost memory, all words 
should have benefitted equally. Instead, only context-relevant words 
showed a memory advantage, suggesting that these items were more 
effectively bound to the spatial context during encoding.

Despite the centrality of spatial context in memories, it is unknown 
whether (1) some specific spatial locations are more effective memory 
cues than others and, if so, (2) whether this is related to properties of 
their neural representation. In general, two requirements for robust rep-
resentation of a memory are thought to be stability over time (allowing 
for faithful reactivation of the features of the original experience) and 
distinctiveness (to prevent interference with other similar memories27,28). 
We hypothesized that these two properties would also be important 
specifically for building an effective spatial context scaffold—that is, 
that spatial locations with more stable and distinctive representations 
would support better encoding of new information encountered in these 
locations and allow easier access to this information at retrieval. This 
implies that having a stable and distinctive neural representation for a 
location before associating an object to that location will be predictive 
of subsequent reinstatement for that object representation.

Our primary mechanistic hypothesis for why this would occur was 
that reliable room representations facilitate the binding of room to 
object information at encoding (for example, the sturdier a wall is, the 
easier it is to hang a painting on it). However, facilitated binding at encod-
ing is not the only way that having a stable and distinctive room represen-
tation could facilitate subsequent object reinstatement; an alternative 
possibility is that having a stable and distinctive room representation 
has no effect on room–object binding at encoding and that instead it 
boosts object recall indirectly by boosting the degree to which the room 
representation is reinstated at test, which—in turn—boosts reinstatement 
of associated object information (for example, the brighter the light in a 
dark room, the easier it is to see what is inside). We will present the results 
of analyses that control for this alternative possibility.

To test whether reliable spatial contexts scaffold subsequent 
memory, we custom-built a VR ‘memory palace’ environment of 23 
perceptually distinct rooms each with distinct soundtracks, interiors 
and room-congruent objects, which participants explored using a 
head-mounted VR display (Fig. 1). After participants learned the layout 
of the virtual environment, we used functional magnetic resonance 
imaging (fMRI) to compute a neural room reliability score for each 
of the 23 rooms (Fig. 2). This score reflected both the stability and 
distinctiveness of neural representations, measuring the degree to 
which repeated presentations of a room evoked patterns that were 
more similar to each other than to patterns evoked by other rooms. 
Participants then returned to the VR environment, where they observed 
(and were asked to memorize) a new salient object that had now been 
placed into each room. Finally, they performed recall tasks for these 
items in the fMRI scanner (Fig. 3). Overall, our results confirmed our 
hypothesis: room reliability, measured before any room–object pair-
ing occurred, predicted the degree of object reinstatement during 
verbal recall, showing that it is possible to neurally diagnose whether 
a room will serve as an effective memory scaffold, before objects are 
placed in the room.

Results
Overview
How effective are spatial memory representations as containers for 
subsequently bound objects? We sought to answer this question by 

using the reliability of a prelearning room representation to predict the 
degree of reinstatement evidence for recalled objects during self-paced 
verbal recall. To do this, we needed to quantify (1) the reliability of a 
room representation and (2) the reinstatement of object information 
during recall. We defined room reliability as the similarity of a room 
representation to itself (that is, stability) minus its average similarity 
to every other room (that is, distinctiveness); importantly, this was 
measured before any room–object associations had been formed (that 
is, in the prelearning phase; Fig. 2). Our strategy for quantifying object 
reinstatement during recall was as follows: We first identified a network 
of regions involved in the retrieval of objects (the retrieved object clas-
sifier network; ROCN) during a cued-recall task in which participants 
watched videos of room interiors and were asked to recall the objects 
that had been randomly assigned to those rooms in VR (Fig. 4). We 
then measured the average classifier evidence for object reinstate-
ment within this network during self-paced verbal recalls, in which 
participants were instructed to verbally describe with as much detail as 
possible the rooms and the randomly placed objects in them (Fig. 5a). 
Afterwards, to determine how well the reliability of a prelearning room 
representation predicted object reinstatement, we correlated prelearn-
ing room reliability scores with object classifier evidence within the 
ROCN during self-paced recall trials (Figs. 5b and 6). We identified a 
set of regions whose prelearning room reliability predicted object 
reinstatement during verbal recall, including the precuneus, posterior 
parietal cortex, and prefrontal cortex—specifically, the superior frontal 
gyrus. Importantly, using a model comparison analysis, we also found 
that some of these regions provided a participant-specific predictive 
benefit, including the posterior parietal cortex, posterior ventral tem-
poral cortex and superior frontal gyrus (Fig. 6b). Lastly, to identify 
whether room reliability supported object reinstatement indirectly 
by promoting room reinstatement at recall, we conducted a partial 
correlation analysis controlling for room reinstatement. Even after sta-
tistically controlling for room reinstatement, the relationship between 
room reliability and ROCN object reinstatement remained significant 
(Fig. 6c). Furthermore, no areas showed a significant decrease in the 
size of this relationship when we controlled for room reinstatement 
(see ‘Partial correlation analysis controlling for room reinstatement’ 
section in the Methods).

Room reliability
To identify brain regions with reliable room representations for every 
participant, we compared the similarity of a room’s representation 
across runs to its similarity with representations of other rooms 
(Fig. 2a). We ran this analysis on searchlights and hippocampal regions 
of interest (ROIs; full hippocampus, anterior hippocampus and poste-
rior hippocampus). We found significant room reliability across most 
of the cortex. Unsurprisingly, given the audiovisual nature of the room 
videos, we found high reliability scores in the auditory and visual cor-
tex, as well as in the precuneus and posterior hippocampus (Fig. 2c).

Are there particular room properties, such as size, complexity 
or connectedness, that contribute to the reliability of room repre-
sentations? To identify which room features contribute to room reli-
ability, we ran a searchlight analysis where, within each searchlight, 
we ran a multiple regression predicting room reliability based on six 
different room features; we generally found that, in default mode 
network regions, the most reliable rooms tended to be those that were 
small, had many corners and had an opening with a view to the outside 
(Supplementary Fig. 2).

Behavioural recall
On the second day, participants performed two types of self-paced 
verbal recall task. During the guided recalls (11 runs), participants were 
presented with the names of 5 rooms that followed a path within the 
virtual palace and were asked to freely recall details of the rooms and 
the randomly added objects. During the free recalls, participants were 
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presented with a blank screen and were simply asked to freely recall, in 
as much detail as possible, the rooms and the added objects. For the 
guided recalls, we computed accuracy by counting whether a partici-
pant recalled the randomly placed objects in that path regardless of 
whether they were correctly recalled in order of the path or with the 
correct room–object pairing. In other words, an object was marked as 
correctly recalled (out of 5) if it was recalled at any point during the trial. 
Similarly, for the free recalls, regardless of when an object was recalled, 
we marked an object as correctly recalled (out of 23) if it was recalled 
at any point during the free recall. Across both recall types, partici-
pants’ recalls were at ceiling, with 92% and 80% of participants scoring 
higher than 90% recall accuracy for guided and free recalls, respec-
tively (Fig. 3d). We also found that, in both guided and free recalls, 
participants spent less time speaking about the ‘empty room’ than the 
across-participant average (Supplementary Fig. 3)—probably because 
the room was empty (other than the randomly placed object) and there 
was less to recall. We also measured the proportion of contiguous room 
transitions during free recall. Across participants, spatially adjacent 

rooms were recalled more often than expected by chance (t(24) = 14.19, 
P < 0.001), suggesting an unprompted bias towards contiguous mental 
traversal (Supplementary Fig. 3f).

