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ABSTRACT
A common goal in biological sciences is to model a complex web of connections
using a small number of interacting units. We present a general approach for dividing
up elements in a spatial map based on their connectivity properties, allowing for the
discovery of local regions underlying large-scale connectivity matrices. Our method
is specifically designed to respect spatial layout and identify locally-connected clus-
ters, corresponding to plausible coherent units such as strings of adjacent DNA
base pairs, subregions of the brain, animal communities, or geographic ecosystems.
Instead of using approximate greedy clustering, our nonparametric Bayesian model
infers a precise parcellation using collapsed Gibbs sampling. We utilize an infinite
clustering prior that intrinsically incorporates spatial constraints, allowing the model
to search directly in the space of spatially-coherent parcellations. After showing
results on synthetic datasets, we apply our method to both functional and structural
connectivity data from the human brain. We find that our parcellation is substantially
more effective than previous approaches at summarizing the brain’s connectivity
structure using a small number of clusters, produces better generalization to in-
dividual subject data, and reveals functional parcels related to known retinotopic
maps in visual cortex. Additionally, we demonstrate the generality of our method by
applying the same model to human migration data within the United States. This
analysis reveals that migration behavior is generally influenced by state borders, but
also identifies regional communities which cut across state lines. Our parcellation
approach has a wide range of potential applications in understanding the spatial
structure of complex biological networks.

Subjects Computational Biology, Neuroscience, Computational Science
Keywords Parcellation, Clustering, Connectivity, fMRI, Brain, Tractography, Connectome,
Probabilistic model, Migration, Spatial maps

INTRODUCTION
When studying biological systems at any scale, scientists are often interested not only in the

properties of individual molecules, cells, or organisms, but also in the web of connections

between these units. The rise of massive biological datasets has enabled us to measure

these second-order interactions more accurately, in domains ranging from protein–protein

interactions, to neural networks, to ecosystem food webs. We can often gain insight into

the overall structure of a connectivity graph by grouping elements into clusters based

on their connectivity properties. Many types of biological networks have been modeled

in terms of interactions between a relatively small set of “modules” (Barabási & Oltvai,
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Figure 1 Parcellating connectivity in spatial maps Given a set of elements arranged on a spatial map
(such as points within the human cortex) as well as the connectivity between each pair of elements, our
method finds the best parcellation of the spatial map into connected clusters of elements that all have
similar connectivity properties. Brain image by Patrick J. Lynch, licensed under CC BY 2.5.

2004; Hartwell et al., 1999), including protein–protein interactions (Rives & Galitski, 2003),

metabolic networks (Ravasz et al., 2002), bacterial co-occurrence (Freilich et al., 2010),

pollination networks (Olesen et al., 2007), and food webs (Krause, Frank & Mason, 2003).

In fact, it has been proposed that modularity may be a necessary property for any network

that must adapt and evolve over time, since it allows for reconfiguration (Alon, 2003;

Hartwell et al., 1999). There are a large number of methods for clustering connectivity data,

such as k-means (Kim et al., 2010; Golland et al., 2008; Lee et al., 2012), Gaussian mixture

modeling (Golland, Golland & Malach, 2007), hierarchical clustering (Mumford et al.,

2010; Cordes et al., 2002; Gorbach et al., 2011), normalized cut (Van den Heuvel, Mandl &

Hulshoff Pol, 2008), infinite relational modeling (Morup et al., 2010), force-directed graph

layout (Crippa et al., 2011), weighted stochastic block modeling (Aicher, Jacobs & Clauset,

2014), and self-organized mapping (Mishra et al., 2014; Wiggins et al., 2011).

The vast majority of these methods, however, ignore the fact that biological networks

almost always have some underlying spatial structure. As described by Legendre and

Fortin: “In nature, living beings are distributed neither uniformly nor at random.

Rather, they are aggregated in patches, or they form gradients or other kinds of spatial

structures. . . the spatio-temporal structuring of the physical environment induces a

similar organization of living beings and of biological processes, spatially as well as

temporally” (Legendre & Fortin, 1989). In many biological datasets, we therefore wish

to constrain possible clustering solutions to consist of spatially-contiguous parcels. For

example, when dividing a DNA sequence into protein-coding genes, we should enforce

that the genes are contiguous sequences of base pairs. Similarly, if we want to identify brain

regions that could correspond to local cortical modules, we need each discovered cluster to

be a spatially-contiguous region. Without spatial information, the discovered clusters may

be difficult to interpret; for example, clustering functional brain connectivity data without

spatial information yields spatially-distributed clusters that confound local modularity and

long-distance interactions (Lee et al., 2012).

The problem is thus to a parcellate a spatial map into local, contiguous modules such

that all elements in a module have the same connectivity properties (Fig. 1). In this

paper we present the first general solution to this problem, introducing a new generative

probabilistic model to parcellate a spatial map into local regions with connectivity

properties that are as uniform as possible. Scientific insights can be gained from both the

clusterings themselves (which identify the local spatial sources of the interaction matrix)
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as well as the connections between the parcels, which summarize the original complex

connectivity matrix. Our method yields better results than other approaches such as greedy

clustering, and can help to determine the correct number of parcels in a data-driven way.

One of the most challenging spatial parcellation problems is in the domain of

neuroscience. Modern human neuroimaging methods can estimate billions of connections

between different locations in the brain, with complex spatial structures that are highly

nonuniform in size and shape. Correctly identifying the detailed boundaries between

brain regions is critical for understanding distributed neural processing, since even

small inaccuracies in parcellation can yield major errors in estimating network structure

(Smith et al., 2011).

