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When recalling past events, patterns of gaze position and neural activity

resemble those observed during the original experience. We hypothesized
that these two phenomena, known as gaze reinstatement and neural reacti-
vation, are linked through a common process that underlies the reinstatement
of past experiences during memory retrieval. Here, we tested this proposal
based on the viewing and recall of a narrative movie, which we assessed
through functional magnetic resonance imaging, deep learning-based gaze

prediction, and language modeling of spoken recall. In line with key predic-
tions, gaze behavior adhered to the same principles as neural activity; it was
event-specific, robust across individuals, and generalized across viewing and

recall. Additionally, gaze-dependent brain activity overlapped substantially
across tasks. Collectively, these results suggest that retrieval engages
mechanisms similar to those that direct our eyes during natural vision,
reflecting common constraints within the functional organization of the ner-
vous system. Moreover, they highlight the importance of considering beha-
vioral and neural reinstatement together in our understanding of

remembering.

Eye movements determine the content, spatial organization, and
relative timing of all visual impressions we obtain of our environment.
Simultaneously, visual inferences guide our eyes towards behaviorally
relevant cues (e.g., when recognizing a face through sequential sam-
pling). Gaze behavior is therefore a fundamental component of
vision', with viewing statistics necessarily shaping the activity of all
visually responsive circuits in the brain (e.g., gaze shifts drive activity
fluctuations*). Even structures typically associated with memory, such
as the hippocampus, show retinotopic activity modulations®° as well
as eye-movement signals'®™, implying that the connection to gaze
behavior extends beyond putative boundaries of what is commonly
referred to as the visual system.

Importantly, the way neural circuits engage during active vision
likely also constrains their involvement in other tasks, such as recall.
This is because a circuit’s activity patterns are inextricably tied to its
anatomy, which reflects the circuit’s engagement over developmental

and evolutionary timescales™'. Because this engagement is inherently
linked to gaze behavior, the functional organization of widespread
neural circuits likely embodies how we move through and sample the
environment during natural vision. As a consequence, many principles
invoked for active vision should generalize to memory retrieval and
episodic simulation (i.e., phenomenological experiences of past,
future, or fictitious events in the absence of physical stimuli’’®). These
general principles should include sequentiality, meaning that items are
sampled or retrieved in a sequence, with recalled events unfolding
over time, as well as the involvement of eye movement-related
mechanisms. Preliminary evidence for the existence of such general
principles can be found both on the level of behavior and neural
activity.

On the behavioral level, eye movements and pupil size
have been shown to reflect imagery, recall, and recognition when
probed with simple, static stimuli. In particular, gaze reinstatement
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describes the observation that gaze patterns during image viewing
tend to be recapitulated during retrieval (e.g., for review see ref. 14).
These eye-movement recapitulations have been proposed to play a
functional role in retrieval, especially because interfering with them
impairs recall and episodic simulation (e.g., refs. 24,32,33). However, to
date, it remains unclear whether and how gaze reinstatement extends
to the recall of more complex and continuous experiences spanning
longer time scales such as those we make in everyday life. Likewise, on
the neural level, activity patterns observed during retrieval often
resemble those observed during viewing, a phenomenon termed
neural reactivation (also referred to as neural reinstatement, for review
see e.g., refs. 18, 34, 35). Most theories of neural reactivation share the
core idea that re-expressing neural patterns associated with a specific
experience reinstates that experience, or at least aspects of it (see e.g.,
refs. 17,18). Using rich and dynamic stimuli, such as movies, neural
reactivations have been shown to be specific to individual events that
are recalled, and to be consistent across participants recalling the
same event (see e.g., refs. 36-41).

While recent years have seen growing interest in understanding
the links between gaze reinstatement and neural reactivation (see e.g.,
refs. 21,29,42-44), the relationship between these two phenomena
remains largely elusive. Here, we hypothesize that gaze reinstatement
and neural reactivation are linked through a common process that
underlies the reinstatement of past experiences during memory
retrieval. Building on ideas and approaches from work on active vision,
we test this hypothesis by directly linking patterns in gaze behavior,
brain activity, and spoken recall.

Results

To probe the relationship between gaze reinstatement and neural
reactivation in a naturalistic setting, we incorporated camera-based
and magnetic resonance-based eye tracking into the “Sherlock Movie
Watching Dataset™® - the basis of an extensive literature on neural
reactivations and their role in recall (e.g., refs. 36,37,39,45-48). In these
data, human volunteers viewed and then recalled a movie while audio
recordings captured spoken recall, and while brain activity was mon-
itored with functional magnetic resonance imaging (fMRI). By inte-
grating previously unreleased in-scanner eye-tracking data with
magnetic resonance-based eye tracking®” and newly acquired camera-
based data from a desktop setup, we were able to test multiple
behavior-informed predictions that were previously out of reach.

First, if gaze reinstatement and neural reactivation are indeed
linked through a common process, we expect that the two phenomena
should not only co-occur in these data but also share key properties
such as event-specificity and robustness across participants (Prediction
1). Second, patterns in gaze and neural activity should generalize
across viewing and recall within the same dataset (Prediction 2). Third,
eye movements should correlate with brain activity during viewing and
recall, with gaze-dependent activity overlapping between the two tasks
(Prediction 3).

In the following, we present our study design and the results of
testing these predictions in five steps. 1) We start by describing the
movie-viewing and recall task as well as our empirical measures of gaze
behavior, neural activity, and spoken recall. 2) We next ensure that
both datasets are suited for event-specific analyses by showing that
participants’ spoken recall followed the event structure of the movie
(i.e., the content and order of narrative events), as indicated by lan-
guage modeling. 3) In line with our first prediction, we then show that
gaze patterns during movie viewing are indeed event-specific and
highly consistent across participants, which is largely explained by the
visual content of the movie. 4) Using a Hidden Markov Model, we then
demonstrate that this event-specific gaze behavior is reflected in the
multi-voxel MRI pattern of the eyes, and that these eye voxel patterns
generalize across viewing and recall, supporting our second predic-
tion. 5) Finally, we link the behavioral and neural domain directly by

relating the eye voxel pattern to brain activity using deep learning-
based gaze predictions. In line with our third prediction, we found
widespread gaze-dependent modulations of brain activity that over-
lapped substantially between viewing and recall. We conclude by dis-
cussing these results in the context of existing theories of gaze
reinstatement and neural reactivation, and outline a parsimonious
theory for their relationship.

Study design and empirical measures

The present study features two datasets with independent partici-
pants, one acquired inside an MRI scanner (Dataset 1, the original
“Sherlock Movie Watching Dataset”, n =16*), the other one acquired
on a desktop setup (Dataset 2, n =21). All participants viewed and then
verbally recalled an episode of the BBC show “Sherlock” (48 minutes of
the first episode: “A Study in Pink”, split into 2 acquisition runs, Fig. 1A).
Participants were instructed to describe the movie for as long as they
wished, in as much detail as possible, while maintaining the chron-
ological order of events. In both datasets, eye-tracking data were col-
lected during movie viewing, as well as audio recordings to capture
subsequent spoken recall. In addition, Dataset 1 included the fMRI data
for which robust neural reactivations were already reported earlier
(e.g., refs. 36,37). For more details, see Methods section and data
overview (Fig. 1B).

Spoken recall follows the event structure of the movie

To ensure that the movie was recalled accurately and in enough detail
for event-specific analyses, we analyzed participants’ spoken recall
using a language model. This analysis served to confirm event-specific
recall in our newly collected Dataset 2, replicate prior findings in
Dataset 1%, and test for potential links between semantic content and
gaze behavior across events (Fig. 2). To do so, first we transcribed the
audio files to text and then manually segmented them into 48 narrative
events. These events were previously defined by an independent coder
and reflected key, separable elements of the narrative (see ref. 36 for
details). For each narrative event recalled by a participant, we gener-
ated its embeddings using the sBERT language model®*. These
embeddings are numerical representations of sentences in a high-
dimensional space, allowing for the comparison of sentence meanings.
The embeddings were then compared with all other recalled events
using Pearson correlation.