ROCN
To measure evidence of object reinstatement during self-paced (guided 
and free) verbal recall, we first needed to identify a network of regions 
that represent information about specific objects that were retrieved 
from memory; to select these regions in a non-circular fashion, we 
defined these regions using data from room–video object recall tri-
als (Fig. 4a). In these trials, participants viewed videos of all rooms 
and verbally recalled the object that had been assigned to each room 
as it was presented (Fig. 4a). We used a leave-one-participant-out 
cross-validation procedure, whereby we made a neural template for 
each object (using data from a separate phase of the study in which 
participants viewed object videos) based on object videos from 
N − 1 participants, and then we used these templates to classify the 
(not-visibly-present) objects being recalled during room viewing in 
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Fig. 2 | Room reliability. a, Illustration of room reliability methodology.  
(1) Participants first explored the memory palace in immersive VR and learned its 
spatial layout by playing a foraging game. (2) In the prelearning scanning session, 
before learning room–object pairings, participants watched and listened 
to videos of each room twice (prelearning room videos 1 and 2). Each room 
representation was correlated across runs with every other room, in a searchlight 
analysis. (3) Room reliability was computed by taking the difference between 
the similarity of a room pattern to itself (green) and the average similarity of 
the room with every other room (red). (4) Room reliability was computed for 
every room, leaving a room reliability score for each of the 23 rooms. The entire 

procedure outlined in a was computed for every participant such that, for every 
searchlight, there were 23 room reliabilities for each of the 25 participants. b, An 
example room pattern similarity matrix for one participant, in the searchlight 
denoted with a dotted circle. This matrix was used to extract room reliability 
scores as described in a, such that, for each room (row), the average room 
similarity to other rooms (red) was subtracted from the room similarity to itself 
(green). c, Room reliability across the brain. Coloured vertices on the surface 
indicate regions in which room reliabilities were significantly above zero at the 
group level (q < 0.05), with brighter colours indicating greater reliability.
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the held-out participant (Fig. 4a). We opted for this across-participanta 
approach (rather than classifying within-participants) because objects 
and rooms are confounded within participants, so room information 
could ‘leak’ into training of a within-participant object classifier; this 
confound does not exist if training and testing are done across partici-
pants, each of whom has their own random set of room–object pairings. 
In other words, the left-out participant’s object templates were never 
used to classify their own object recall during room videos. We used 
this procedure to identify the top 50 best object classifier searchlights 
(~3% of all searchlights) to make our ROCN (Fig. 4b), which we used as 
a mask (Fig. 4d) when measuring object reinstatement evidence dur-
ing the guided and free recall tasks. We found that the top classifier 
searchlights were spread throughout cortex and included regions in 
the anterior temporal cortex, frontal gyrus, posterior temporal cortex, 
posterior medial cortex and superior parietal cortex, among others 
(Fig. 4c,d). We also conducted additional analyses to extract two other 
networks: For one, we classified object patterns while participants 
watched videos of objects (rather than retrieving object memories) 
to extract the perceived object classifier network (POCN), which was 
entirely, and unsurprisingly, due to the visual task, concentrated in 
early visual cortex (Supplementary Fig. 4). For the other, we classified 
room patterns while participants watched videos of objects (analogous 
to ROCN, which classified object memories during room videos) to 
extract the retrieved room classifier network (RRCN), which was widely 
distributed and included the precuneus, medial prefrontal cortex, 
anterior temporal cortex and visual cortex (Supplementary Fig. 5).

Relationship of room reliability and ROCN object 
reinstatement evidence
Does room reliability predict future object reinstatement during free 
and guided recalls? Using the object classifier and ROCN searchlights 
from the previous analysis, we measured the degree of object reinstate-
ment as each participant performed verbal recalls (Fig. 5a). Note that 
using neural object reinstatement provided a more sensitive index 
of successful retrieval than behavioural recall accuracy, as almost all 
participants were near-ceiling in their retrieval accuracy as described 
above. Specifically, at each searchlight, we correlated each participant’s 
room reliability with their own composite ROCN object reinstatement 
score (Fig. 6a; see Supplementary Fig. 8 for an example searchlight). 
We then averaged these correlations across participants to obtain a 
searchlight map that we then statistically averaged across recall task 
types (that is, guided and free recalls) to get a composite map that 
indicated regions where room reliability in those regions correlated 
with subsequent object reinstatement (throughout the ROCN network; 
Fig. 6a). Notable positive relationships were observed throughout 
the parietal cortex, prefrontal cortex, superior frontal gyrus, insula 
and precuneus. We also found notable negative relationships in the 
right parahippocampal cortex, parts of the motor system, auditory 
cortex and ventral visual regions. Importantly, when looking at this 

relationship separately for guided and free recalls (before generating 
our composite map), the regions revealed were highly similar, provid-
ing an internal replication of this relationship across two categorically 
different recall task types (Supplementary Fig. 7).

Lastly, to determine whether room reliability’s relationship with 
object reinstatement was driven by room reinstatement, we ran a 
partial correlation analysis where we regressed room reinstatement 
scores in RRCN from both ROCN object reinstatement and prelearning 
room reliability, and then correlated the residuals. After controlling for 
room reinstatement at retrieval, the relationship between room reli-
ability and ROCN object reinstatement evidence remained significant 
(Fig. 6c). The pattern of results across the brain shown in Fig. 6c (when 
we controlled for room reinstatement) was almost identical to the 
pattern of results shown in Fig. 6a (when we did not control for room 
reinstatement), and there were not any areas where the effect signifi-
cantly differed between the two maps. Taken together, these results 
indicate that fluctuations in room reinstatement during retrieval were 
not responsible for the effects shown in Fig. 6a. For completeness, we 
also did this for POCN object reinstatement; similarly to what we found 
for the ROCN, after controlling for room reinstatement at recall, the 
relationship between room reliability and POCN object reinstatement 
remained significant, and there were no areas where this relationship 
significantly decreased when we controlled for room reinstatement 
(Supplementary Fig. 6c).

To what extent do the effects in Fig. 6a reflect group-level differ-
ences across rooms (whereby some rooms have both high reliability and 
high item reinstatement in all participants) versus participant-specific 
differences in which rooms are most reliable in their individual mental 
maps? To answer this question, we compared the coefficient of deter-
mination (R2) between (1) our original participant-specific model, 
where each participant’s object classifier evidence was predicted using 
their own room reliability values, and (2) the average R2 of N − 1 models 
where—in each model—the left-out participant’s object classifier evi-
dence was predicted using a different participant’s room reliability 
values (that is, one model for each of the N − 1 other participants). We 
then took the regions where there was a positive and statistically sig-
nificant participant-specific effect (that is, better prediction with the 
original model) and intersected them with the correlational analysis 
performed in Fig. 6a. This process revealed a participant-specific ben-
efit of room reliability in the posterior parietal cortex (near the angular 
gyrus), insula and superior frontal gyrus (Fig. 6b). Interestingly, there 
was also a participant-specific effect where room reliability in a small 
section of right parahippocampal cortex was negatively associated 
with ROCN reinstatement evidence.

In a similar fashion to how we related room reliability with object 
evidence within the ROCN, we ran a supplementary analysis in which 
we quantified object reinstatement within the POCN; largely composed 
of visual regions) during verbal recall (Supplementary Fig. 6). Across 
participants, we found generally similar results to the ROCN results, 

Fig. 3 | Behavioural recall scoring. On the second day after learning room–object 
associations in VR, participants went back into the scanner where they performed 
a free recall and 11 guided recall tasks. In the free recall task, participants were 
asked to recall and describe with as much detail as possible the rooms and the 
objects paired to them. By contrast, during the guided recall tasks, participants 
were presented with five contiguously connected rooms and asked to describe 
the rooms and the objects in them. a, Example guided recall transcription. 
Participant recalls were transcribed manually for the onset and offset 
timestamps of when rooms and objects were recalled. b, Example transcribed 
recall event matrix. Timestamps of the onsets and offsets of participant recalls 
were then interpolated from seconds into TRs and organized as event matrices 
that could then be used to index BOLD recall timeseries. Green and yellow 
bars indicate room and object recalls, respectively. Object recall timepoints 
were used to calculate object evidence scores in neural analyses (for example, 
the timepoints where participants talked about the dartboard object (‘Darts’) 

were used to measure neural object evidence for recall of the Darts). c, Guided 
recall task, pairings, objects recalled and accuracy calculation. First column: 
this participant was presented with a five-room path and asked to sequentially 
describe the rooms and the objects in them. Second column: calculation of 
behavioural accuracy for guided recalls. Participants were scored based on 
whether they recalled the objects that were paired to the rooms in the presented 
path. Although this participant recalled four objects, only three were associated 
with the corresponding cued five-room path. For both guided and free recalls, 
points were awarded based on whether participants recalled the relevant objects 
at any point in time during the recall period, regardless of the order in which 
the objects were recalled or whether they were recalled in association with the 
correct room. d, Guided recall (GR) and free recall (FR) accuracy distributions. 
With these scoring schemes, participants were able to recall objects with high 
accuracy. Participants’ recalls were at ceiling, with 92% and 80% of participants 
scoring higher than 90% recall accuracy for guided and free recalls, respectively.
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Altar room

Direction of
presented

path

Ruins room

Altar, colourful, crystals, clocks and ruins
18  , 17  , 16 , 15  , 14

“...and then the ruins room...”

“Ok, the stone altar room is foggy, has a stone altar with a sword on it. 
and that has a.... treasure chest.”

“Ok, the stone altar room is foggy, 
has a stone altar with a sword on it.” 

“And that has a...
treasure chest.”

“...the Colorful Wall room, 
has a bunch of colorful 
walls and I think it’s got a 
drumset”

“the crystals 
room has a 
puppy...” “and it just has a 

bunch of purple 
crystals coming o¤ 
the ground”

“I don’t 
know what 
the crystals 
has”

“oh no, the 
clocks room 
has the 
puppy.”