Obtaining a brain parcellation with spatially coherent clusters has been difficult, since

it is unclear how to extend standard clustering methods to include the constraint that

only adjacent elements should be clustered together. Biasing the connectivity matrix to

encourage local solutions can produce local parcels in some situations (Cheng & Fan, 2014;

Tomassini et al., 2007), or distributed clusters can be split into their connected components

after clustering (Abraham et al., 2013), but these approximations will not necessarily find

the best parcellation of the original connectivity matrix. It is also possible to add a Markov

Random Field prior (such as the Ising model) onto a clustering model to encourage

connected parcels (Jbabdi, Woolrich & Behrens, 2009; Ryali et al., 2013), but in practice

this does not guarantee that clusters will be spatially connected (Honnorat et al., 2014).

Currently, finding spatially-connected parcels is often accomplished using agglomer-

ative clustering (Thirion et al., 2014; Heller et al., 2006; Blumensath et al., 2013; Moreno-

Dominguez, Anwander & Knosche, 2014), which iteratively merges neighboring elements

based on similarity in their connectivity maps. There are a number of disadvantages

to this approach; most critically, the solution is only a greedy approximation (only a

single pass over the data is made, and merged elements are never unmerged), which as

will be shown below can lead to poor parcellations when there is a high level of noise.

Edge detection methods (Cohen et al., 2008; Wig, Laumann & Petersen, 2014; Gordon et

al., 2014) define cluster boundaries based on sharp changes in connectivity properties,

which are also sensitive to localized patches of noisy data. Spectral approaches such as

normalized cut (Craddock et al., 2012) attempt to divide the spatial map into clusters by

maximizing within-cluster similarity and between-cluster dissimilarity, but this approach

has a strong bias to choose clusters that all have similar sizes (Blumensath et al., 2013). It

is also possible to incorporate a star-convexity prior into an MRF to efficiently identify

connected parcels (Honnorat et al., 2014). This approach, however, constrains clusters to be

convex (in connectivity space); as will be shown below, our method finds structures in real

datasets violating this assumption, such as nested regions in functional brain connectivity

data. All of these methods require explicitly setting the specific number of desired clusters,

and are optimizing a somewhat simpler objective function; they seek to maximize the

similarity between the one-dimensional rows or columns of the connectivity matrix, while

our method takes into account reordering of the both the rows and columns to make the

between-parcel 2D connectivity matrix as simple as possible.

Baldassano et al. (2015), PeerJ, DOI 10.7717/peerj.784 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.784


Our model is highly robust to noise, has no constraints on the potential sizes and

shapes of brain regions, and makes many passes over the data to precisely identify

region boundaries. We validate that our method outperforms previous approaches on

synthetic datasets, and then show that we can more efficiently summarize both functional

and structural brain connectivity data. Our parcellation of human cortex generalizes

more effectively across subjects, and reveals new structure in the functional connectivity

properties of visual cortex.

To demonstrate the wide applicability of our method, we apply the same model to find

spatial patterns in human migration patterns within the United States. Despite the fact

that this is an entirely different type of data at a different spatial scale, we are able to find

new insights into how state borders shape migratory behavior. Our results on these diverse

datasets suggest that our analysis could have a wide range of potential applications in

understanding biological networks. It is also important to note that the “spatial adjacency”

constraint of our method could also be used for other, nonspatial notions of adjacency;

for example, clustering an organism’s life into contiguous temporal segments based on its

changing social interactions.

MATERIALS AND METHODS
Probabilistic model
Intuitively, we wish to find a parcellation z which identifies local regions, such that all

elements in a region have the same connectivity “fingerprint.” Specifically, for any two

parcels m and n, all pairwise connectivities between an element in parcel m and an element

in parcel n should have a similar value. Our method uses the full distribution of all pairwise

connectivities between two parcels, and finds a clustering for which this distribution is

highly peaked. This makes our method much more robust than approaches which greedily

merge similar clusters (Thirion et al., 2014; Blumensath et al., 2013) or define parcel

edges where neighboring voxels differ (Thirion et al., 2006; Wig, Laumann & Petersen,

2014; Gordon et al., 2014). The goal of identifying modules with similar connectivity

properties is conceptually similar to weighted stochastic block models (Aicher, Jacobs &

Clauset, 2014), but it is unclear how these models could be extended to incorporate the

spatial-connectivity constraint.

We would like to learn the number of regions automatically from data, and additionally

impose the requirement that all regions must be spatially-connected. We can accomplish

both goals more efficiently in a single framework, by using an infinite clustering prior on

our parcellation z which simultaneously constrains regions to be spatially coherent and

does not limit the number of possible clusters. Specifically, since the mere existence of a

element (even with unknown connectivity properties) changes the spatial connectivity and

thus affects the most likely clustering, we must employ a nonparametric prior which is not

marginally invariant. Other Bayesian nonparametric models allow for spatial dependencies

between datapoints, but the only class of CRPs which is not marginally invariant is the

distance-dependent Chinese Restaurant Process (dd-CRP) (Blei & Frazier, 2011). Instead

of directly sampling a label for each element, the dd-CRP prior assigns each element i a
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link to a neighboring element ci. The actual parcel labels z(c) are then defined implicitly

as the undirected connected components of the link graph. Intuitively, this allows for

changes in the labels of many elements when a single connection ci is modified, since it

may break apart or merge together two large connected sets of elements. Additionally,

this construction allows the model to search freely in the space of parcel links c, since

every possible setting of the parcel links corresponds to a parcellation satisfying the

spatial-coherence constraint.

Given a parcellation, we must then specify a generative model for the data matrix D.

Analogous to the approach taken in stochastic block modeling (Aicher, Jacobs & Clauset,

2014), we model the connectivity between each pair of parcels as a separate distribution

with latent parameters. To allow efficient collapsed sampling (see below), we utilize a

Normal distribution for each set of connectivities between parcels, and the conjugate prior

for the latent parameters.