We found that the order and duration of recalled events closely
matched that of the actual events in the movie in both datasets
(Fig. 1C), even though the recall tended to be compressed in time
(similar to results by ref. 51). In addition, we observed that the semantic
structure of the movie (i.e., the pair-wise similarity in sentence
embeddings between all events) replicated remarkably well across
datasets, and was generally consistent across participants (similar to
results by ref. 45). By further comparing these recall results to those
obtained for a “ground-truth” description of the movie created by an
independent participant (Fig. SI°°), we found that the events were
indeed recalled with high accuracy not only in terms of their relative
order in the movie, but also in terms of their semantic content. In
addition, while prior work has shown that interpretations of the same
stimulus can diverge across individuals™, our analyses suggest that
participants shared a sufficiently similar understanding of the movie to
support cross-subject comparisons.

Gaze behavior during movie viewing is event-specific and robust
across participants

Having established that our data were well suited to study event-
specific processes such as those posited to underlie gaze reinstate-
ment and neural reactivation, we next focused on the eye tracking in
both datasets. These data were collected using infra-red camera-based
eye trackers and denoised prior to analysis (i.e., outlier removal,
detrending, and smoothing, see Methods section). Note that in
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Fig. 1| Study design and memory performance. A Task design. Participants first
viewed 48 minutes of the BBC show "Sherlock" (Task 1) and then recalled it verbally
(Task 2). The movie clip was segmented into 48 narrative events by an independent
viewer®, B Dataset overview. Eye-tracking data and voice recordings were acquired
for two datasets in independent participants. In addition, Dataset 1 included simul-
taneously acquired fMRI data. Table shows participant counts for the respective data
types. C Recall quantification 1: Summary of the order and duration of the events in
both tasks. Each box represents an event and is scaled according to the duration in
the respective task. Participants were color-coded within each dataset. D Recall
quantification 2: Language-model results of the spoken recall data expressed as
event-by-event sentence-embedding similarity. Matrices show the ranks of Pearson
correlations between sentence embeddings estimated for each event within each
participant, averaged across them. Ranking was performed after computing the
correlations to visually highlight similarities between matrices (blue to yellow colors
show low to high ranks). Spoken recall was highly similar between the datasets.

Dataset 1, the eye-tracking data were acquired together with the fMRI
data during scanning. For each event, we then computed the average
saccade rate, amplitude, and duration during movie viewing, as well as
a gaze map (i.e., the 2D histogram of gaze positions aggregated across

all frames of the respective event). These gaze maps were then com-
pared across events using Pearson correlation to obtain gaze-map
similarity matrices analogous in structure to those obtained for spoken
recall using the language model (Fig. 1D).

If gaze reinstatement and neural reactivation are related, gaze
patterns in our data should be consistent across participants and
specific to narrative events, like neural activity (refs. 36,53,
prediction 1). Visualizing the eye tracking time series indeed revealed a
high consistency across participants, both across in-scanner and out-
of-scanner settings (Fig. 2A). We further confirmed this consistency by
correlating the time series across participants within each dataset,
finding robust rank correlations throughout (Dataset 1: rho=0.53,
SEM =0.009, Dataset 2: rho=0.63, SEM=0.005, average rho and
standard error of the mean (SEM) across pairwise comparisons). These
observed rank correlations deviated substantially from their respec-
tive null distribution computed by shifting the participants’ time series
relative to each other (n=2000 random shifts, Dataset 1: Z=9.34,
SEM =0.20, Dataset 2: Z=11.8, SEM = 0.10), see Methods section for
details.

In addition, we observed substantial variability in saccade para-
meters across narrative events, and this variability was shared across
the two datasets (Fig. 2B, rank correlations between the two datasets
for saccade rate: rho=0.75, p=8.3x10°, amplitude: rho=0.74,
p=12x10"%, and duration: rho=0.33, p=0.022). In other words, an
event with a high saccade rate in one dataset also exhibited a high
saccade rate in the other dataset. Finally, the pair-wise correlations in
heatmaps across events revealed a similar pattern of results for both
datasets (Fig. 2C).

While these results demonstrate that gaze patterns during
movie viewing are event-specific and robust across participants,
confirming prediction 1, the pattern of results seemed to differ from
the semantic similarity estimated for the spoken recall (e.g., based on
the comparison of the matrices shown in Figs. 1D and 2C, which were
only weakly correlated: r=0.12, p=7.4x107). This is noteworthy
since the events were originally defined based on narrative elements
of the movie. In fact, average saccade rates, amplitudes, and dura-
tions did not correlate with the recallability of events (i.e., how
similar participants’ recall of an event was to the description of that
event), nor with how uniquely an event was recalled (Fig. S3, see
Methods section for details). To better understand the difference
between gaze and spoken recall, we therefore modeled the saliency
of each movie frame using a gaze-prediction model (DeepGaze IIE*),
and then compared the average saliency across events. A strikingly
similar pattern emerged as the one observed for the eye-tracking
data (Fig. 2C), implying that the event specificity of gaze patterns is
largely explained by the visual content of the movie, not its narrative
content (see Fig. 2D for direct comparison).

Importantly, all eye-tracking analyses presented so far were
obtained for movie viewing. For recall, no eye-tracking data were
collected inside the MRI scanner, and acquiring them on a desktop
setup proved difficult (e.g., participants tended to look away from the
screen and outside the range of the camera, see “Discussion” section).
For all subsequent analyses, we therefore turned from camera-based to
magnetic resonance-based eye tracking. This approach inherently
builds on the fact that the eyeball orientation and movements strongly
affect the multi-voxel pattern of the eyes measured with MRI*.
Therefore, the eyeball MRI-signal, or MReye signal for short, allows
inferring gaze related variables even in existing fMRI datasets such as
ours (Fig. S4).

Event-specific gaze patterns are recapitulated during recall

Using the MReye signal, we next tested whether gaze patterns
observed during movie viewing were indeed recapitulated during
recall. To do so, we employed a Hidden Markov model (HMM)
approach previously shown to uncover event-specific brain activity
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Fig. 2 | Viewing behavior is event-specific and consistent across participants.
A Group-level gaze example. Horizontal gaze position averaged across participants
(green line) with standard deviation (shaded area) for Dataset 1 (left) and Dataset 2
(right). Gaze behavior was highly consistent across participants and datasets.

B Saccade parameters: Scatter plots show saccade rate, amplitude, and duration for
each narrative event averaged across participants (green dots) for both datasets.
Regression lines added. Saccade parameters vary across events, and this variability is
consistent between datasets. C Event-by-event gaze-map similarity for Dataset 1 (left)
and Dataset 2 (middle), as well as for model-derived saliency™ of the movie stimulus
(right). Matrices show the ranks of Pearson correlations between gaze maps obtained
for each event, where a gaze map is defined as a 2D histogram of gaze positions

-0.2 ETDatal1&2 1

-0.2 ET Data 1&2 1

aggregated over the duration of an event. Gaze-map similarity thus reflects the spatial
similarity in fixation patterns between events. Ranking was performed after comput-
ing the correlations to normalize matrix range (blue to yellow colors show low to high
ranks). Saccades and gaze positions were event specific and robust across datasets.
D Event-specific gaze patterns are highly reliable and explained by frame-wise saliency,
not sentence embeddings. Scatter plots show the relationship between the lower
diagonals of the event-by-event similarity matrices in (C) and Fig. 1D: Eye tracking (ET)
Dataset 1 vs. 2 (left, r=0.73, p = 6.9 x 10™®), movie saliency vs. averaged eye tracking
(middle, r=0.64, p = 6.8 x 10™°), averaged sentence embeddings (SBERT) vs. averaged
eye tracking (right, r=0.1, p =13 x10°). Regression line added.

and neural reactivation in fMRI data®~. Critically, here, we used this
approach to model the multi-voxel pattern of the eyes rather than of
the brain (Fig. 3A), in order to test for evidence of concurrent gaze
reinstatement. In brief, the HMM segments the eye-voxel time series
into discrete states characterized by relatively stable multivariate
patterns (model events) and identifies transitions between these states
(event boundaries), together defining the event structure of the movie.
Based on our previous observations (Figs. 1, 2, S4), we reasoned that
the HMM should in principle be able to learn the event structure of the
movie not only from the brain®’*° but from the eyes as well.