“...and then 
the ruins 
room...”

“...the ruins 
room has a 
dart board on 
it...”

*the object “drums” was not 
paired to any of the rooms of 

the presented path*

“and its got 
stones coming 
out of it.”

“The clocks
has a bunch of
floaty widgets
and clocks on
the walls”

“...the ruins room has a dart board on it.” “and its got stones coming out of it.”
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with a positive relationship between POCN reinstatement evidence 
and room reliability in the parietal cortex, superior frontal gyrus, 
insula, posterior medial cortex and dorsal occipital cortex. Across both 
recall tasks, there was a participant-specific benefit of room reliability 
in the posterior parietal cortex, posterior medial cortex, right insula 
and portions of the right lateral superior and middle frontal gyrus 
(Supplementary Fig. 6; refer to Supplementary Fig. 7 for guided and 
free recalls separately)

Discussion
In this study, we posited that a cognitive map of spatial contexts is 
most useful as a container for future memories when locations have 
reliable representations, providing specific and consistent cues 
every time they are accessed. To test how the neural properties of 
a spatial context memory support new memories, we developed a 
paradigm that allowed us to quantify the within-participant reliability 
of a spatial context memory before it became the location in which a 

new memory was formed, and then used this measure to predict the 
extent to which that new memory was remembered. We did this by 
having participants develop spatial context memories of a 23-room 
immersive VR memory palace, scanning them to extract the neural 
properties of their spatial memories for ‘empty’ rooms within the 
palace (prelearning phase) and then scanning them again afterwards, 
as they verbally recalled the ‘filled’ rooms and the objects that filled 
them (postlearning phase). We found that prelearning room reliabil-
ity—the representational quality of an ‘empty’ memory scaffold—was 
predictive of postlearning object reinstatement in two types of verbal 
recall. We further showed that, in some regions, a participant’s idi-
osyncratic room reliability values provided a predictive advantage 
beyond what could be inferred from room reliability patterns shared 
across participants. Finally, we showed that this relationship between 
room reliability and object reinstatement persists even after statisti-
cally controlling for room reinstatement at recall. By ruling out the 
alternative hypothesis that fluctuations in room reinstatement are 

Object classification during room videos
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Fig. 4 | ROCN methodology and surface maps. a, During the postlearning 
room–video object recall task, participants watched a video of a room and 
verbally recalled the object that was paired to it. In a leave-one-participant-
out cross-validation procedure, the characteristic object patterns of the N − 1 
group—evoked during a separate phase of the study in which participants viewed 
object videos—were used to train a multinomial logistic classifier. This classifier 
was then applied to each timepoint on the left-out participant’s room–video 
object recall data. In the pictured example, the left-out participant, Fernando, 
is recalling the carrot object that was paired with the hexagon room currently 
being presented. The object classifier, trained on patterns evoked when other 
participants viewed the objects, was applied to each timepoint of Fernando’s 

recall. We then measured the fraction of timepoints during the hexagon-room 
video that were classified as activating the carrot representation. b, For each 
searchlight, object classification accuracies for both room–video object 
recall videos for each participant were averaged together and then averaged 
across participants and z-scored relative to a null distribution. The 50 top-
performing searchlights were then selected to form the ROCN. c, Average object 
classification accuracy during room–video object recall. The colour map shows 
the relative classification accuracy across all searchlights (thresholded to show 
only searchlights with above-chance accuracy). d, ROCN. The top 50 searchlights 
that were most sensitive to object reinstatement (yellow) were defined as the 
ROCN for subsequent analyses.
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(fully) driving the effect, this control analysis provides indirect evi-
dence in support of our preferred hypothesis—namely, that reliable 
room representations scaffold memory for objects by facilitating the 
binding of objects to rooms at encoding.

Theories in cognitive psychology have long argued that we 
develop knowledge structures that help to organize new informa-
tion during encoding and later serve as a scaffold to recall specific 
details29; for example, prior work has discussed how event schemas30, 
which describe the prototypical sequence of events associated with 
well-learned experiences (for example, restaurant visits), can support 
memory for new life events. In a similar fashion, knowledge about the 
structure and affordances of a spatial context can scaffold memories 
for experiences that occur in that context6,31. Our results support this 
general framework but also argue that all schematic containers are 
not equally effective at organizing memories; contexts that are only 
weakly learned and/or suffer interference from other contexts will 
not be effective scaffolds, consistent with work showing that repeated 
exposure to a single room versus distributed exposure to many rooms 
creates a more effective contextual cue32. In addition, our findings here 
also provide further support on the utility of VR as a tool for studying 
how spatial contexts can shape memory and behaviour33.

Room reliability is predictive of object reinstatement
There are two important features that make this study uniquely placed 
to investigate the role of spatial context scaffolds in episodic memory. 
First, the virtual rooms in this study are experienced in immersive VR 
and vary widely along many dimensions (room size and geometry, 
decoration, background soundtrack and so on), allowing participants 

to create rich and unique representations of individual rooms. Second, 
unlike other studies, neural patterns for each of the spatial contexts 
were acquired before the key learning event took place (here, the newly 
placed object in each location). These two features provided us with the 
opportunity to relate the neural patterns for ‘empty’ spatial contexts 
with the reinstatement of the objects that had been placed in them in 
a subsequent part of the experiment.

Specifically, our paradigm allowed us to relate the reliability of 
a room representation (the ‘empty’ scaffold) across the cortex to the 
reinstatement of the objects that had been placed in rooms explored 
in VR. In general, we found that object reinstatement was predicted 
by room reliability in the precuneus, insula, frontal cortex and regions 
throughout lateral parietal cortex (Fig. 6), suggesting that measuring 
the structural integrity of a spatial context representation before a life 
episode is predictive of how well that episode will be reinstated later. 
Moreover, these effects were found separately for both guided and free 
recall, providing an internal replication of our results and suggesting 
that stable context representations are useful for retrieval across mul-
tiple kinds of memory tasks. We observed strong effects in regions that 
are well known to support mental and virtual navigation34–42, including 
the precuneus and the dorsal occipital lobe. Similar regions have also 
been identified in many types of tasks involving spatial knowledge: 
during spatially cued retrieval of real or imagined autobiographical 
memories15,18,43, during recognition or retrieval of the spatial context in 
which an item was encountered44–46, during the recollection of spatial 
relationships in two and three dimensions47–50, during reinstatement 
of spatial contexts during item retrieval51 and during the encoding and 
retrieval of items bound to a spatial context52,53.
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Fig. 5 | Methodology for using room reliability to predict object 
reinstatement. a, Illustration of methodology for how ROCN object 
reinstatement evidence was calculated from guided and free recalls. A leave-
one-participant-out cross-validation procedure was used with a multinomial 
logistic classifier to predict object patterns at every timepoint of the left-out 
participant’s recalls. To extract a single composite score of reinstatement 
evidence within the ROCN for every object and every participant, the classifier 
evidence for each object recalled was averaged within the ROCN mask across 
the timepoints when each object was verbally recalled. This yielded a single 

score for each object and each participant that represented the average object 
reinstatement evidence in the ROCN during guided or free recall. b, Illustration 
of methodology for how object reinstatement evidence was predicted by room 
reliability. In a searchlight analysis, reliability for a room (in that searchlight) 
was correlated with the corresponding composite score of reinstatement 
evidence (within the ROCN mask) for the object paired to that room. This 
correlation was computed across room–object pairs within each participant, 
and then those correlations were averaged across participants and, finally, 
across recall task types.
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Although these studies highlight the importance of spatial knowl-
edge in a diverse range of learning and memory tasks, most of these 
studies focused on univariate or functional connectivity changes dur-
ing the tasks, with few leveraging multivoxel pattern analyses (for 
example, refs. 15,51,54), and none quantifying the quality of the specific 
spatial representations used in these tasks. Thus, our work here, in 
combination with these prior studies, adds to the vast literature on 
spatial memory and provides a potential prerequisite for the successful 
completion of any spatial task: spatial context representations need to 
be reliable to be useful for subsequent memory storage.