Mathematically, our generative clustering model is:

c ∼ dd-CRP(α,f )

Amn,σ
2
mn ∼ Normal-Inverse-χ2(µ0,κ0,σ

2
0 ,ν0)

Dij ∼ Normal(Az(c)iz(c)j,σ
2
z(c)iz(c)j

).

For N elements and K parcels: c is a vector of length N which defines the cluster links

for all elements (producing a region labeling vector z(c) of length N, taking values from

1 to K); α and f are the scalar hyperparameter and N × N distance function defining the

dd-CRP; A and σ2 are the K × K connectivity strength and variance between regions; µ0

and κ0 are the scalar prior mean and precision for the connectivity strength; σ 2
0 and ν0

are the scalar prior mean and precision for the connectivity variance; and D is the N × N

observed connectivity between individual elements.

The probability of choosing a particular ci in the dd-CRP is defined by a distance

function f ; we use fij = 1 if i and j are neighbors, and 0 otherwise, which guarantees that

all clusters will be spatially connected. A hyperparameter α controls the probability that

a voxel will choose to link to itself. Note that, due to our choice of distance function f , a

random partition drawn from the dd-CRP can have many clusters even for α = 0, since

elements are only locally connected.

The connectivity strength Amn and variance σ 2
mn between each pair of clusters m and n is

given by a Normal-Inverse-χ2 (NIχ2) distribution, and the connectivity Dij between every

element i in one region and j in the other is sampled based on this strength and variance.

The conjugacy of the Normal-Inverse-χ2 and Normal distributions allows us to collapse

over Amn and σ 2
mn and sample only the clustering variables ci. Empirically, we find that the

only critical hyperparameter is the expected variance σ 2
0 , with lower values encouraging

parcels to be smaller (we set α = 10,µ0 = 0,κ0 = 0.0001,ν0 = 1 for all experiments).

To allow the comparison of hyperparameter values between problems with the same

number of elements (e.g., the functional and structural datasets), we normalize the input

matrix D to have zero mean and unit variance. We then initialize the model using the Ward
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clustering (see below) with the most likely number of clusters under our model, and setting

the links c to form a random spanning tree within each cluster.

In summary, we have introduced a novel connectivity clustering model which (a) uses

the full distribution of connectivity properties to define the parcellation likelihood, and (b)

employs an infinite clustering model which automatically chooses the number of parcels

and enforces that parcels be spatially-connected.

Derivation of Gibbs sampling equations
To infer a maximum a posteriori (MAP) parcellation z based on the dd-CRP prior, we

perform collapsed Gibbs sampling on the element links c. A link ci for element i is drawn

from

p(c(new)
i |c−i,D) ∝ p(c(new)

i )p(D|z(c−i ∪ c(new)
i )) = p(c(new)

i )p(D|z(new))

∝


α if c(new)

i = i

1 else


|z(new)

|
k1,k2=1

p(D
z(new)

k1
,z(new)

k2

). (1)

To compare the likelihood term for different choices of c(new)
i , we first remove the current

link ci, giving the induced partition z(c−i) (which may split a region). If we resample ci to

a self-loop or to a neighbor j that does not join two regions, the likelihood term is based

on the partition z(c−i) = z. Alternatively, ci can be resampled to a neighbor j such that

two regions K ′ and K ′′ in z(c−i) are merged into one region K in z(c−i ∪ c(new)
i ) = ẑ.

Numbering the regions so that zi ∈ {1···(K − 1),K ′,K ′′
} and ẑi ∈ {1···(K − 1),K} gives

p(D|ẑ)

p(D|z)
=

K
k=1p(Dẑk,ẑK )

K−1
k=1 p(DẑK ,ẑk

)K ′

k=1p(Dzk,zK′ )
K ′′

k=1p(Dzk,zK′′ )
K−1

k=1 p(DzK′ ,zk)
K ′

k=1p(DzK′′ ,zk)
. (2)

Each term p(Dzm,zn) is a marginal likelihood of the NIχ2 distribution, which can be

computed in closed form (Murphy, 2007):

p(Dzm,zn) =
Γ(νmn/2)

Γ(ν0/2)


κ0

κmn

 1
2 (ν0σ

2
0 )ν0/2

(νmnσ 2
mn)

νmn/2
(π)−n/2

L = |zm||zn| κmn = κ0 + L; νmn = ν0 + L µmn =
κ0µ0 + Ld̄

κmn

d̄ =
1

L


i∈zm
j∈zn

Dij s =


i∈zm
j∈zn

(Dij − d̄)2 σ 2
mn =

1

νmn


ν0σ

2
0 + s +

Lκ0

κ0 + L
(µ0 − d̄)2


.

Intuitively, Eq. (2) computes the probability of merging or splitting two regions at each step

based on whether the connectivities between these regions’ elements and the rest of the

regions are better fit by one distribution or two.