To test this idea, we extracted the eye voxels using an automated
pipeline*’, followed by denoising of the voxel time series through
nuisance regression of the head-motion estimates, linear detrending,
and z-scoring (see Methods section). We then trained the HMM by
fitting it repeatedly to the movie-viewing data using a variable number
of model events (10-300), similar to earlier reports®, finding that 135
events led to a peak cross-validation performance across two partici-
pant sub-pools. We then re-trained the model on the full participant
pool using these 135 events, obtaining a highly accurate model capable
of recapitulating even human-defined event boundaries in our data
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Fig. 3 | Eye voxel-based event segmentation reveals evidence for gaze rein-
statement. A Hidden Markov Model (HMM). We trained a HMM to segment the
eye-voxel time series acquired during movie viewing into discrete events defined by
temporally stable multi-voxel patterns. Once trained on movie viewing, we tested
the model on data acquired during recall. B Model training. We fit the HMM to the
data of half of the participants, and tested it on the other half, in order to obtain a
cross-validated, log-scaled model fit score (Log L). Repeating this procedure for a
range of specified number of events (10-300) revealed a maximal model fit for 135
events. We therefore fit the final HMM with 135 events to the full participant pool
using the movie viewing data. C Model vs. human event segmentation. For each of
the 48 human-defined event boundaries, we computed the model’s event-
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transition strength during movie viewing. The average event-transition strength
was higher at human-defined event boundaries compared to a shuffled distribu-
tion, which was obtained by permuting the order of events while keeping their
durations constant (n = 10000 shuffles). D Recall analyses. None of the participants
recalled all events. For analyzing recall, we therefore created participant-specific
HMM's that searched for events that were actually recalled by the respective par-
ticipant. Fitting these individualized HMM’s with the correct event order resulted in
a higher model fit compared to shuffled event orders (n =5000 shuffles). These
results suggests that event-specific eye-voxel patterns observed during movie
viewing were recapitulated (at least partially and in the correct order) during recall.

(z=2.84, p=0.005, n=10000 shuffles, Fig. 3C). This successful model
training demonstrates that it was indeed possible to segment the
movie into meaningful events based on the MReye signal - using the
same techniques employed to study event-segmentation processes in
the brain**,

Importantly, not every participant recalled every event (Fig. 1C).
When testing whether gaze patterns generalize across viewing and
recall, we therefore ensured that the trained HMM only searched for
events that were actually recalled by the respective participant. To
this aim, we created participant-specific copies of the trained HMM,
removing from each individualized model all events corresponding
to human-annotated events that the respective participant did not
recall (Fig. 3D, left panel). The participant-specific HMMs were then
fit to the recall data, predicting which event the participant was
recalling at every moment in time (Fig. 3D, middle panel). In line with
the idea that gaze patterns were at least partially reinstated, we
found that model performance was higher for the correct order of
events compared to shuffled orders (z=2.77, p=0.003,
n =5000 shuffles), similar to results obtained for brain activity in the
same data”. Note that similar results were observed even without
limiting the analyses to the events that were recalled (z=2.04,
p =0.021), or when the model was specifically trained on finding 48
events to match the human annotation (z=2.03, p=0.021). These
control analyses suggest that the generalizable patterns we found in
the MReye signal are robust across model-training schemes.

Gaze-dependent brain activity overlaps between viewing

and recall

The results presented so far provide evidence in support of the first
two predictions: Like neural activity’****, gaze patterns were robust
across participants (Fig. 2A), specific to narrative events (Fig. 2B, C),
and generalizable across viewing and recall (Fig. 3). To test our final
prediction that the behavioral and neural domain are linked, we
additionally related eye-voxel derived gaze estimates to the fMRI
activity recorded in the brain.

Our approach centered on decoding gaze-position estimates from
the MReye signal using a deep learning-based gaze prediction frame-
work (DeepMReye*’, Fig. S4), and then converting these position
estimates to eye-movement estimates (i.e., the vector length between
subsequent positions). Moreover, the same eye-movement index was
computed for camera-based eye tracking for later comparison
(Figs. 4 and S5). This approach resulted in a gaze predictor modeling
eye-movement amplitude, which was then convolved with the hemo-
dynamic response function, normalized, and fit to the time series of
each brain voxel using mass-univariate general linear models (incl.
nuisance regression of head-motion parameters).

We found that the gaze predictor indeed correlated with brain
activity in a wide-spread network of regions, including much of the
occipital and medial parietal lobe, as well as superior and medial
temporal cortices and the prefrontal cortex (Fig. 4, for volumetric,
unthresholded visualization see Fig. S5). During movie viewing,
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Fig. 4 | Widespread gaze-dependent brain activity during movie viewing and
recall. All figures show voxel-wise general linear model results estimated for gaze
predictors modeling eye-movement amplitude (i.e., vector length between gaze
positions measured or decoded for subsequent functional volumes). Statistical
maps show group-level results of non-parametric, one-tailed, one-sample t-tests
performed against zero overlaid on FreeSurfer’'s FSaverage surface. Results are
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shown at liberal t-thresholds to show the spatial distribution of effects underlying
the pattern in Fig. 5. A Results obtained for movie viewing using camera-based eye-
tracking data (n=13). Results obtained for movie viewing (B) and recall (C) using
MR-based eye-tracking data (n=16) decoded using DeepMReye*’. Gaze-position
changes correlate with brain activity in both tasks.

camera-based and eye-voxel derived measures led to a highly similar
pattern of results (Fig. 4A vs. B). However, during recall, only the eye-
voxel derived gaze predictors were available. Notably, these predictors
revealed evidence for gaze-dependent activity even during recall in the
absence of the movie stimulus (Fig. 4C).

Importantly, if gaze reinstatement and neural reactivation are
related, we expect gaze-dependent brain activity to overlap
between viewing and recall. We tested this idea by computing a
searchlight-based local similarity score that compared the (unthre-
sholded and volumetric) statistical group-level maps obtained for the
two tasks based on our univariate gaze-amplitude model (Fig. S5B vs.
C, see Methods section).

In short, we centered a sphere with a radius of 3 voxels on each
voxel to select local multi-voxel patterns that were then compared
across tasks using Pearson correlation. The resulting similarity score
was then assigned to each center voxel.

Using this local-similarity metric, we found evidence for strong
and wide-spread overlap in gaze-dependent brain activity across
viewing and recall (Figs. 5 and S6), confirming prediction 3. Moreover, a
striking posterior-to-anterior sign inversion was observed on the cor-
tical surface (Fig. 5). Specifically, gaze-dependent activity was highly
similar between viewing and recall in occipital and parahippocampal
cortices, whereas it was highly dissimilar in anterior parietal cortices as
well as the prefrontal cortex (Fig. 5).

Note that, for the sake of interpretability, our DeepMReye-derived
gaze predictor focused on the amplitude of (putative) eye movements,
defined as the change in average gaze position across volumes. How-
ever, eye movements may affect the MReye signal even if the average
gaze position remains unchanged®. To infer dynamics in gaze beha-
vior more generally, we therefore developed an additional,

unsupervised approach based on time-varying multi-voxel pattern
analysis of the eyes (Fig. S6A). Instead of training a model as for the
HMM approach (Fig. 3) and DeepMReye (Fig. 4), here, a gaze predictor
was created simply by computing the Pearson correlation between
denoised eye-voxel patterns of subsequent volumes. This gaze pre-
dictor was then related to brain activity as described before (incl.
general linear model fitting, Fig. 4, and searchlight analyses, Fig. 5, see
Methods section). Using this approach, we further confirmed the
presence of gaze-dependent activity in our data (Fig. S6B-D), finding
even stronger and more wide-spread overlap in gaze-dependent
activity than with our decoding approach.