In some other brain regions, we observed that room reliability in 
those regions was negatively related to subsequent object reinstate-
ment. How can we explain these negative relationships? Because these 
regions are primarily in lower-level auditory and visual cortex, one 
possibility is that these regions code for lower-level sensory features, 
not spatial contexts, and the room reliability observed in these regions 
was actually a measure of how strongly these sensory properties were 
being represented. In this case, stronger representation of isolated 
features could be at odds with larger-scale and gist-like representa-
tions of the room geometry and semantic properties, making a room 

Predicting object reinstatement from 
room reliability

Predicting object reinstatement from room 
reliability (controlling for room reinstatement)

Participant-specific benefit when predicting 
object reinstatement from room reliability

a b
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Room reliability
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RRCN evidence

ROCN evidence

Room reliability ROCN evidence

Room reliability
(residuals)

Participant–specific
model Group model

ROCN evidence
(residuals)

Controlling for room reinstatement

Fig. 6 | Predicting ROCN object reinstatement from room reliability.  
a, Relationship between ROCN object reinstatement and room reliability. 
Shown are regions where room reliability predicted ROCN object reinstatement 
across both guided and free recall. Objects placed in rooms with the most 
prelearning neural stability in these regions were reinstated the most strongly 
during retrieval. b, Model comparison results. Shown are regions in which 
room reliability predicted ROCN object reinstatement across both guided and 
free recall and where participant-specific room reliability provided additional 
predictive value. In these regions, the rooms that were most reliable for a specific 
participant (rather than rooms that were generally reliable across the group) 
were predictive of object recall for that specific participant. The surface maps 
presented in b show the intersection of the participant-specific models shown 
in a and the regions where there was a significant positive difference in the 
coefficient of determination between the original participant-specific model 
and the N − 1 group model. Statistical significance for the differences between 

the coefficients of determination was determined by comparing the differences 
with a null distribution and FDR-correcting for q < 0.05. c, Controlling for room 
reinstatement. Left column: schematic illustrating how room reinstatement 
evidence in RRCN (during timepoints in which participants verbally recalled a 
room or its paired object) was regressed out of room reliability and ROCN object 
reinstatement scores. Room reliability residuals were then correlated at each 
searchlight with ROCN object reinstatement residuals. Right column: regions 
where room reliability predicted ROCN object reinstatement after controlling  
for room reinstatement during room and object recall. The surface maps 
presented in a and c were statistically thresholded by comparing correlations  
to a null distribution and then FDR-correcting for q < 0.05. All three surface  
maps are coloured based on the magnitude of the z-scored correlation values of  
the participant-specific model, with blue showing negative and red showing 
positive relationships.
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less useful as a contextual anchor for subsequent object memory. 
Further work investigating object representation in the brain and its 
relationship to room reliability is required to aid in parsing the negative 
relationships we found.

What underlying mechanisms explain the relationship between 
object reinstatement and room reliability? Our hypothesis was that 
reliable room representations scaffold memory for objects by facili-
tating the binding of objects to rooms at encoding. Our finding that 
room reliability (measured before encoding) correlates with object 
reinstatement (measured during recall) is compatible with this ‘facili-
tated binding at encoding’ hypothesis. An alternative possibility is that 
successful reinstatement of reliable rooms during recall promotes 
object reinstatement for these rooms; this could give rise to a correla-
tion between room reliability and object reinstatement, even in the 
absence of facilitated binding at encoding. We addressed this alterna-
tive hypothesis by controlling for room reinstatement during verbal 
recall and found that the relationship between room reliability and 
object reinstatement remained significant; furthermore, there were no 
areas that showed a significant decrease in the size of the effect when we 
controlled for room reinstatement. The results of this control analysis 
provide indirect support for our hypothesis that room reliability sup-
ports improved room–object binding at encoding; namely, a reliable 
spatial context representation may provide a stable schematic map that 
facilitates the integration of new episodic content—the more reliable 
the container, the easier it is to populate it with information. Future 
work in which participants are scanned during object–location encod-
ing would help shed additional light on how room reliability enhances 
the creation of episodic memories.

Room reliability
We described the representational stability and distinctiveness of a 
spatial context through a reliability score that measured the speci-
ficity of a room’s representation across runs. These spatial contexts 
were designed to be visually and auditorily rich to reflect real-world 
contexts. Given that room reliability was derived from audiovisual 
stimuli, it was not surprising to find the strongest reliability in the 
visual and auditory cortex. In addition to these sensory regions, we 
found significant room reliability in other regions that have been 
implicated in higher-level processing: the parietal cortex (includ-
ing the intraparietal sulcus), posterior medial cortex (including the 
precuneus) and lateral prefrontal cortex (including the premotor 
cortex). In other studies, these regions have been shown to main-
tain specific scenes or events within stories along various timescales 
during movie watching55–59. These regions may help to ensure stable 
and distinctive representations of the high-level properties of the 
current situation that go beyond low-level sensory properties—an 
idea consistent with prior work showing that these regions represent 
event types shared across stories, regardless of whether the story is 
presented as an audio narrative or an audiovisual movie59,60. Although 
some of this event structure can arise from the temporal dynamics 
of the stimulus itself, internal schemas can also be used to actively 
organize an experience into stable events61. Our results suggest that 
this kind of top-down stabilization may be most effective when the 
schema itself is highly reliable, providing a robust starting point for 
building episodic event representations.

Although high pattern similarity across identical trials is related 
to better subsequent memory62, purposefully increasing variability 
in item encoding by varying the encoding context has been shown 
to improve item memory63,64, perhaps by increasing the number of 
possible retrieval cues for the item (see, for example, refs. 65,66). It 
is therefore possible that there are some situations in which unstable 
context representations would be useful for creating memories, for 
example, if items are studied multiple times in a context and then 
recognition memory is tested in a novel context. However, in our para-
digm, participants were explicitly using a context-based strategy for 

retrieving items, mentally simulating rooms and trajectories through 
rooms to reinstate item memories. In this case, we would expect that 
having a reliable contextual index for episodic memories would be 
critical for effective recall of items, consistent with our findings that 
stability in scene-related brain regions predicted item reinstatement. 
Future work could investigate whether this relationship disappears 
or reverses in other situations, such as when many items are paired 
with the same room (reducing the usefulness of rooms as memory 
cues), or when rooms have features that vary, for example, with time 
of day (such that representational variability might reflect meaningful 
changes in contextual features), or when the recall task requires report-
ing only objects while suppressing recall of room features. Similarly, 
novelty may influence how room reliability scaffolds memory: a new 
context may be less stable than a highly familiar location but could still 
enhance memory because its novelty promotes additional attention 
and processing. Future work examining how repeated exposure and 
contextual novelty interact with reliability could shed new light on 
their contributions to memory.

Our experimental paradigm and the method of loci
Our ‘memory palace’ paradigm draws inspiration from the mnemonic 
technique called the method of loci (MOL), in which items are associ-
ated with an imagined sequence of spatial locations in a prelearned 
map. However, our study diverges from this technique in several key 
ways. Unlike many implementations of MOL, participants were not 
required to encode or recall to-be-remembered items in an explicit 
linear sequence of rooms, nor were they instructed to use any particular 
mnemonic during room–object binding. Instead, participants explored 
the virtual environment freely and developed their own strategies 
for memorization.

Despite these differences, the motivation for this technique is 
related to the hypothesis tested in this study: that a well-learned spa-
tial map consisting of many distinct locations is the optimal encoding 
environment for new item memories. The learnability of this technique 
suggests that it may rely on inherent spatial memory structures shared 
across people. In fact, the ability to improve memory through this spa-
tially based technique has been shown across multiple studies behav-
iourally and neurally (behavioural26,67–70, among many; neural52,54,71–77). 
Generally, neuroimaging studies of this technique have largely focused 
on the impact of MOL (at varying levels of training or compared with 
other mnemonics) during item encoding71–74, with only a few perform-
ing univariate contrasts during recall52,75–77, and only one, to our knowl-
edge, examining multivariate pattern activity for loci, items and their 
conjunctive associations54. The univariate results during recall have 
shown enhanced engagement of regions including retrosplenial cor-
tex and precuneus after instruction in MOL52, suggesting that spatial 
representations of loci are strategically activated during retrieval. A 
recent study measuring multivariate activity patterns during MOL54 
found robust representations for individual loci during the creation 
and retrieval of item–locus pairs in regions including the precuneus 
and posterior parietal cortex, suggesting potentially overlapping 
mechanisms in how our naive participants and MOL-trained individu-
als use spatial information for item memorization. It remains an open 
question whether enhanced room reliability helps support memoriza-
tion when using MOL.

Conclusion
After participants learned a complex spatial environment in VR, we 
measured the neural reliability of each spatial location within this map. 
When participants later used this environment to learn a new set of 
room–object associations, we showed that this room reliability measure 
could predict the degree to which objects associated with each room 
successfully came online during naturalistic recall. Together, these 
results showcase how the quality of a spatial context can be quantified 
and used to ‘audit’ its utility as a memory scaffold for future memory.
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Methods
Participants
Data were collected from a total of 30 participants between the ages of 21 
and 32 years (16 females, 14 males) with normal or corrected-to-normal 
visual acuity. At the end of the study, participants were paid and 
debriefed about the purpose of the study. Every effort was made to 
recruit an equal number of female and male participants and to ensure 
that minorities were represented in proportion to the composition 
of the local community. The experimental protocol was approved by 
the institutional review board (IRB) of Princeton University, and all 
participants provided their written informed consent (IRB #7225). Due 
to technical difficulties (corrupted and missing files), 5 participants 
were excluded, leaving a total of 25 participants (11 females, 14 males).