In practice, the time-consuming portion of each sampling iteration is computing the

sum of squared deviations s. This can be made more efficient by computing the s values for

the merged ẑ in closed form. Given that the connectivities DK ′ = {DiK ′}i∈k between parcel k
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and K ′ have sum of squares deviations sK ′ and mean d̄K ′ , and similarly for K ′′, then the sum

of squares sK for the connectivities between parcel k and the merged parcel K (merging K ′

and K ′′) is:

sK =


d∈DK′∪DK′′

(d − d̄)2

=

 
d∈DK′∪DK′′

d2

− (|DK ′ | + |DK ′′ |) ·


|DK ′ | · d̄K ′ + |DK ′′ | · d̄K ′′

|DK ′ | + |DK ′′ |

2

=

 
d∈DK′∪DK′′

d2

−
|DK ′ |

2

|DK ′ | + |DK ′′ |
d̄2

K ′ −
|DK ′′ |

2

|DK ′ | + |DK ′′ |
d̄2

K ′′ − 2
|DK ′ ||DK ′′ |

|DK ′ | + |DK ′′ |
d̄K ′ d̄K ′′

=

 
d∈DK′

d2
− |DK ′ |d̄2

K ′

+

 
d∈DK′′

d2
− |DK ′′ |d̄2

K ′′


+

|DK ′ ||DK ′′ |

|DK ′ | + |DK ′′ |


d̄2

K ′ + d̄2
K ′′ − 2d̄K ′ d̄K ′′


= sK ′ + sK ′′ +

|DK ′ ||DK ′′ |

|DK ′ | + |DK ′′ |
(d̄K ′ − d̄K ′′)2.

Comparison methods
In order to evaluate the performance of our model, we compared our results to those of

four existing methods. All of them require computing a dissimilarity measure between the

connectivity patterns of elements i and j. For a connectivity matrix D,

Wi,j =


a≠i,j

(Di,a − Dj,a)2 +


a≠i,j

(Da,i − Da,j)2. (3)

“Local similarity” computes the edge dissimilarity Wi,j between each pair of neighbor-

ing elements, and then removes all edges above a given threshold. Here we set the threshold

in order to obtain a desired number of clusters. This type of edge-finding approach has

been used extensively for neuroimaging parcellation (Cohen et al., 2008; Wig, Laumann

& Petersen, 2014; Gordon et al., 2014). Additionally, this is equivalent to using a spectral

clustering approach (Thirion et al., 2006) if clustering in the embedding space is performed

using single-linkage hierarchical clustering.

“Normalized cut” computes the edge similarity Si,j = 1/Wi,j between each pair of

neighboring elements, then runs the normalized cut algorithm of Shi & Malik (2000).

This draws partitions between elements a and b when their edge similarity Sa,b is low

relative to their similarities with other neighbors. Although computing the globally

optimal normalized cut is NP-complete, an approximate solution can be found quickly

by solving a generalized eigenvalue problem. This approach has been specifically applied to

neuroimaging data (Craddock et al., 2012).

“Region growing” is based on the approach described in Blumensath et al. (2013).

First, a set of seed points is selected which have high similarity to all their neighbors,
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since they are likely to be near the center of parcels. Seeds are then grown by iteratively

adding neighboring elements with high similarity to the seed. Once every element has been

assigned to a region, Ward clustering (see below) was used to cluster adjacent regions until

the desired number of regions is reached.

“Ward clustering” requires computing Wi,j between all pairs of elements (not just

neighboring elements). Elements are each initialized as a separate cluster, and neighboring

clusters are merged based on Ward’s variance-minimizing linkage rule (Ward, 1963).

This approach has been previously applied to neuroimaging data (Thirion et al., 2014;

Eickhoff et al., 2011).

We also compared to random clusterings. Starting with each element in its own cluster,

we iteratively picked a cluster uniformly at random and then merged it with a neighboring

cluster (also picked uniformly at random from all neighbors). The process continued until

the desired number of clusters remained.

Synthetic data
To generate synthetic connectivity data, we created three different parcellation patterns on

an 18 by 18 grid (see Fig. 2), with the number of regions K = 5,6,9. Each element of the

K × K connectivity matrix A was sampled from a standard normal distribution. For a given

noise level σ , the connectivity value Di,j between element i in cluster zi and element j in

cluster zj was sampled from a normal distribution with mean Azi,zj and standard deviation

σ . This data matrix was then input to our method with σ 2
0 = 0.01, which returned the

MAP solution after 30 passes through the elements (approximately 10,000 steps). Both our

method and all comparison methods were run for 20 different synthetic datasets for each

noise level σ and the results were averaged.

We also performed a supplementary experiment using a more challenging three-spiral

dataset (Chang & Yeung, 2008). We generated the connectivity matrix as above, and

defined elements to be spatially adjacent if they were consecutive along a spiral or adjacent

between neighboring spirals. In addition to our standard initialization scheme using the

Ward clustering with highest probability according to our model, we also considered

initializations with fixed numbers of clusters derived from Ward clustering (K = 2,10) or

initializations in which the links c were chosen are random. The σ 2
0 hyperparameter was set

to 0.01 as above, and the MAP solution was returned after 100 passes (or 1,000 passes for

the random initialization).

Parcellations were evaluated by calculating their normalized mutual information (NMI)

with the ground truth labeling. We calculate NMI as in Strehl & Ghosh (2002). This

measure ranges from 0 to 1, and does not require any explicit “matching” between parcels.

For N total elements, if z assigns nh elements to cluster h, zgt assigns n
gt
l elements to cluster

l, and nh,l elements are assigned to cluster h by z and cluster l by zgt, this is given by

NMI(z,zgt) =
I(z,zgt)

H(z)H(zgt)
=


h


l nh,l log(Nnh,l/(nhn

gt
l ))

hnh log(nh/N)


l n
gt
l log(n

gt
l /N)

 . (4)
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Figure 2 Results on synthetic data. (A) In three different synthetic datasets, our method is consistently
better at recovering the ground-truth parcellation than alternative methods. This advantage is most
pronounced when the parcels are arranged nonuniformly with unequal sizes, and the noise level is
relatively high. Results are averaged across 20 random datasets for each noise level, and the gray region
shows the standard deviation around random clusterings. (B) Our model can correctly infer the number
of underlying clusters in the dataset for moderate levels of noise, and becomes more conserative about
splitting elements into clusters as the noise level grows. (C) Example clusterings under the next-best
clustering method and our model on the stripes dataset, for σ = 6. Although greedy clustering achieves
a reasonable result, it is far noisier than the output of our method, which perfectly recovers the ground
truth except for incorrectly merging the two smallest clusters.