Discussion

The present study tested the hypothesis that neural reactivation and
gaze reinstatement are linked through a common process underlying
the reinstatement of past experiences during memory retrieval. We
probed multiple key predictions arising from this hypothesis based on
the viewing and recall of a narrative movie - by complementing the
widely used “Sherlock Movie Watching Dataset”® with crucial mea-
sures of gaze behavior. In support of our predictions, we found that
gaze patterns during movie viewing were event-specific and consistent
across participants, thus adhering to the same principles as neural
activity®**>, Moreover, gaze patterns and brain activity generalized
across viewing and recall simultaneously within our data, with gaze-
dependent activity overlapping substantially between the two tasks.
Collectively, these results provide evidence that gaze reinstatement
and neural reactivation are indeed deeply related phenomena, and that
recall of narratives engages mechanisms similar to those that direct
our eyes during natural vision. In addition to these conceptual
advances, the present work establishes multiple techniques and
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Searchlight-based overlap in gaze-dependent brain activity between movie viewing and recall

Left hemisphere

Fig. 5 | Searchlight-based overlap in gaze-dependent brain activity between
viewing and recall. We centered a sphere with a radius of 3 voxels on each voxel to
select a local multi-voxel pattern, which was then compared across viewing and
recall using Pearson correlation. The multi-voxel patterns themselves were derived
from a univariate analysis using eye-movement amplitude as a predictor. The
searchlight procedure was repeated for all voxels of the brain. The resulting

Pearson's r

-0.8 NI 0.8
-0.3

Right hemisphere

0.3

correlation was assigned to the center voxel, and the final map was thresholded at
r=+0.3 before inflating it to the FSaverage surface. Note that this searchlight
analysis was computed using unthresholded, volumetric versions of the maps
shown in Fig. 4B, C (see Fig. S5). It captures local pattern similarity between tasks,
not the magnitude of activation in either task alone, which is why regions with low
signal in the gaze-dependent activity maps can still show high pattern similarity.

resources to leverage existing data for studying gaze-dependent
activity with fMRI (see “Code availability” and “Data availability”).

Active vision and memory retrieval are mutually constrained

It has been proposed that re-expressing neural patterns associated with
a specific experience may reinstate that experience (see e.g., refs. 17,18).
This idea also extends to imagination and dreaming, likely involving the
flexible recombination of patterns associated with different past
experiences. Substantial empirical support for these ideas comes from
studies demonstrating that the neural substrates engaged in viewing
and recall overlap substantially, including reports of event-specific
neural reactivation during recall of continuous narratives®®*’>%4,

Our results are in line with these reports and theories, while fur-
ther suggesting that active vision offers a useful and complementary
perspective for understanding retrieval. Importantly, our results
should not be interpreted as evidence that brain activity during recall
merely reflects eye movements, nor that such co-variation is unique to
recall or directly reflects the content being recalled. Rather, the con-
ceptual starting point of the present study was the acknowledgment
that the functional organization of neural circuits constrains their
engagement in any and all tasks, and that many regions, including
those commonly associated with memory*’, are shaped by their
engagement during natural vision. This engagement naturally involves
gaze behavior as all visual impressions depend on it'?, as evidenced,
for example, by the fact that visual-field defects cause adaptive chan-
ges in eye movements®”. Moreover, we should only expect to find
evidence for reinstatement of visual details that were sampled, not
those that were ignored, again demonstrating that considering gaze
behavior can greatly inform our understanding of retrieval. Many
viewing-related principles should therefore generalize to recall and
other 'non-visual’ tasks when task demands are shared', including the
overlap in gaze behavior (Fig. 3) and gaze-dependent brain activity
observed here (Figs. 4 and 5).

During natural vision, our eyes move multiple times
per second'?, each time fixating on a different aspect of the envir-
onment. Given the premise that this dynamic shapes the functional
organization of neural circuits, and that the same circuits support
episodic simulation”'®, it seems plausible that self-generated
experiences follow a similar dynamic as well. For example, when
experiencing our kitchen visually during recall, we may not retrieve a
holistic impression of it all at once. Instead, we may retrieve indivi-
dual aspects in quick succession, similar to fixations, dynamically
constructing an experience that resembles viewing. This sequential
retrieval would then be observable in a broad spectrum of neural
sequences (for review, see e.g., ref. 58), even for continuous experi-
ences such as those probed here.

Why are gaze patterns recapitulated during retrieval?

While activity patterns during recall may be constrained by those
expressed during viewing, this constraint alone does not explain why
gaze patterns themselves are re-expressed during recall. Active vision
may again provide a useful perspective on this question: given that the
underlying circuits are adapted to support vision in the context of
frequent movements, it is likely that similar “sampling” mechanisms are
at play when these circuits are engaged in other tasks, such as recall.

During natural vision, fixations are linked through eye move-
ments, which need to be planned and executed based on the current
retinal input, with concomitant changes in sensory experience. If recall
engages similar mechanisms, reactivated activity patterns may likewise
naturally trigger eye movements, indicating shifts from one retrieved
item to another. Our results support this idea, for example by showing
that gaze and neural patterns adhere to many of the same principles
(e.g., event specificity, Fig. 2), and that eye-voxel patterns carried
information about the movie event structure even though recall of
visual details was not explicitly instructed (Fig. 3). Reinstatement of
fine-grained perceptual details may explain why the eye-voxel HMM
segmented the movie into more events than humans did, consistent
with earlier evidence of multiple coexisting event segmentations in the
brain®’. Moreover, modeling eye movements revealed similar anterior
vs. posterior distinctions in medial parietal activity (Fig. 5) as modeling
scene viewing vs. recall’, again highlighting the tight relationship
between a circuit’s task engagement and gaze behavior.

While speculative, these considerations dovetail well with existing
theories of gaze reinstatement. Scan-path theory, for instance, posits
that the sequence of fixations and saccades is itself encoded, and later
retrieved, as part of the memory®. In contrast, rather than being part
of the memory itself, an alternative theory posits a role of eye move-
ments specifically in the process of retrieval', reinstating the “encod-
ing context” (i.e., spatial and temporal relationships between recalled
items independent of the exact scan path). A commonality between
these theories and ours is that the activity patterns that drive eye
movements are considered functionally relevant for remembering.

Conceptualizing gaze reinstatement and neural reactivation as a
consequence of shared constraints grounded in the functional orga-
nization of the nervous system not only provides a parsimonious
explanation for both phenomena, but also explains why many other
seemingly ‘'non-visual’ tasks involve action-related signals and overt
behaviors. For example, eye movements have been shown to reflect
shifts between items in working-memory tasks®®®, and the general
dynamic of alternating between processing a perceptual event and
shifting to another one, typically referred to as attention®’, has been
linked extensively to neural activity in brain structures critical for
remembering (for review see e.g., ref. 64).
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Toward naturalistic studies of memory retrieval

While earlier work on gaze reinstatement prioritized simple, static
stimuli*#1*-2242665 we opted for movies and free viewing in favor of
higher ecological validity*®. Notably, naturalistic studies like ours face
challenges in disentangling cognitive and experimental factors, and the
directionality of the relationship between gaze behavior, brain activity,
and cognition remains unclear. For example, eye movements have
sensory consequences that are largely inextricable from the motor act
itself, and they may correlate with other factors explaining the present
data (e.g., surprise®, fluctuations in engagement*°). Such correlations
may also explain why gaze behavior predicted brain activity in the
superior temporal lobe, likely including auditory cortex, and may even
account for the negative correlations between brain activity and eye
movement amplitude observed in some regions (Fig. 4).