Stimuli
VR stimuli. Environment. A custom-built VR environment made up of 23 
interconnected distinct rooms with distinct soundtracks was explored 
by participants using a head-mounted VR display. Each of the rooms was 
built to be as visually and aurally distinct as possible. To that end, for 
visual distinctiveness, each room followed a different theme (for exam-
ple, planetarium and computer store) with theme-congruent objects 
carefully placed throughout, and the rooms had different shapes (for 
example, oval and rectangle) and different sizes (for example, large 
and small). To promote auditory distinctiveness, each room had a 
distinct soundtrack on loop that was audible only when a participant 
entered each room and some rooms contained specific sound effects 
that matched the room context (for example, bird chirps if the room 
had a window facing the outside).

The majority of rooms were connected with only two other con-
necting rooms, while a few, ‘hubs’, had more than two connecting 
rooms. Among all 23 rooms, 16 rooms (70%) were connected with 2 
other rooms, 6 rooms (26%) were connected with 3 other rooms and 1 
room (4%) was connected with 4 other rooms.

To reduce the potential for motion sickness, participants explored 
the virtual world while seated in a 360°-rotatable chair, and any instance 
of participant-initiated teleportation was followed by a short and 
smooth fade-in-and-out of black. Participants teleported within and 
between rooms by pressing a button on a wireless controller that would 
appear digitally reconstructed in VR as a three-dimensional (3D) object. 
The range of teleportation was limited to force teleportation across 
small distances and to avoid fast teleportation across rooms. Rooms 
were connected by doorways; given the current room a participant was 
in, only the immediately connected rooms were visually accessible via 
the doorways, while further-away rooms were culled from view.

Music and sounds. Sounds of birds, ambience, firewood crackling and 
others were manually recorded or freely downloaded from the internet. 
Music for each room was either custom-composed in Ableton Live soft-
ware, downloaded from the internet or requested from professional 
composers (Supplementary Table 1).

All tasks were presented on a wired HTC Vive head-mounted 
display (1,080 × 1,200 resolution per eye, with a 90-Hz refresh rate, 
built-in headphones and integrated microphone), which was connected 
with a wire to a computer running 64-bit Windows 10 on an Intel Core 
i7-6800K CPU @ 3.40 GHz with 32 GB random access memory and an 
Nvidia GeForce GTX 1080 graphics card.

All tasks and visual presentations were created and coded in Uni-
ty3D 5.5.2f1 (and 2017.1.2f1), a game-development platform, with Virtual 
Reality Toolkit (VRTK; vrtk.io), a virtual-reality programming tool kit for 
Unity3D. The majority of 3D models, textures, environments and other 
assets were custom-built using SketchUp (sketchup.com) or Blender 
(blender.org). The remaining assets were downloaded from the Unity 
Asset Store (assetstore.unity.com), Turbosquid (turbosquid.com) or 
other publicly available online repositories and then modified using 
Blender to reduce model complexity and size.

Scanning stimuli. During scanning, participants were presented with 
videos of rooms and videos of objects. These videos were generated 
beforehand and presented to participants in a pseudorandom order.

Room videos. To generate the room videos using Unity, a virtual camera 
was placed in the centre of each room. The camera was scripted to 
rotate a full 360° to capture the panorama of each room within 10 s. 
OBS Studio (obsproject.com) was used to screen capture the output 
of the virtual camera. Each room video lasted 10 s and was followed by 
a 5-s interstimulus interval before the next video.

Object videos. To generate the object videos, a virtual photography 
studio was created with a blank backdrop and a 3-point lighting set-up. 
All 23 objects were placed in the centre of the virtual studio and scripted 
to rotate 360° in front of a virtual camera facing them within 10 s. OBS 
studio was used to screen capture the output of the virtual camera. 
Similarly to the room videos, each object video lasted 10 s and was 
followed by a 5-s interstimulus interval before the next video.

Stimulus presentation. All generated stimuli were presented to par-
ticipants in the scanner using PsychoPy78 to time task and stimulus 
presentations with the scanner trigger. Every presented video or task 
instruction was preceded by a 5-s black screen.

Data acquisition and preprocessing
MRI acquisition and preprocessing. MRI data were collected on a 
3T full-body scanner (Siemens Prisma) with a 64-channel head coil. 
Functional images were acquired using an interleaved multiband 
echo-planar imaging (EPI) sequence (repetition time (TR) 1,300 ms, 
echo time (TE) 33 ms, flip angle 80°, whole-brain coverage, 2 mm slice 
thickness, field of view (FOV) 192 mm2, simultaneous multislice (SMS) 
factor 4). Anatomical images were acquired using a T1-weighted (T1w) 
magnetization-prepared rapid-acquisition gradient echo (MPRAGE) 
pulse sequence (1 mm3 resolution). Anatomical images were acquired 
in a 6-min scan before the functional scans; during this scan, partici-
pants watched videos of paragliding from YouTube. Field maps were 
collected but not used in our preprocessing pipeline.

All raw data acquired from MRI were converted to BIDS formatting 
(BIDS version 1.0.1), anatomical images were defaced using pydeface 
(version 2.0.0) and resulting data were subsequently preprocessed 
using fMRIPrep version 1.0.3, a Nipype79,80-based tool. Each T1w volume 
was corrected for intensity non-uniformity using N4BiasFieldCorrection 
v2.1.081 and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the 
OASIS template). Brain surfaces were reconstructed using recon-all 
from FreeSurfer v6.0.082, and the brain mask estimated previously was 
refined with a custom variation of the method to reconcile cortical gray 
matter segmentations derived from Advanced Normalization Tools 
(ANTs) and FreeSurfer, as implemented in Mindboggle83. Volume-based 
spatial normalization to the ICBM 152 Nonlinear Asymmetrical template 
version 2009c84 was performed through nonlinear registration with 
the antsRegistration tool of ANTs v2.1.085, using brain-extracted ver-
sions of both T1w volume and template. Brain tissue segmentation of 
cerebrospinal fluid (CSF), white matter and grey matter was performed 
on the brain-extracted T1w using fast86 (FSL v5.0.9). Surface-based 
normalization based on nonlinear registration of sulcal curvature was 
applied using the fsaverage6 surface template from FreeSurfer.

Functional data were slice time corrected using 3dTshift from 
AFNI v16.2.0787 and motion corrected using mcflirt (FSL v5.0.988). 
‘Fieldmap-less’ distortion correction was performed by coregistering 
the functional image to the same-participant T1w image with inten-
sity inverted89,90, constrained with an average fieldmap template91, 
implemented with antsRegistration (ANTs). This was followed by 
coregistration to the corresponding T1w using boundary-based 
registration92 with nine degrees of freedom, using bbregister (Free-
Surfer v6.0.0). Motion-correcting transformations, field distortion 
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correcting warp, blood oxygenation level-dependent (BOLD)-to-T1w 
transformation and T1w-to-template (MNI) warp were concatenated 
and applied in a single step using antsApplyTransforms (ANTs v2.1.0) 
using Lanczos interpolation.

Physiological noise regressors were extracted applying CompCor93. 
Principal components were estimated for the two CompCor variants: 
temporal (tCompCor) and anatomical (aCompCor). A mask to exclude 
signal with cortical origin was obtained by eroding the brain mask, ensur-
ing it contained only subcortical structures. Six tCompCor components 
were then calculated including only the top 5% variable voxels within 
that subcortical mask. For aCompCor, six components were calculated 
within the intersection of the subcortical mask and the union of CSF and 
white matter masks calculated in T1w space, after their projection to 
the native space of each functional run. Framewise displacement94 was 
calculated for each functional run using the implementation of Nipype.

Additional preprocessing. After fMRI data were aligned and pre-
processed to fsaverage6 resampling, the resampled data were further 
preprocessed using a custom Python script that removed nuisance 
regressors, including the six degrees of freedom motion correction 
estimates; framewise displacement (the estimated bulk head motion); 
head motion estimates from white matter and CSF; and cosine bases 
for high-pass filtering to account for low-frequency signal drifts (up 
to 0.008 Hz, or 125 s). Within the same Python script, the resulting 
timeseries data were z-scored for each run (that is, task), such that there 
was a single preprocessed timeseries per task (for example, prelearning 
room videos, postlearning object videos, recall and so on).

Experimental paradigm
The study took place on two consecutive days and was composed of 
a behavioural session on day 1 and a behavioural and two scanning 
sessions on day 2.