Human brain functional data
We utilized group-averaged resting-state functional MRI correlation data from 468

subjects, provided by the Human Connectome Project’s 500 Subjects release (Van Essen

et al., 2013). Using a specialized Siemens 3T “Connectome Skyra” scanner (Siemens AG,

Berlin, Germany), data was collected during four 15-min runs, during which subjects

fixated with their eyes open on a small cross-hair. A multiband sequence was used,

allowing for acquisition of 2.0 mm isotropic voxels at a rate of 720 ms. Data for each

subject was cleaned using motion regression and ICA + FIX denoising (Smith et al., 2013;

Salimi-Khorshidi et al., 2014) and then combined across subjects using an approximate

group-PCA method yielding the strongest 4,500 spatial eigenvectors (Smith et al., 2014).

The symmetric 59,412 by 59,412 functional connectivity matrix Da,b was computed as

the correlation between the 4,500-dimensional eigenmaps of voxels a and b. For each
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of σ 2
0 = 2,000,3,000,4,000,5,000, we ran Gibbs Sampling for 10 passes (approximately

600,000 steps) to find the MAP solution. For comparison with individual subjects, we also

computed functional connectivity matrices for the first 20 subjects with resting-state data

in the 500 Subjects release.

The map of retinotopic regions in visual cortex was created by mapping the volume-

based atlas from (Wang et al., 2014) onto the Human Connectome group-averaged surface.

Human brain structural data
We obtained diffusion MRI data for 10 subjects from the Human Connectome Project’s Q3

release (Van Essen et al., 2013). This data was collected on the specialized Skyra described

above, using a multi-shell acquisition over 6 runs. Probabilistic tractgraphy was performed

using FSL (Jenkinson et al., 2012), by estimating up to 3 crossing fibers with bedpostx

(using gradient nonlinearities and a rician noise model) and then running probtrackx2

using the default parameters and distance correction. 2000 fibers were generated for each

of the 1.7 · 106 white-matter voxels, yielding 3.4 · 109 total sampled tracks per subject

(approximately 34 billion tracks in total). We assigned each of the endpoints to gray-matter

voxels using the 32 k/hemisphere Conte69 registered standard mesh distributed for each

subject, discarding the small number of tracks that did not have both endpoints in gray

matter (e.g., cerebellar or spinal cord tracks). Since we are using distance correction, the

weight of a track is set equal to its length. In order to account for imprecise tracking near

the gray matter border, the weight of a track whose two endpoints are closest to voxels a

and b is spread evenly across the connection between a and b, the connections between a

and b’s neighbors, and the connections between a’s neighbors and b. Since the gray-matter

mesh has a correspondence between subjects, we can compute the group-average number

of tracks between every pair of voxels. Finally, since connectivity strengths are known to

have a lognormal distribution (Markov et al., 2014), we define the symmetric 59,412 by

59,412 structural connectivity matrix Da,b as the log group-averaged weight between voxels

a and b. The hyperparameter σ 2
0 was set to 3,000, and Gibbs Sampling was run for 10 passes

(approximately 600,000 steps) to find the MAP solution.

Human migration data
We used the February 2014 release of the 2007–2011 county-to-county U.S. migration

flows from the U.S. Census Bureau American Community Survey (ACS). This dataset

includes estimates of the number of annual movers from every county to every other

county, as well as population estimates for each county. We restricted our analysis to the

continential U.S. To reduce the influence of noisy measurements from small counties,

we preprocessed the dataset by iteratively merging the lowest-population county with

its lowest-population neighbor (within the same state) until all regions contained at

least 10,000 residents. This process produced 2,594 regions which we continue to refer

to as “counties” for simplicity, though 306 cover multiple low-population counties. For

visualization of counties and states, we utilized the KML Cartographic Boundary Files

provided by the U.S. Census Bureau (KML).
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One major issue with analyzing this migration data is that counties have widely varying

populations (even after the preprocessing above), making it difficult to compare the

absolute number of movers between counties. We correct for this by normalizing the

migration flows relative to chance flows driven purely by population. If we assume a chance

distribution in which a random mover is found to be moving from county a to county b

based purely on population, then the normalized flow matrix is

Da,b =
Ma,b

i,j
Mi,j


·

PaPb
i

Pi

2

(5)

where Mi,j is the absolute number of movers from county i to county j, and Pi is the

population of county i. This migration connectivity matrix D is therefore a nonnegative,

asymmetric matrix in which values less than 1 indicate below-chance migration, and

values greater than 1 indicate above-chance migration. Setting σ 2
0 = 10, we ran Gibbs

Sampling for 50 passes (approximately 130,000 steps) to find the MAP solution.

RESULTS
Comparison on synthetic data
In order to understand the properties of our model and quantitatively compare it to

alternatives on a dataset with a known ground truth, we performed several experiments

with synthetic datasets. We compared against random parcellations (in which elements

were randomly merged together) as well as four existing methods: local similarity, which

simply thresholds the similarities between pairwise elements (similar to (Thirion et al.,

2006; Cohen et al., 2008; Wig, Laumann & Petersen, 2014; Gordon et al., 2014)); normalized

cut (Craddock et al., 2012) which finds parcels maximizing within-cluster similarity and

between-cluster difference; region growing (Blumensath et al., 2013), an agglomerative

clustering method which selects stable points and iteratively merges similar elements;

and Ward clustering (Thirion et al., 2014), an agglomerative clustering method which

iteratively merges elements to minimize the total variance. Since these methods cannot

automatically discover the number of clusters, they (and the random clustering) are set to

use the same number of clusters as inferred by our method. We varied the noise level of the

synthetic connectivity matrix from low to high, and evaluated the learned clusters using

the normalized mutual information with the ground truth, which ranges from 0 to 1 (with

1 indicating perfect recovery).