While future work may attempt to disentangle these factors, for
example through behavioral encoding models®®*°, we believe such
efforts will be limited in their success. For example, these approaches
implicitly assume that sensory, motor, and mnemonic signals should
be fully separable on the level of neural activity; an assumption that
might not be true for naturalistic paradigms such as ours®®”°, and
largely ignores the interconnected and dynamic nature of the
brain15,16,71,72'

These considerations raise an important question: Are eye
movements a confound in studies on the neural underpinnings of
memory"? From our perspective, the answer is no, depending on the
inference made. Eye movements are not a confound, but should be
considered as an inherent part of the mechanism under investigation.
Rather than treating them as nuisance, it is therefore imperative to
consider them when interpreting results and to characterize their
relationship to neural activity in any and all tasks™. In line with this
proposal, gaze patterns during image viewing predict later recognition
performance” ¢, while restricting fixations impedes neural activity
and recognition**’®, In addition, even without explicit retrieval (i.e.,
without report), neural activity predicts memory-dependent changes
in gaze patterns during recognition”’.

Notably, the gaze-dependent brain activity patterns observed here
include regions typically associated with episodic memory, but also
diverge from canonical default mode network effects’ (Fig. 5). Rather
than reflecting the content of recollection directly, we speculate that
these patterns index sequential sampling mechanisms shared between
vision and memory retrieval, consistent with findings from working-
memory tasks, where eye movements often reflect shifts between
items rather than the depth of recollection of each item®*%, From this
perspective as well, eye movements are not a confound, but an integral
expression of the experiences emerging during recollection.

In this context, it is also important to highlight that directed movies
are designed to guide the viewer’s eyes through the scene, likely
explaining the high consistency in participants’ gaze trajectories we and
others observed (refs. 53,79-81, Fig. 2). This consistency in gaze patterns
may also have contributed to the replicability of brain activity patterns
across participants®®?, which may differ for recall of personal experi-
ences compared to movies. However, while gaze behavior and brain
activity may be idiosyncratic outside the laboratory, the relationship
between gaze reinstatement and neural reactivation may still be general.

Advancing the study of gaze-dependent brain activity in fMRI

In addition to conceptual advances, the present work establishes
multiple methods for studying gaze reinstatement and gaze-
dependent brain activity in existing fMRI datasets (See “Code avail-
ability” and “Data availability”). For example, we show that the same
techniques that uncover neural reactivation in the brain (Fig. 3*) can
be used to infer concurrent gaze reinstatement from the multi-voxel
pattern of the eyes. Moreover, an unsupervised method for inferring
gaze dynamics from the MRI signal of the eyes is proposed (Fig. S4),
complementing earlier MR-based eye-tracking approaches**¢,

Finally, we present two eye-tracking datasets that complement the
736

widely-used “Sherlock Movie Watching Dataset”°.

Open questions

The present study quantified spoken recall in its full richness using
language modeling, without acquiring specific vividness estimates of
mental imagery (Fig. 1D). In principle, the strength of gaze reinstate-
ment should correlate with self-reported imagery strength, or the
number of details retrieved, which has already been shown for more
constrained episodic simulation tasks (e.g., refs. 33,65,87,88). Two
intriguing open questions in this context are whether gaze reinstate-
ment occurs in participants that do not report visual imagery (i.e.,
aphantasics), and what mechanisms drive the task-dependent cou-
pling between eye movements and brain activity we observed in the
default mode network (Fig. 5%). Future studies could address such
questions by systematically varying task demands', which have been
suggested to explain variations in gaze reinstatement across studies
and age groups™.

A limitation of the present study is the lack of high-quality camera-
based gaze data during recall, as participants often looked outside the
eye tracker’s range. While our eye-voxel analyses indicate that viewing-
related eye movement patterns were reinstated during recall, future
work could examine these in greater detail using goggle-based eye
tracking with an expanded tracking range. Moreover, future work
could more directly link gaze-dependent brain activity to the content
of participants’ recall, in order to clarify its functional role, and assess
the spatial overlap across a broader range of tasks'.

In conclusion, based on the viewing and recall of a narrative
movie, we present evidence that gaze reinstatement and neural reac-
tivation are deeply related phenomena. Patterns in gaze behavior and
neural activity were event-specific, robust across participants, and
generalized across viewing and recall. Gaze-dependent brain activity
further overlapped substantially between the two tasks. These results
suggest that viewing and recall share common constraints grounded in
the functional organization of the nervous system, and highlight the
importance of considering behavioral and neural reinstatement toge-
ther in our understanding of how we remember.

Methods

Stimuli and experimental procedure

Movie-viewing task. Participants watched a 48 minute long segment
of the first episode of the television show “Sherlock”. To allow for a
short break, and to reduce the chance of technical problems, the clip
was cut into two parts, one 23 minutes and one 25 minutes long. Par-
ticipants were instructed to watch the episode in the way they would
watch any other TV show at home, and they were told that they will
need to describe afterwards what they had watched. Note that the
original study*® additionally presented a 30 second cartoon clip at the
beginning of the two movie-viewing sessions, which was excluded here.
The Sherlock video clip itself featured rich auditory and visual
content that followed an engaging narrative directed for a broad
audience. Inside the MRI scanner (Dataset 1), the video was presented
on a rear-projection screen using an LCD projector and subtended 20°
horizontally and 11.25° vertically. Sound was presented using MRI
compatible headphones. On the desktop setup (Dataset 2), the stimuli
were presented on a VIEWPixx monitor and subtended 40.5° horizon-
tally and 22.8° vertically, while the sound was presented using stereo
closed-back headphones. Both experiments relied on Psychtoolbox in
MATLARB for stimulus presentation (http://psychtoolbox.org/).

Recall task. After the two movie-viewing sessions, participants verb-
ally described what they had watched while their voice was recorded.
We refer to this session as the “Recall session”. They were instructed to
recall as much detail as possible for at least 10 minutes. In the MRI
scanner, the screen was black with a white central dot during recall
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(Dataset 1), whereas the screen was dark grey without central dot on
the Desktop setup (Dataset 2). Participants were not instructed to, and
did not, maintain fixation during recall. For more details, see ref. 36.

Two datasets

Two independent datasets were used in this study with a total of 37
participants (see Fig. 1B for overview). All participants were healthy
volunteers with normal or corrected-to-normal vision, gave written
consent prior to data collection, and were compensated for their
participation in the respective experiment.

Participants—Dataset 1. Publicly available functional magnetic reso-
nance imaging (fMRI) and spoken recall data of 16 participants were
downloaded from openneuro.org (https://openneuro.org/datasets/
ds001132). These data were released as part of an earlier report®
and comprise a subset of originally tested 22 participants (10 assigned
female at birth, 12 assigned male at birth, age range 18-26, all right-
handed and native English speakers). Five participants were excluded
from data release due to excessive head motion, whereas one was
excluded due to missing data. In addition to fMRI and spoken recall
data, concurrent in-scanner eye tracking data were collected in 13 of
the remaining 16 participants, which are released with the present
article (see “Data availability” statement). All participants gave
informed consent in accordance with experimental procedures
approved by the Princeton University Institutional Review Board.

Participants—Dataset 2. Eye tracking and spoken recall data were
acquired on a desktop setup in 21 participants (13 assigned female at
birth, 8 assigned male at birth, age range 22-59, all right-handed and 20
of them native English speakers). All participants gave informed con-
sent prior to data acquisition at the National Institute of Mental Health
(NIMH) in accordance with the guidelines of the National Institutes of
Health (NIH) Institutional Review Board (National Institute of Mental
Health Clinical Study Protocol NCTO0001360, 93M-0170).

Spoken recall

Acquisition—Dataset 1 and 2. During MRI scanning, participants’
spoken recall was recorded using a customized MR-compatible
microphone (FOMRI II; Optoacoustics Ltd., Dataset 1). On the desk-
top setup, spoken recall was recorded using a commercially available
microphone (Blue Snowball USB Microphone, Dataset 2).