Day 1
On day 1, participants were familiarized with the virtual environ-

ment and exposed to two VR foraging games and hand-drawing tasks 
to facilitate the learning of the spatial layout. Specifically, on day 1, after 
participants read and signed the consent and screening documents, 
participants were informed about what they would be experiencing 
in VR and about the safety measures taken to ensure their safety and 
comfort. They were told that they would be seated to decrease potential 
dizziness that arises more commonly during VR that involves standing. 
They were also informed that at any time the experiment could be 
stopped if they are feeling uncomfortable or dizzy. They were told that 
they would play two foraging games in VR that involve freely moving 
through the VR environment with the goal of collecting floating cubes. 
In the first game, they had to collect a cube from every room. In the 
second game, they had to repeatedly navigate to designated rooms to 
collect additional cubes. They played the second game twice. Between 
each game, participants were asked to draw a bird’s-eye-view map based 
on their current knowledge of the environment (Supplementary Fig. 1). 
We did this to ensure participants were learning the spatial layout of 
the environment. By the end of the behavioural session, participants 
had completed a total of three games and three maps. Throughout the 
experimental session, the experimenter checked on the participant’s 
overall comfort and reminded them that if they felt dizzy or nauseous, 
the experiment could be stopped at any time without consequence. 
After the completion of the foraging tasks, the participants were com-
pensated and reminded to return the next day for the two scanning 
sessions and the additional VR behavioural session.

Day 2
On day 2 (1 day later), three sessions took place: In the first session, 

participants were scanned with fMRI for a small battery of encoding 
tasks (prelearning scan); in the second session, participants learned 
room–object associations in VR for randomly placed objects in each of 
the 23 rooms (learning behavioural session), and in the third session, 

participants were scanned again with fMRI as they proceeded through 
a battery of encoding and retrieval tasks (postlearning scan).

Session 1 (prelearning scan): On day 2, participants were greeted at 
the MRI room, asked to draw a bird’s-eye-view map of the environment 
(as had been done the day before). After listening to a short unrelated 
audio clip in the scanner to verify volume level, participants were told 
that they would be presented with two sets of audiovisual stimuli of 
the rooms. In the first set they saw 360° room rotation videos of all the 
rooms (that is, prelearning room videos) and were instructed to ver-
bally recall the name of the room when they recognized it. The second 
set, which was viewed after the first, was exactly the same as the first, 
except the room order was randomized for each participant. Every 
stimulus presentation was preceded by a 5-s blank screen.

Session 2 (learning behavioural session): After participants fin-
ished the prelearning scan, they were taken out of the scanner bore 
and instructed to carefully stand up. They were then guided back to 
the behavioural room with the VR equipment to complete the second 
session of VR. In this session, participants were refamiliarized with the 
environment by playing the first foraging game again. Afterwards, they 
drew a bird’s-eye-view map once again and then were told that, when 
they returned to the virtual world, they would find 23 different 3D 
objects scattered in each of the 23 rooms. They were then given 15 min 
to memorize the room–object pairings.

Session 3 (postlearning scan): After the 15 min that participants 
were given to memorize the room–object pairings had elapsed, par-
ticipants were guided back into the MRI room. Before getting into the 
scanner, participants were told that they would be asked to verbally 
recall in as much detail as possible the 23 room–object pairings. They 
were also told that they would be presented with the same audiovisual 
stimuli from session 1, and they would also view an additional set of 
videos that included objects. In the first task (free recall), participants 
were asked to describe in as much detail as possible all the rooms 
and objects that they saw in VR. In the second task (guided recall), 
participants were asked to recall with as much detail as possible the 
appearance of the rooms and objects along specific five-room paths 
within the environment. The names of the five rooms were visible on 
screen. They did this guided recall task 11 times, each time with a differ-
ent five-room path. When they had completed recalling the rooms and 
objects to the best of their ability for the free recall and guided recall 
tasks, they were told to inform the experimenter by saying ‘done’. In 
the third task (which we label as room–video object recall), partici-
pants were exposed to the same 360° room rotation videos from the 
aforementioned prelearning room video tasks, but this time, when 
they were shown a room video, they were tasked to recall the novel 
object that had been placed in it (that is, room–video object recall). 
They did this task twice for all rooms. Because room–object pairings 
were generated randomly for each participant, the objects recalled 
during this task were usually different across participants. Afterwards, 
in the fourth in-scanner task, participants saw the postlearning object 
videos. During these, participants performed the object–video room 
recall tasks: participants were shown 360° object rotation videos and 
instructed to say the name of the room that was paired with that object. 
They did this task twice for all objects.

Searchlights
Our searchlights were generated by constructing them with every valid 
vertex as their centre, then iteratively removing the most-redundant 
searchlights until no more could be removed while covering each vertex 
with at least ten searchlights. This process yielded 1,483 searchlights 
per hemisphere.

Hippocampus
Our full hippocampus ROI was extracted from a freesurfer subcortical 
parcellation. This ROI was then split into an anterior portion (y > −20) 
and posterior portion (y ≤ −20) in MNI space59,95,96.
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Behaviour
Behavioural event matrices. Prelearning and postlearning room, and 
object videos. The timing of stimulus presentations for every room and 
object was logged, and a custom Python script was used to convert 
the timestamps to a behavioural timeseries event matrix that marked 
the start and end of every stimulus presentation for every participant. 
The resulting matrix that contained the timing (in milliseconds) and 
room or object identity was then downsampled to 1.3-s TRs and used 
in subsequent analyses to index into a participant’s BOLD timeseries 
data to identify the moments in time participants were encoding a 
specific video. In sum, the Python script generated six different behav-
ioural event matrices, two prelearning room event matrices (that is, 
prelearning room videos), two postlearning room event matrices (that 
is, room–video object recall tasks) and two postlearning object event 
matrices (that is, object–video room recall tasks).

Postlearning free recall and guided recall. Participants were asked to 
recall and describe the rooms in the virtual environment and the objects 
paired to the rooms. Using TotalRecall (https://memory.psych.upenn.
edu/TotalRecall), audio files of participant’s recalls were imported 
and transcribed by timestamping the start of a room or object verbal 
description. For example, if a participant said, “I remember walking 
through the chess room, it had large chess pieces. The object in there was 
a basketball…”, the start and end of the ‘chess room’ timestamps would 
have been at the start and end of the first sentence, respectively. This is 
because we assumed that the room would have come to mind at the start 
of the sentence rather than midway. Similarly, the object start times-
tamp would have been considered the start of the second sentence. For 
every participant, these timestamps were then imported into a custom 
Python script that generated a behavioural timeseries event matrix 
that marked the start and end of each verbal room or object recall. This 
resulted in 11 guided recall and 1 free recall behavioural timeseries event 
matrices that indicated the trajectory of room or object recalls. These 
were then downsampled to 1.3-s TRs and used in subsequent analyses to 
index into a participant’s BOLD timeseries data to identify the moments 
in time a participant was recalling a particular room or object.

Time spent recalling rooms or objects. To assess whether certain rooms 
or objects were discussed significantly more than others during recall, 
we conducted an across-participant global mean comparison. For each 
room and object, we computed the mean time spent speaking across 
participants. We then performed a one-sample t-test for each room (or 
object), testing whether its average recall time significantly deviated 
from the grand mean (that is, the average across all rooms or objects). 
Next, we applied a Bonferroni correction to the resulting P values to 
account for multiple comparisons.

Contiguity in free recall. To assess whether participants tended to 
recall spatially connected rooms in sequence, we computed, for each 
participant, the proportion of times each room transition was to an 
adjacent room (that is, graph distance of 1 in the adjacency matrix 
of the virtual environment). Self-loops, where the same room was 
recalled consecutively, were excluded. To calculate the baseline prob-
ability that a participant may have recalled an adjacent room just by 
chance, for each transition, we counted the number of currently adja-
cent rooms divided by the 22 possible other rooms (excluding the 
current room) and then averaged across all transitions. To test for 
significance, we ran a paired-sample t-test where we compared each 
participant’s proportion of contiguous recall with their chance baseline 
(Supplementary Fig. 3f).

fMRI analysis
Characteristic object patterns. To acquire the characteristic neural 
patterns for objects (‘object templates’) we created 23 regressors to 
model the neural response to each of the 23 objects. We placed each of 

the 23 object regressors in a design matrix that marked the transitions 
between object videos across both postlearning object video tasks; 
the matrix was convolved with a haemodynamic response function 
(HRF) from AFNI (Cox, 1996) and then z-scored. We then extracted the 
characteristic spatial pattern across vertices for each object by fitting 
a general linear model (within each participant) to the timeseries of 
each vertex using these 23 regressors. Doing this simultaneously across 
both postlearning object videos yielded a single set of 23 characteris-
tic object spatial patterns across vertices for each participant. These 
object templates, which were obtained for every participant, were 
then used in subsequent analyses for training multinomial logistic 
classifiers. All object classifiers described in this Article were trained 
on these perception-evoked patterns.