As shown in Fig. 2, our method identifies parcels that best match the ground truth,

across all three datasets and all noise levels. The naive local similarity approach performs

very poorly under even mild noise conditions, and becomes worse than chance for high

noise levels (for which most parcellations consist of single noisy voxels). Normalized cut

is competitive only when the ground-truth parcels are equally sized (matching results

from (Blumensath et al., 2013)), and is near-chance in the other cases. Region growing is

more consistent across datasets, but does not reach the performance of Ward clustering,
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which outperforms all methods other than ours. Our model correctly infers the number

of clusters with moderate amounts of noise (using the same hyperparameters in all experi-

ments), and finds near-perfect parcellations even at very high noise levels (see Fig. 2C).

We also evaluated our model on a three-spiral dataset previously used in clustering

work (Chang & Yeung, 2008), showing that we outperform other methods regardless of

initialization scheme (see Figure S1).

Functional connectivity in the human brain
To investigate the spatial structure of functional connectivity in the human brain, we

applied our model to data from the Human Connectome Project (Van Essen et al., 2013).

Combining data from 468 subjects, this symmetric 59,412 by 59,412 matrix gives the

correlation between fMRI timecourses of every pair of vertices on the surface of the brain

(at 2 mm resolution) during a resting-state scan (in which subjects fixated on a blank

screen). Using the anatomical surface models provided with the data, we defined vertices to

be spatially adjacent if they were neighbors along the cortical surface.

Evaluating cortical parcellations is challenging since there is no clear ground truth

for comparison, and different applications could require parcellations with different

types of properties (e.g., optimizing for fitting individual subjects or for stability across

subjects (Thirion et al., 2014)). One simple measure of an effective clustering is the fraction

of variance in the full 3.5 billion element matrix which is captured by the connectivity

between parcels (consisting of only tens of thousands of connections). As shown in Fig. 3A,

our parcellation explains more variance for a given number of clusters than greedy Ward

clustering; in order to achieve the same level of performance as our model, the simpler

approach would require approximately 30 additional clusters. We can also measure how

well this group-level parcellation (using data averaged from hundreds of subjects) fits the

data from 20 individual subjects. Although the variance explained is substantially smaller

for individual subjects, due both to higher noise levels and inter-subject connectivity

differences, our model explains significantly more variance than Ward clustering with

140 clusters (t19 = 2.97,p < 0.01 one-tailed t-test), 155 clusters (t19 = 3.67,p < 0.01), or

172 clusters (t19 = 1.77,p < 0.05). The 220-cluster solutions from our model and Ward

clustering generalize equally well, suggesting that our method’s largest gains over greedy

approximation occur in the more challenging regime of small numbers of clusters.

One part of the brain in which we do have prior knowledge about cortical organization

is in visual cortex, which is segmented into well-known retinotopic field maps (Wang et

al., 2014). We can qualitatively examine the match between our 172-cluster parcellation

(Fig. 3C) and these retinotopic maps on an inflated cortical surface, shown in Fig. 3D.

First, we observe a wide variety in the size and shape of the learned parcels, since the model

places no explicit constraints on the clusters except that they must be spatially connected.

We also see that we correctly infer very similar parcellations between hemispheres, despite

the fact that bilateral symmetry is not enforced by the model. The earliest visual field

maps (V1, V2, V3, hV4, LO1, LO2) all radiate out from a common representation of the

fovea (Brewer & Barton, 2012), and in this region, our model generates ring parcellations
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Figure 3 Results on functional brain connectivity (A) Our model consistently provides a better fit
to the data than greedy clustering, explaining the same amount of variance with 30 fewer clusters
(different points were generated from different values of the hyperparameter σ 2

0 ). (B) When using our
group-learned clustering to explain variance in 20 individual subjects, we consistently generalize better
than the greedy clusters for cluster sizes less than 200 (∗ p < 0.05, ∗∗ p < 0.01). (C) A sample 172-cluster
parcellation from our method. (D) Comparison between our parcels and retinotopic maps, showing a
transition from eccentricity-based divisions to field map divisions.

which divide the visual field based on distance from the fovea. The parcellation also draws

a sharp border between peripheral V1 and V2. In the dorsal V3A/V3B cluster, V3A and

V3B are divided into separate parcels. In medial temporal regions, parcel borders show

an approximate correspondence with known VO and PHC borders, with an especially

close match along the PHC1-PHC2 border. Overall, we therefore see a transition from an

eccentricity-based parcellation in the early visual cluster to a parcellation corresponding to

known field maps in the later dorsal and ventral visual areas.

Structural connectivity in the human brain
Based on diffusion MRI data from the Human Connectome Project (Van Essen et al.,

2013), we used probabilistic tractography (Behrens et al., 2007) to generate estimates of the

strength of the structural fiber connections between each pair of 2 mm gray-matter voxels.

Approximately 34 billion tracts were sampled across 10 subjects, yielding a symmetric

59,412 by 59,412 matrix in which about two-thirds of the elements are non-zero. Applying

our method to this matrix parcellates the brain into groups of voxels that all had the
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Figure 4 Results on structural brain connectivity. (A) A 190-cluster parcellation of the brain based
on structural tractography patterns. (B) This parcellation fits the data substantially better than greedy
clustering, which would require an additional 55 clusters to explain the same amount of variance. The
blue path shows how our model fit improves over the course of Gibbs sampling when initialized with
the greedy solution. (C) An example of 35,000 tracks (from one subject) connected to a parcel in the
lateral occipital sulcus, marked with an asterisk in (A). These include portions of major fascicles such
as the inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFO), and corpus
callosum (CC).

same distribution of incident fibers. This problem is even more challenging than in the

functional case, since this matrix is much less spatially smooth.