Transcription and event segmentation. The audio recordings were
transcribed to text and manually segmented into 48 narrative events,
with event durations ranging between 11 seconds and 3 minutes. These
events were previously defined by an independent coder without
knowledge of the results or study design, and reflected key, separable
elements of the movie based on location, time, and overall topic (see
ref. 36 for details). This procedure resulted in one text segment per
event and participant, as well as associated time stamps reflecting the
beginning and end of that event. Visualizing these time stamps showed
that participants tended to recall the events in the right order in a time-
compressed manner.

Semantic similarity with SBERT. In addition to visualizing the event
time stamps, we quantified participants’ spoken recall using a language
model inspired by prior work®. Rather than comparing events in terms
of their recall duration or order, or whether they were recalled or not
(as shown in Fig. 1C), this approach allowed us to compare events in
terms of their semantic content that was recalled. To this aim, we
estimated sentence embeddings for each of the transcribed text seg-
ments using a pre-trained version of the language model SBERT.
These sentence embeddings were then compared across events using
Pearson correlation in order to obtain event-by-event similarity

matrices (Fig. 1D). The pre-trained version of SBERT that was used was
“all-mpnet-base-v2’, because it had the highest average performance
score for general purpose application of all pre-trained versions
according to sBERT.net.

Note that SBERT models are limited to a maximum length of the
text segment that is to be embedded (768 tokens), but no participants’
spoken recall ever exceeded this limit (Fig. 1D). However, some of the
“ground truth” text segments of the individual events did exceed the
limit. For that reason, we split them into subsegments, each of which
matching the length of the shortest segment. We then compared all
subsegments using Pearson correlation, and then averaged the cor-
relations within events to obtain the event-by-event similarity matrix
titled “Datasets combined” shown in Fig. S1A. Note that each event was
recalled by a different number of participants (Fig. S1B).

Camera-based eye tracking

Acquisition—Dataset 1. During MRI scanning, eye tracking data were
collected at 60 Hz for 13 of the 16 participants using a long-range eye
tracking system (iView X MRI-LR). Eye tracking failed in one participant
due to technical difficulties during scanning, and no data was recorded
in two participants despite running eye tracker. Eye tracking data were
collected for the two movie-viewing scanning sessions, but not for the
recall session. The data comprised position estimates that were based
on pupil- and corneal reflections, the latter of which was discarded due
to high noise levels identified through visual inspection (e.g., strong
non-physiological drift and erratic jumps to impossible tracking
values). In addition to gaze position, the data included pupil size.

Acquisition—Dataset 2. Eye tracking data were collected on a desktop
setup using an Eyelink 1000 pro eye tracking system. In 12 of the 21
participants, data were acquired at a temporal resolution of 500 Hz.
The remaining 9 were recorded at 1k Hz and then downsampled to
500 Hz before preprocessing. These data were collected for both
movie viewing and recall, reflecting the position estimated based on
the combined pupil-corneal reflection (Eyelink default). However,
during recall, participants tended to look away from the screen and
outside the calibration range of the eye tracker, which rendered a big
proportion of the recall data unusable. Therefore, the eye-tracking
data acquired during recall were not considered further.

Preprocessing. The following steps were identical for both datasets. We
denoised the eye tracking data by removing blinks in addition to outlier
samples deviating more than 2x the mean-absolute-deviation (MAD)
from the median gaze position. The remaining data were then linearly
detrended, median centered and smoothed with a 100 ms running-
average kernel to remove signal drift and to further reduce noise.

Analysis. Multiple eye-tracking analyses were implemented. First,
saccades were detected based on an eye-velocity threshold (6x MAD
from the median velocity) and saccades shorter than 12ms were
excluded®. We then computed the amplitude and duration of each
saccade, and averaged them across all saccades belonging to the same
narrative event. In addition, we computed the total number (n),
amplitude (amp), and duration (dur) of saccades for each functional
volume.

To test how similar participants’ gaze paths were during movie
viewing, we computed the Spearman correlation between each pair of
participants for each run and dimension (i.e., horizontal and vertical
gaze position). These correlations were then averaged across runs and
dimensions to obtain one Spearman’s rho per participant pair. To test
whether the correlations differed from what would be expected by
chance, we repeated this analysis many times for each participant pair,
each time shifting the gaze paths relative to each other in time (5000
random offsets, wrapped around zero). We then used the resulting null
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distribution to convert the observed correlations into Z-scores using
the following formula:

7- pobs — unull
onull !

where pops is the observed Spearman correlation, p,,y is the mean of
the shuffled correlations, and o, is their standard deviation. Finally,
we computed the average standard error of the mean (SEM) for both
the correlations and the Z-scores. Note that none of the shuffles led to
equal or higher Spearman correlations than the one observed in the
unshuffled data, meaning that the corresponding p-values were
effectively zero. While not reported, the p-values corresponding to
the Z-scores must be smaller than the inverse of the number of shuffles
(i.e., p<0.0005).

To compare events in terms of where participants looked on the
screen, we computed 2D histograms of gaze positions within each
event. Each histogram contained 101 x 53 bins to match the dimensions
of the stimulus. These histograms were normalized within each event
and participant to sum to unity, smoothed with a 2D-Gaussian kernel
with a size of 3 standard deviations, and then compared using pair-wise
Pearson correlations. This procedure yielded participant-specific
event-by-event similarity matrices, which were then averaged across
participants to obtain one matrix per dataset (Fig. 2C). For visualiza-
tion only, these group-level matrices were ranked (i.e., we converted
the correlation values in the matrices to ranks), which normalizes the
color scale and matches it across figures, in order to aid visual
comparison.

Finally, to relate the eye-tracking data to brain activity, we com-
puted a gaze predictor for later general-linear-model analysis (see
Methods section “Linking gaze to brain activity with general linear
models”). For each functional MRI volume, we computed the average
gaze position, resulting in a position time series that was then con-
verted into an eye-movement time series by calculating the vector
length between positions measured at subsequent volumes. For each
of the movie-viewing scanning runs, a final gaze predictor was then
obtained by padding the eye-movement time series with a NaN at the
beginning. This gaze predictor was used to obtain the results shown in
Fig. 4A. For recall, this gaze predictor could not be computed since no
eye-tracking data were recorded.

Event-specific gaze patterns: semantic vs. visual content
Frame-wise saliency with DeepGaze IIE. Our language model-based
analyses of the spoken recall (Fig. 1D) as well as our eye-tracking ana-
lyses (Fig. 2C) resulted in event-by-event similarity matrices that
replicated across the two datasets. However, the pattern of results
differed across the two data types, which surprised us given that the
movie was segmented based on its narrative content®. Therefore, to
understand the event-specific gaze patterns we observed in more
detail, we tested whether they could be predicted based on the visual
content of the movie, rather than the sentence embeddings. We used a
pre-trained version of the fixation-prediction model DeepGaze IIE* to
compute the visual saliency of each movie frame expressed in the form
of a 2D probability map. To reduce computational cost, we down-
sampled the movie to 5hz before passing it to the model. The resulting
saliency maps were then averaged within each event, and then com-
pared across events using pair-wise Pearson correlation. This proce-
dure resulted in an event-by-event similarity matrix with the same
format as the ones obtained for the camera-based eye-tracking
data (Fig. 2C).

Comparing event-by-event similarity across spoken recall, gaze,
and saliency. To compare the event-by-event similarity matrices
obtained for the spoken recall data (Fig. 1D), the eye-tracking data
(Fig. 2C, left and middle panel), and the frame-wise saliency (Fig. 2C,

right panel), we compared the lower diagonals of the respective
matrices using Pearson correlation. Note that the diagonals them-
selves were excluded and that unranked data was used (i.e., raw,
unranked versions of the matrices shown in Figs. 1D and 2C). The
results of these comparisons are shown in Fig. 2D (Left panel: Eye-
tracking Dataset 1 vs. 2, middle panel: Average of eye-tracking Datasets
1 and 2 vs. Frame-wise saliency estimated using DeepGaze lIE, right
panel: Average of eye-tracking Datasets 1 and 2 vs. Average of spoken
recall Datasets 1 and 2).