Characteristic room patterns. To acquire the characteristic neural 
patterns for rooms (‘room templates’), we followed the same proce-
dure that we used for extracting object templates, but here—instead 
of using postlearning object videos—we used the prelearning room 
videos obtained from the first scanning session on day 2 to obtain the 
characteristic spatial pattern across vertices for every room.

Room reliability. We hypothesized that, for a room to serve as an 
effective retrieval cue for associated memories (that is, objects paired 
to rooms), the neural representation for that room must be stable over 
time and distinct from other room patterns. We captured these prop-
erties with a composite measure we called room reliability. Crucially, 
this measure was computed based on data that were collected before 
participants learning the room–object associations. This ensured that 
our room templates, and therefore our room reliability measure, were 
not confounded with object information.

To compute room reliability, we obtained the characteristic spa-
tial pattern for each room for each participant, using the procedure 
outlined above (in the ‘Characteristic object patterns’ section), but for 
room videos instead of object videos. Doing this for both prelearning 
room video tasks yielded 2 sets of 23 characteristic spatial patterns 
across vertices (separated in time) for each participant.

We then created a room pattern similarity matrix by correlating the 
characteristic neural patterns for the rooms from the first prelearning 
room video set with the neural patterns for the rooms from the sec-
ond set. This yielded a 23 × 23 correlation (similarity) matrix for each 
participant. Because the two prelearning room videos were separated 
by a delay, the principal diagonal indicated the similarity of the room 
representations over time—this was our measure of the stability of the 
room representations. Similarly, the off-diagonal entries indicated 
the similarity of one room to another over time, reflecting greater 
distinctiveness. To create our composite room reliability score for 
each room, we subtracted the average similarity of the off-diagonal 
entries (how similar room A is to other rooms over time) from the 
principal diagonal entry (how similar room A is to itself over time). A 
large positive difference indicated that a particular room (for example, 
room A) was more similar to itself over time than it was to other rooms, 
indicating its stability and its distinctiveness from other rooms. We did 
this procedure to obtain a room reliability score for each room of each 
participant. To quantify significance, for each participant, we averaged 
reliability across all rooms to get a single difference score per vertex, 
and performed a one-sample t-test on these differences against zero 
before running false discovery rate (FDR) correction on the resulting 
P values and thresholding at q < 0.05.

Object classifier network selection. To identify which regions across 
the brain are involved in the retrieval of object information during 
guided or free recall, we first needed to identify regions across the 
brain that could discriminate between objects. To do this, we used 
two separate phases of the experiment to extract networks that could 
classify objects during retrieval (when perceptual details of an object 
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were not available) and during perception (when the perceptual 
details of an object were available). After participants had learned 
the room–object associations in VR, they were scanned while they 
watched videos of rooms and asked to recall the objects that were in 
them (room–video object recall task/postlearning room videos). We 
used this cued-recall task to identify the retrieval networks (ROCN) 
involved in classifying objects during room videos. Similarly, we identi-
fied the networks (POCN) involved in perception of objects, by classify-
ing objects during postlearning object videos. Importantly, to avoid 
circularity in our analyses, all object classifiers (whether those made for 
ROCN or POCN) were trained with N − 1 object perception data using a 
leave-one-participant-out procedure 25 times, where testing occurred 
on the left-out participant. The fact that each of the 24 participants in 
the training dataset had their own set of random room–object pairings 
ensured that the classifier was able to learn object representations 
that were not contaminated with room information (by contrast, if 
we had used a within-participant classification approach, room and 
object information would have been confounded, because objects 
were scanned only after they had been paired with a particular room). In 
other words, because room–object pairings were randomized for every 
participant, and object evidence for each participant was classified 
based on object templates derived from the other N − 1 participants, any 
room-related information in the object templates would be unrelated 
to the room-related information in this left-out participant.

Network selection procedure
In brief, we ran object classifiers on postlearning room videos, 

where participants had been asked to recall the name of the object 
paired to the shown room, to identify a network of regions involved in 
retrieving non-visible object identity. This process involved the follow-
ing steps: (1) acquiring the characteristic neural pattern for each object 
(postlearning object templates); (2) using a leave-one-participant-out 
multinomial logistic classifier, trained on the object template patterns 
for the (N − 1) group, to predict object identity in the excluded partici-
pant’s postlearning room videos (to identify the ROCN) or postlearn-
ing object videos (to identify the POCN); and (3) averaging classifier 
performance (that is, accuracy) across all validation searchlights and 
then selecting the top 50 best classifier searchlights (~3%). This proce-
dure was done on each searchlight plus the hippocampus ROIs for all 
participants. Further details are outlined below.

(1) Characteristic object patterns (object templates): To extract 
characteristic neural patterns for objects (‘object templates’) we 
used the procedure previously described in the ‘Characteristic object 
patterns’ section.

(2) Classifier cross-validation procedure: We applied a leave- 
one-out cross-validation procedure to predict the left-out participant’s 
object reinstatement at every timepoint during postlearning room 
viewing after fitting (that is, training) a multinomial logistic classifier 
with the other participants’ object pattern templates (that is, the char-
acteristic spatial patterns estimated from the general linear model). 
More specifically, we shifted the left-out participant’s postlearning 
room video’s BOLD timeseries by four TRs to approximate the HRF 
delay and then trained the classifier with the other participants’ object 
templates before predicting the object class for every timepoint of 
every room video. To assess the significance of classifier accuracy, we 
compared the classifier predictions with the correct object class labels 
and generated a null distribution of accuracies by shuffling the correct 
labels 1,000 times without replacement while preserving their tempo-
ral contiguity; this null distribution was used later to identify search-
lights that had above-chance accuracy. We did this procedure across 
all participants such that every participant served as a test participant.

(3a) ROCN selection: Postlearning room videos were shown twice 
to each participant. We ran the leave-one-out cross-validation proce-
dure described in the previous section for both runs of the postlearning 
room viewing separately and then, across all participants and both 
runs, averaged the classifier accuracy including the corresponding null 

distributions. We then z-scored the searchlights’ (and hippocampus 
ROIs’) performance by comparing the true average accuracies to the 
average null distribution of accuracies. Afterwards, we extracted the 
top 50 ROIs with the highest z scores. This resulted in 50 searchlights 
(distributed unevenly across hemispheres and excluding hippocam-
pus) corresponding to the searchlights with the top performing clas-
sifier performance; these 50 searchlights made up the object retrieval 
network that we used as an ROI mask in subsequent analyses.

(3b) POCN: We applied the same procedure described in the ‘ROCN 
selection’ section, but instead of classifying non-visible object identity 
from postlearning room videos, we classified object identity from the 
postlearning object videos where objects were perceptually visible. In 
a similar fashion, we extracted the top 50 ROIs by sorting the z score of 
accuracies to obtain the network involved in classifying visible objects. 
Unsurprisingly, this network was focused on primary visual cortex.

(3c) RRCN selection: We applied a similar procedure described 
in the ‘ROCN selection’ section, but instead of classifying non-visible 
object identity from postlearning room videos, we classified room 
identity from the postlearning object videos where objects (but not 
rooms) were perceptually visible. In a similar fashion, we extracted the 
top 50 ROIs by sorting the z score of accuracies to obtain the network 
involved in classifying room memories. Importantly, the room classi-
fiers were trained on the prelearning room template patterns for the 
(N − 1) group to predict the recalled room during the held-out partici-
pant’s postlearning object videos. This ensured that (1) the held-out 
participant’s own room templates were never used for testing, avoiding 
circularity and (2) the room templates of the group were sourced before 
any room–object associations were learned, eliminating the potential 
for these room templates to be contaminated by object information.

Object evidence during guided and free recall. We used the same 
leave-one-out cross-validation procedure described previously to 
predict object identity during guided and free recalls. As described 
previously, we shifted each recall timeseries (11 guided recalls and 1 
free recall) by 4 TRs to approximate the HRF delay, and used the multi-
nomial classifier to predict object classes at every timepoint for every 
participant’s recalls. Given that that multiclass classifier was trained on 
all 23 object classes, we obtained a probability distribution across all 
23 classes that described the evidence of each class being reinstated at 
each timepoint. For any specific guided or free recall, we collected the 
total object evidence across all timepoints when a participant verbally 
recalled that object, regardless of whether the associated room was 
also recalled. We did not condition our object reinstatement measure 
on recall of the correctly associated room because we were interested in 
studying how prelearning room reliability affects object recall in general 
(as opposed to studying how reinstatement of a room representation at 
recall triggers retrieval of the associated object). We then averaged these 
timepoints across recall runs (guided and free recalls separately). For 
example, if during the first guided recall a participant verbally recalled 
the object ‘teddy bear’ in two separate chunks of time for a total of 16 
TRs, we collected the classifier probability for ‘teddy bear’ across those 
16 TRs. We then did the same for every TR in which ‘teddy bear’ was 
recalled in all other guided recalls and averaged the results to obtain 
the total ‘teddy bear’ evidence. For a given participant, we did this for 
each object combining across all 11 guided recalls and, separately, for 
the participant’s single free recall, yielding 23 mean object probabilities 
for each type of recall task (guided and free recall) for each searchlight.