Figure 4A shows a 190-region parcellation. Our clustering outperforms greedy

clustering by an even larger margin than with the functional data, explaining as much

variance as a greedy parcellation with 55 additional clusters. Figure 4B also shows how
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the model fit evolves over many rounds of Gibbs sampling, when initialized with the

greedy solution. Since our method can flexibly explore different numbers of clusters, it

is able (unlike a greedy method) to perform complex splitting and merging operations

on the parcels. Qualitatively evaluating our parcellation is even more challenging than in

the previous functional experiment, but we find that our parcels match the endpoints

of major known tracts. For example, Fig. 4C shows 35,000 probabilistically-sampled

tracts intersecting with a parcel in the left lateral occipital sulcus, which (in addition to

many short-range fibers) connects to the temporal lobe through the inferior longitudinal

fasciculus, to the frontal lobe through the inferior fronto-occipital fasciculus, and to

homologous regions in the right hemisphere through the corpus callosum (Wakana et

al., 2004). Note that the full connectivity matrix was constructed from a million times as

many tracks as shown in this figure, in order to estimate the pairwise connectivity between

every pair of gray-matter voxels.

Human migration in the United States
Given our successful results on neuroimaging data, we then applied our method to

an entirely distinct dataset: internal migration within the United States. Using our

probabilistic model, we sought to summarize the (asymmetric) matrix of migration

between US counties as flows between a smaller number of contiguous regions. The model

is essentially searching for a parcellation such that all counties within a parcel have similar

(in- and out-) migration patterns. Note that this is a challenging dataset for clustering

analyses since the county-level migration matrix is extremely noisy and sparse, with only

3.8% of flows having a nonzero value.

As shown in Fig. 5A, we identify 83 regions defined by their migration properties. There

are a number of interesting properties of this parcellation of the United States. Many

clusters share borders with state borders, even though no information about the state

membership of different counties was used during the parcellation. This alignment was

substantially more prominent than when generating random 83-cluster parcellations, as

shown in Fig. 5B. As described in the Discussion, this is consistent with previous work

showing behavioral differences caused by state borders, providing the first evidence

that state membership also has an impact on intranational migration patterns. Greedy

clustering performs very poorly on this sparse, noisy matrix, producing many clusters

containing only one or a small number of counties, and has a lower NMI with state borders

than even the random parcellations.

The 10 most populous clusters (Fig. 5C) cover 18 of the 20 largest cities in the US, with

the two largest parcels covering the Northeast and the west coast. Some clusters roughly

align with states or groups of states, while other divide states (e.g., the urban centers of

east Texas) or cut across multiple states (e.g., the “urban midwest” cluster consisting of

Columbus, Detroit, and Chicago). As shown in Fig. 5D, our method succeeds in reordering

the migration matrix to be composed of approximately piecewise constant blocks. In this

case (and in many applications) the blocks along the main diagonal are most prominent,

but this assortative structure is not enforced by the model. Though largely symmetric,
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Figure 5 Results on migration dataset. (A) Our parcellation identified 83 contiguous regions within
the continental US, such that migration between these regions summarizes the migration between all
2594 counties. (B) This parcellation was better aligned with state borders than an 83-cluster random
parcellation (95% confidence interval shown) or an 83-cluster greedy Ward parcellation. (C) The top 10
clusters (by population) are shown, with arrows indicating above-chance flows between the clusters. The
20 most populous US cities are indicated with black dots for reference. (D) A portion of the migration
matrix, showing the 1051 counties covered by the top 10 clusters.

some flows do show large asymmetries. For example, the two most asymmetrical flows by

absolute difference are between the urban midwest and Illinois (out of Illinois = 1.3, into

Illinois = 2.0), and Florida and Georgia (out of Georgia = 1.3, into Georgia = 2.0).

DISCUSSION
In this work we have introduced a new generative nonparametric model for parcellating a

spatial map based on connectivity information. After showing that our model outperforms

existing baselines on synthetic data, we applied it to three distinct real-world datasets:

functional brain connectivity, structural brain connectivity, and US migration. In each

case our method showed improvements over the current state-of-the-art, and was able to

capture hidden spatial patterns in the connectivity data. The gap between our approach

and past work varied with the difficulty of the parcellation problem; hierarchical clustering

would require ∼ 17% more clusters for the relatively smooth functional connectivity data

and ∼ 29% more clusters for the more challenging structural connectivity data, and fails

completely for the most noisy migration dataset.

Finding a connectivity-based parcellation of the brain’s cortical surface has been an

important goal in recent neuroimaging research, for two primary reasons. First, the shapes
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and locations of connectivity-defined regions may help inform us about underlying

modularity in cortex, providing a relatively hypothesis-free delineation of regions with

distinct functional or structural properties. For example, connectivity clustering has

been used to identify substructures in the posterior medial cortex (Bzdok et al., 2014),

temporoparietal junction (Mars et al., 2012), medial frontal cortex (Johansen-Berg et al.,

2004; Kim et al., 2010; Crippa et al., 2011; Klein et al., 2007), occipital lobes (Thiebaut de

Schotten et al., 2014), frontal pole (Moayedi et al., 2014; Liu et al., 2013), lateral premotor

cortex (Tomassini et al., 2007), lateral parietal cortex (Mars et al., 2011; Ruschel et al.,

2013), amygdala (Cheng & Fan, 2014; Mishra et al., 2014), and insula (Cauda et al.,

2011). Second, an accurate parcellation is necessary for performing higher-level analysis,

such as analyzing distributed connectivity networks among parcels (Power et al., 2013;

Andrews-Hanna et al., 2010; Van den Heuvel & Sporns, 2013), using connectivity as a

clinical biomarker (Castellanos et al., 2013), or pooling voxel features for classification (Xu,

Zhen & Liu, 2010). Consistent with our results, previous work has found that greedy Ward

clustering generally fits the datasets best (in terms of variance explained) among these

existing methods (Thirion et al., 2014).