Comparing recall metrics to saccade parameters. In addition to
quantifying participants’ spoken recall using between-event similarity of
sentence embeddings (Fig. 1D), we also computed two complementary
metrics: Recallability and Distinctiveness. These metrics were inspired
by earlier work® and compared participant recall with a “ground truth”
event description created by an independent participant’.

Recallability was defined as the Pearson correlation between
sentence embeddings derived from participants’ spoken recall and
those from the corresponding event descriptions. Since some event
descriptions exceeded sBERT’s maximum token length, we divided
them into sub-segments, each matched in length to the shortest event
description. Embeddings for these sub-segments were computed and
correlated with the corresponding recall embeddings. We averaged
the resulting correlations across sub-segments to obtain a single
recallability score per event.

While recallability captures raw similarity between a recalled
event and its matching description, it does not account for event
specificity. In principle, the recall of an event could be equally similar
to the description of all events, not only its matching description, thus
lacking any event specificity. To address this, we computed a distinc-
tiveness score, defined as the Z-score of the observed recallability
value relative to correlations between the recall embedding and the
descriptions of all other events. This controlled for potential overlap in
semantic content across events and assessed how uniquely an event
was recalled. In other words, the distinctiveness score captured how
unique the recall of an event was relative to all other events.

Finally, both scores were compared to the saccade parameters
estimated for each event using movie viewing data, in order to assess
whether gaze behavior during movie viewing was related to how an
event was later recalled (as assessed using the language model
approach). We did not observe strong relationships between our recall
metrics and saccade parameters (Fig. S3).

Functional magnetic resonance imaging

Acquisition—Dataset 1. Dataset 1 included fMRI data that were
acquired on a 3T Siemens Skyra using an echo-planar imaging
sequence with following parameters: repetition time (TR) =1500 ms,
echo time (TE) = 28 ms, voxel size = 3.0 x 3.0 x 4.0 mm, flip angle = 64°,
field of view =192 x 192 mm. Anatomical images were acquired using a
T1-weighted MPRAGE pulse sequence (0.89 mm3 resolution).

No fMRI data were collected for Dataset 2.

Preprocessing. MRI data were preprocessed using fMRIprep 20.2.1
with default settings’®, making use of FreeSurfer 6.0.1, FSL 5.0.9, and
ANTs 23.3. Structural scans were corrected for intensity non-
uniformity using the ANTSs function N4BiasFieldCorrection. Functional
data were head-motion corrected by coregistering each image to a
BOLD reference image computed by fMRIprep, yielding head-motion
parameters estimated using FSL’s mcflirt function (i.e., the transfor-
mation matrix as well as six translation and rotation parameters).
These data were then further coregistered to the preprocessed struc-
tural scan using FreeSurfer’s bbregister function with 6 degrees of
freedom, and normalized to the Montreal Neurological Institute (MNI)
standard space using the ANTs function antsRegistration. Using SPM12,
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these functional data were finally resampled to an isotropic voxel
resolution of 3x3x3 mm.

Probing gaze reinstatement with Hidden Markov Models
To examine whether the eye-voxel patterns carried information about
the event structure of the movie in Dataset 1, and to see whether this
information generalized across viewing and recall, we adapted a
Hidden-Markov Model (HMM) approach implemented in the Brain
Imaging Analysis Kit (BrainlAK*"). HMMs are commonly used to infer
latent event structures in continuous time series data, such as fMRI-
assessed measures of brain activity. The model assumes that a
sequence of hidden states (model events) gives rise to the observed
patterns of activity, and it identifies time points when the system
transitions between these states (event boundaries). We adopted this
approach for studying gaze reinstatement for three reasons. First, the
approach is particularly well suited for analyzing naturalistic stimuli,
like movies, where cognitive processes unfold continuously and are
not parsed into predefined trials by design. Second, the model can be
trained on movie viewing data and tested on recall, enabling a form of
cross-task generalization akin to transfer learning. Finally, this
approach has been successfully applied in prior work to reveal event-
specific neural reactivation in our dataset using brain voxels®.
Importantly, instead of using brain voxels, we tested whether an
HMM trained on detecting events in the movie-viewing data was cap-
able of identifying these events during recall based on the multi-voxel
pattern of the eyes (Fig. 3A). Before model training, we denoised the
time series of each voxel through nuisance regression of the confound
time series estimated by fMRIprep®®, including image translations and
rotations as well as their first derivatives, in addition to framewise
displacement and the average signals from white matter and cere-
brospinal fluid masks. Finally, voxels with an inter-subject correlation
of 0.1 or lower were excluded following previous reports®.

Model training on movie viewing. In order to find the optimal number
of events, we fit the HMM repeatedly to the movie-viewing data of half
of the participants similar to prior work®, each time testing a different
number of events (range: 10-300). We then selected the model that led
to the highest log-likelihood in the remaining half of the participants
(Fig. 3B). Note that the log-likelihood is a measure of model perfor-
mance and expresses how well a given model explains an observed
sequence of data. Having established that the optimal number of
events was 135 (Fig. 3B), we then fit the model again using 135 events to
the data of all participants. This final HMM was then used for model
testing.

Model test on movie viewing. To test whether the model segmented
the movie into meaningful events that resembled the human annota-
tion (see ref. 36 for details), we examined whether the evidence for an
event boundary, as assessed by the HMM, was higher at human-
annotated event boundaries compared to shuffled event boundaries
(Fig. 3C, left panel). To this end, we computed the event-transition
strength (ETS), defined as the temporal derivative of the model’s state
probability time series. The ETS reflects the model’s sensitivity to
changes in latent event state over time, with higher values indicating
stronger evidence for a transition between events. Specifically, we
extracted the model’s ETS at human-annotated event boundaries, and
averaged them across events, in order to obtain one ETS score for
the entire movie. We then shuffled the human-annotated event
boundaries in time while keeping the event durations constant
(n=10000 shuffles), each time computing the score anew. We then
converted the actually observed ETS score into a Z-score reflecting the
score’s relationship to the shuffled distribution (Fig. 3C, right panel).
Indeed, the actually observed ETS was at the tail end of the shuffled
distribution, suggesting that the model-derived boundaries were more
similar to the human annotation than what was predicted by chance.

Model test on recall. Having established that the HMM uncovered
meaningful events in eye-voxel patterns measured during movie-
viewing (see section: “Event-specific gaze patterns are recapitulated
during recall”), we next tested whether it could find evidence for
reinstatement of these events in the eye-voxel patterns measured
during recall (Fig. 3D, left panel). To do so, the HMM trained on the
movie-viewing data was fit to the recall data, in order to predict which
event was recalled at every functional volume. Importantly, while the
HMM was trained to uncover all events in the movie-viewing data,
participants did not necessarily recall all of these events. In fact, par-
ticipants differed in which events they recalled (Fig. 1). Before model
testing, we therefore created participant-specific versions of the
trained HMM, each of which featuring only the events the respective
participant recalled. These participant-specific HMMs were then fit to
the recall data of each respective participant (Fig. 3D, middle panel),
and the log-likelihood was computed as measure of model perfor-
mance. Like before, we then expressed the model performance as a
Z-score relative to a shuffled distribution, which we obtained by re-
fitting each HMM repeatedly while shuffling the event order in the
model (n = 5000 shuffles). If gaze patterns were reinstated during
recall, we expected model performance to be higher for the true order
of events compared to arandom order of events, which was indeed the
case (Fig. 3D, right panel).