We wanted to obtain a single value for each object in each par-
ticipant (separately for guided and free recall), indicating how well 
that object was reinstated during recall. We did this in two ways: by 
averaging an object probability across all searchlights that were part 
of ROCN or POCN to obtain an overall ROCN or POCN reinstatement 
score, respectively, for each object and each participant. These scores 
were then used as our overall network object reinstatement measures 
in subsequent analyses.
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Relationship between room reliability and object reinstatement. 
We hypothesized that rooms with more reliable representations in the 
prelearning scans would be associated with higher levels of object rein-
statement during self-paced verbal recall. To do this, we ran a search-
light analysis where we correlated the reliability of a room (see ‘Room 
reliability’ section) with the network’s evidence for the object paired 
to that room (see ‘Object classifier network selection’ section). We did 
this for every room–object pair within a participant. For example, for 
a particular participant, the 23 room reliabilities were correlated with 
the corresponding 23 object reinstatement probabilities from the 
retrieval network. Afterwards, we averaged the Fisher-z-transformed 
correlations across participants and recall task types (that is, guided 
versus free recall) to generate a single composite correlation map. To 
test for statistical significance, we ran a non-parametric permutation 
test in which we randomly shuffled the object labels 1,000 times to 
generate a null distribution of correlations within participants and for 
both recall types. Significance testing was then performed using the 
combined null distribution, and resulting P values were FDR-corrected 
(Fig. 6a). For reference, the results for each recall task type individually 
are presented in (Supplementary Fig. 7).

Benefit of participant-specific room reliability. The analysis shown 
in Fig. 6a assesses whether there is a within-participant relationship 
between room reliability (in a particular searchlight) and object reinstate-
ment. Importantly, there are two possible explanations for this effect 
(not mutually exclusive). The first is that, within a particular participant, 
there are idiosyncratic differences in room reliability that predict object 
reinstatement for that participant; we call this a participant-specific 
effect. However, there is a second possible explanation: some rooms 
may be more reliable than others (averaging across the whole group), 
and these generally more reliable rooms may support better object rein-
statement on average (for example, the chess room might consistently 
be better represented across people and support better object recall); we 
call this a group-wise effect. Both kinds of effect are important, but they 
have different connotations: if the relationship between room reliability 
and object reinstatement is driven by idiosyncratic (participant-specific) 
factors, then there is predictive value in doing a ‘personalized audit’ 
of the person’s memory palace by scanning them; but if there is only a 
group-wise relationship, there is no need to collect scanning data from 
a new person, so long as you already have data on room reliability from 
the rest of the group. To assess whether the observed within-participants 
relationship between room reliability and object reinstatement has a 
participant-specific component, we compared the predictive perfor-
mance of an ordinary least-squares regression derived from a partici-
pant’s own room reliability values with one based on other individuals’ 
reliability values. Specifically, for the participant-specific model (as in 
Fig. 6a), we calculated the coefficient of determination (R2) of a model 
where the participant’s object reinstatement probabilities were pre-
dicted by their own room reliability values. For the group-wise model, we 
iteratively predicted that participant’s reinstatement probabilities from 
every single other participant and averaged the resulting N − 1 R2 values. 
We then ran a model comparison test where we took the difference 
between the R2 of the participant-specific model and the average R2 from 
the other-participant prediction models. A significant positive difference 
in this analysis indicates that the participant-specific model explains the 
variability in object evidence better than other individuals (and thus 
the observed results cannot be entirely due to the group-wise effect). 
To test for statistical significance, we ran a non-parametric permuta-
tion test where the object labels were randomly shuffled 1,000 times 
to generate a null distribution of model performance for each model. 
To generate a single composite map summarizing model performance 
across recall tasks, we averaged R2 values across guided and free recalls 
for each model separately, computed the difference in R2 and tested for 
significance using a non-parametric permutation test on the combined 
null distribution of R2 differences, followed by FDR correction on the 

resulting P values. For completeness, separate results for guided and 
free recall are provided in Supplementary Fig. 7, while the main results 
reflect the combined composite analysis (Fig. 6).

Partial correlation analysis controlling for room reinstatement. To 
test whether room reliability predicted subsequent object reinstate-
ment when controlling for room reinstatement at recall, we conducted 
a partial correlation analysis. Specifically, we asked whether the cor-
relation between room reliability and object reinstatement (Fig. 6a) 
remained significant after regressing room reinstatement at recall out 
of both of these other variables.

To do this, we first constructed a RRCN. As described in the ‘Net-
work selection procedure’ section, we followed a similar approach to 
identify ROCN and POCN. In brief, we used a leave-one-participant-out 
cross-validation procedure in which we classified room recall during 
the held-out participant’s perception of object videos. The top 50 
best-performing searchlights were used to define the RRCN, which 
was then used as a mask to extract room reinstatement evidence for 
our partial correlation analysis.

In this analysis, we wanted to control for room reinstatement that 
occurred on timepoints when participants verbally recounted room 
details and on timepoints when they verbally described the objects 
that were paired to a particular room; in principle, room reinstate-
ment during either set of timepoints could be acting to scaffold object 
retrieval. To this end, we computed two separate room reinstatement 
scores within the RRCN:

RRCN-room-recall: Room evidence extracted with the RRCN mask 
during timepoints in which participants were speaking about a room 
during free and guided recall.

RRCN-object-recall: Room evidence extracted within the RRCN 
mask during timepoints in which participants were speaking about 
the object that had been associated with a given room during guided 
and free recall.

To isolate the unique relationship between room reliability and 
object reinstatement, we regressed out both RRCN measures from 
each variable. Specifically, we fitted a linear model with ROCN object 
reinstatement as the dependent variable and both RRCN-room-recall 
and RRCN-object-recall as predictors. The ROCN residuals from this 
model represented object reinstatement variance unexplained by room 
reinstatement. Similarly, we fit a second linear model with room reli-
ability as the dependent variable and the same two RRCN measures as 
predictors. The room reliability residuals from this model represented 
room reliability variance unexplained by room reinstatement. Finally, 
we computed a Pearson correlation between these two residuals. To 
test for significance, we ran a non-parametric permutation test in 
which we shuffled the ROCN residuals and recomputed the correlation 
1,000 times to generate a null distribution of correlation values before 
running FDR correction for q < 0.05.

To identify regions where the relationship between room reliability 
and object reinstatement had a significant positive or negative change 
after controlling for room reinstatement, we ran a contrast in which 
the correlation values of the partial correlation were subtracted from 
the correlation values of our original model. To test for this difference, 
we computed a composite score of each correlation by averaging the 
results of each searchlight across recall task types (that is, guided 
and free recalls) and participants. Next, we computed the difference 
between the results of our original model and the partial correlation as 
well as on their permutations to get a null distribution of differences. 
To test for significance, we ran a non-parametric permutation test 
where we compared the true differences from the null distribution of 
differences and FDR-corrected for q < 0.05.

Relationship between room reliability and room features. Do prop-
erties of a room contribute to the reliability of their representation? 
We sought to identify whether physical or graph theoretical features 
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of a room contributed to the reliability of their representation. To do 
this, we used the 3D Unity model of the environment to compute a list 
of physical features such as total room volume, total volume occupied 
by background objects, the proportion of occupied volume and total 
room volume, area, object count, number of corners and whether 
the room has a window (that is, a view to the outside) and used the 
room adjacency matrix to compute graph-theoretical features such as 
degree, betweenness, closeness, eigenvector and pagerank. We then 
selected six features (degree, ratio of occupied volume, background 
object count, floor area, number of corners and ‘has window’) that were 
the least collinear and provided conceptually non-overlapping proper-
ties (for example, betweenness and degree are collinear). We z-scored 
each feature (except the binary ‘has window’) and then ran a searchlight 
analysis where we regressed room reliability on each of the six z-scored 
features for every participant. To test for statistical significance of each 
of the resulting beta coefficients, we ran a non-parametric permutation 
test where room reliability was shuffled 1,000 times within participants 
before regressing again on the features to generate a null distribution of 
beta coefficients. We then averaged across participants before running 
FDR correction on the resulting z values and thresholding at q < 0.001.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are openly available at https://openneuro.org/datasets/
ds005704.

Code availability
Scripts used for analysis are available via GitHub at https://github.com/
rmasiso/MemoryPalaceReliability.
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