Magnetic resonance-based eye tracking

During MRI scanning in Dataset 1, camera-based eye-tracking data
were recorded during movie viewing, but not during recall. Therefore,
we used magnetic resonance-based eye tracking to infer participants’
gaze behavior from the MRI signal of the eyes in Dataset 1. The fol-
lowing approaches were implemented inspired by earlier work*®**-%¢,

Eye-voxel principal component analysis. To establish that the eye
multi-voxel pattern carried information about gaze behavior in our
data, we first implemented a principal component (PC) analysis using
the movie-viewing data of each participant (limited to those with
camera-based eye-tracking). For each of the 13 participants, we esti-
mated 10 PCs using all eye voxels and time points, resulting in 10
corresponding PC times courses. To test whether the PCs explain
variance in the camera-based eye-tracking data, we used multiple lin-
ear regression to fit them to a range of gaze measures computed for
each functional volume: The median horizontal (X) and vertical (Y)
gaze position, the variance in horizontal (Xvar) and vertical (Yvar) gaze
positions, as well as the saccade parameters reported above (saccade
number, amplitude, duration). Functional volumes for which eye-
tracking data were missing were excluded. Indeed, the PCs estimated
for eye voxels explained substantial amount of variance in these gaze
measures, especially gaze position (Fig. S4A).

Decoding gaze position using DeepMReye. We decoded gaze posi-
tion from the MRI signal of the eyes measured at each functional
volume using a 3D convolutional neural network (DeepMReye*’,
Fig. S4). Using these gaze-position estimates, we then computed
putative eye movements defined as the change in gaze position across
subsequent functional volumes. By padding this eye-movement time
series with a NaN at the beginning, this procedure resulted in one
gaze predictor per scanning run similar to the one obtained for
camera-based eye tracking (see Methods section “Camera-based eye
tracking”). However, unlike for camera-based eye tracking, this gaze
predictor could be computed for both movie viewing and recall, with
results shown in Fig. 4B, C).

To achieve optimal model performance, we fine-tuned a pre-
trained version of DeepMReye using the eye tracking data of Dataset 1.
We initialized the model using weights that were estimated using a
combination of guided fixations, smooth pursuit and free viewing data
(https://osf.io/23t5v, weights: datasets_1to5.h5*), and then fine-tuned
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these weights for 1 epoch with 5000 steps using the Euclidean error
between measured and decoded gaze position as loss function. Fol-
lowing model parameters were used: batch size = 8, learning rate =
0.000002, decay =0.03, no dropout, no noise. Data augmentations
included 3D rotations (5 degrees), 3D translations (5 voxels), and
scaling (factor=0.2).

By default, DeepMReye is trained on 10 gaze positions per
functional volume*’. For model fine-tuning, we therefore created
training labels by downsampling the eye-tracking data to 1.5 Hz, and
then assigning each sample to its corresponding functional volume.
If a volume comprised fewer than 50 percent valid samples, it was
deemed unreliable and was excluded. Note that this procedure
reduced noise, but also increased the number of missing samples per
participant. Missing samples are expected for eye-tracking data in
any case, especially when acquired inside the MRI scanner (e.g.,
calibration is more difficult than on a desktop setup). However,
because gaze behavior was highly robust across participants in our
data (Fig. 2), we instead fine-tuned DeepMReye using the group-level
median gaze path (Fig. S4), not the data of each individual partici-
pant. Using the group-level median gaze path not only maximized
the amount of training data available for each participant, but it also
allowed us to use the MRI data of all 16 participants for model fine-
tuning, instead of the 13 participants with camera-based eye tracking.
Model performance was quantified as the Pearson correlation and
Euclidean error between the camera-based group-level median gaze
path and the decoded gaze path of each individual partici-
pant (Fig. S4).

Time-varying eye-voxel pattern analysis. In addition to the gaze-
decoding approach described above, we implemented an unsu-
pervised approach for inferring changes in gaze behavior based on the
multi-voxel pattern of the eyes. This approach does not require model
training and is applicable to any fMRI dataset that comprises the eyes
(Fig. S6A). The approach comprises three main steps.

First, we identified eye voxels using the automated eye extraction
method implement in DeepMReye*’. Second, each voxel’s time series
was denoised through nuisance regression of the head-motion para-
meters estimated during fMRI preprocessing, followed by linear
detrending and z-scoring. Third, using these denoised voxel time
series, we then computed the Pearson correlation between the multi-
voxel patterns of subsequent volumes based the following logic. If
gaze behavior was similar between two volumes, their pattern simi-
larity should be high. If gaze behavior was dissimilar between volumes,
their pattern similarity should be low. Consequently, and in line with
previous analyses of these data (Fig. S4), the fluctuations in pattern
similarity should reflect changes in gaze behavior over time. These
resulting pattern-similarity time series (padded with a NaN at the
beginning) was used as a gaze predictor in later general-linear-model
analyses, whose results are shown in Fig. S6B, C). Unlike for camera-
based eye tracking, this gaze predictor could be computed for both
movie viewing and recall (see Methods section “Camera-based eye
tracking”).

Linking gaze to brain activity with general linear models

All gaze predictors created using the camera-based and magnetic
resonance-based eye-tracking techniques were related to brain activity
in the same way using SPM12 and Dataset 1. First, they were range
normalized to vary between 0 and 1in order to convolve them with the
hemodynamic response function as implemented in SPMI12. The
resulting convolved gaze predictor was again range normalized and
then mean-centered in order to model fluctuations around the mean of
the voxel time series. Separate general linear models were fit for the
different types of gaze predictors (i.e., separate models for predictors
obtained through camera-based eye tracking, DeepMReye, and the
time-varying eye-voxel pattern analysis). To reduce noise, the

functional MRI data were spatially smoothed with 4 mm before mod-
eling (matching the voxel size). In addition to the main gaze predictors,
the GLMs included head-motion parameters estimated during MRI
preprocessing as well as a column of ones per run that modeled the
mean of the time series.

After GLM fitting, we conducted group-level permutation-based
t-tests probing whether the beta estimates obtained for the main gaze
predictors were significantly greater than zero. These tests were con-
ducted using the Statistical Non-Parametric Mapping toolbox (SnPM)
within  SPM12 using the following settings: one-tailed,
n =10000 shuffles, variance smoothing of 6 mm. The resulting group-
level statistical maps were then projected to the FSaverage surface
using mri volsurf and visualized using Freeview as implemented in
FreeSurfer 7.3.2.

Finally, the group-level statistical maps obtained for movie view-
ing and recall were compared using a searchlight-based analysis. We
extracted local multi-voxel patterns by centering a 3D sphere with a
radius of 3 voxels on each voxel, and then compared these patterns
across the two tasks using Pearson correlations. The resulting local
similarity score was then assigned to the center voxel. These analyses
were conducted in volumetric space using unthresholded data, and
their result was again inflated to the FSaverage surface using mri -
volsurf for visualization in Freeview.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The fMRI data (n=16) used in this work were shared by the original
authors® and can be downloaded from openneuro.org: https://
openneuro.org/datasets/ds001132. In addition, we share the two
corresponding eye-tracking datasets, one acquired inside the MRI
together with the fMRI data (n =13), and one acquired on a desktop
setup (n=23) on Open Science Framework (OSF): https://osf.io/
baw39/ This OSF repository further includes the preprocessed eye-
voxel data used in our Hidden Markov Model analyses, as well as the
spoken-recall transcripts. The pre-trained weights used to initialize
DeepMReye for MR-based eye tracking, as well as the fine-tuned
model weights we estimated can be downloaded here: https://osf.io/
mrhk9/. Source data are provided with this paper.

Code availability

Python or Matlab code underlying our key analyses can be found here:
https://osf.io/baw39/. This OSF repository includes Python code for
semantic modeling of spoken recall using sBERT, as well as MatLab
code for analyzing eye tracking data and gaze-dependent brain activity
using fMRI. Python code for MR-based eye tracking using DeepMReye
is publicly available here: https://github.com/ DeepMReye/DeepM-
Reye. Our Python code for Hidden Markov modeling of eye voxels is
available here: https://github.com/deepmreye/HMMeye.
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