Our finding of eccentricity-based resting-state parcels in early visual areas is consistent

with previous results showing a foveal vs. peripheral division of visual regions based on

connectivity (Thomas Yeo et al., 2011; Lee et al., 2012). Since our parcellation is much

higher-resolution, we are able to observe nested clusters at multiple eccentricities. Our

results are the first to suggest that higher-level retinotopic regions, especially PHC1 and

PHC2, have borders that are related to changes in connectivity properties.

Parcellation based on structural tractography has generally been limited to specific

regions of interest (Mars et al., 2012; Johansen-Berg et al., 2004; Crippa et al., 2011; Klein et

al., 2007; Thiebaut de Schotten et al., 2014; Moayedi et al., 2014; Liu et al., 2013; Tomassini et

al., 2007; Mars et al., 2011; Ruschel et al., 2013), in part due to the computational difficulties

of computing and analyzing a full voxel-by-voxel connectivity matrix. Our parcellation

for this modality is somewhat preliminary; probabilistic tractography algorithms are

still in their infancy, with recent work showing that they produce many tracts that

are not well-supported by the underlying diffusion data (Pestilli et al., 2014) and are

of questionable anatomical accuracy (Thomas et al., 2014). As diffusion imaging and

tractography methods continue to improve, the input connectivity matrix to our method

will become higher quality and allow for more precise parcellation.

There has been detailed scientific study of both inter- and intra-national migration

patterns for over a century, beginning with the 1885 work of Ravenstein (1885). Even

in this initial study (within the UK), it was clear that migration properties varied with

spatial location; for example, rural areas showed large out-migration, while metropolitan

areas showed greater in-migration, including long-distance migrants. The impact of state

borders on migration behavior has not, to our knowledge, been specifically addressed,

but there is a growing literature documenting differences in behaviors across state lines.

Neighboring counties across state lines are less politically similar than those within a state,

suggesting that a state border “creates a barrier to, or contains, political and economic
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institutions, policies, and possibly movement” (Tam Cho & Nicley, 2008). State borders

also play a role in isolating communities economically; this phenomenon gained a great

of attention after Wolf ’s 2000 study (Wolf, 2000), showing that trade was markedly lower

between states than within states (controlling for distance using a gravity model). Our

results demonstrate in a hypothesis-free way that migration behavior is influenced by

state identities, since our method discovers a parcellation related in many regions to state

borders, without being given any information about the state membership of each county.

Our results also show that state borders alone are not sufficient to capture the complexities

of migration behavior, since other factors can override state identities to create other types

of communities (such as in our “Urban midwest” parcel).

Since our algorithm makes many passes over the dataset, it does take longer than

previous methods to find the most likely clustering. There are a number of possible

approaches for speeding up inference which could be explored in future work. One

possibility is to parallelize inference by performing Gibbs sampling on multiple elements

simultaneously; although this would no longer be guaranteed to converge to the true

posterior distribution, in practice this may not be an issue. Another option is to compute

the Gibbs sampling probabilities only approximately (Korattikara, Chen & Welling, 2014),

by using only a random subset of connectivities in a large matrix to approximate the

likelihood of a proposed parcellation. It also may be possible to increase the performance of

our algorithm even further by starting with many different initializations and selecting the

solution with highest MAP probability.

CONCLUSIONS
In summary, we have proposed the first general-purpose probabilistic model to intrinsi-

cally incorporate spatial information in its clustering prior, allowing us to search directly

in the space of contiguous parcellations using collapsed Gibbs sampling. Our approach

is far more flexible and precise than previous work, with no constraints on the sizes and

shapes of the learned parcels. This makes our model more resilient to noise in synthetic

tests, and provides better fits to real-world data drawn from three different domains. This

diverse set of results suggests that our model could be applied to a large set of biological

network datasets to reveal fine-grained structure in spatial maps. We have publicly released

both MATLAB and python implementations of our method at http://goo.gl/xys4xh under

a BSD open-source licence.
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Gorbach NS, Schütte C, Melzer C, Goldau M, Sujazow O, Jitsev J, Douglas T, Tittgemeyer M.
2011. Hierarchical information-based clustering for connectivity-based cortex parcellation.
Frontiers in Neuroinformatics 5:18 DOI 10.3389/fninf.2011.00018.

Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE. 2014. Generation
and evaluation of a cortical area parcellation from resting-state correlations. Cerebral Cortex
Epub ahead of print DOI 10.1093/cercor/bhu239.

Hartwell LH, Hopfield JJ, Leibler S, Murray AW. 1999. From molecular to modular cell biology.
Nature 402(December):47–52 DOI 10.1038/35011540.

Heller R, Stanley D, Yekutieli D, Rubin N, Benjamini Y. 2006. Cluster-based analysis of FMRI
data. Neuroimage 33(2):599–608 DOI 10.1016/j.neuroimage.2006.04.233.

Honnorat N, Eavani H, Satterthwaite TD, Gur RE, Gur RC, Davatzikos C. 2014. GraSP: geodesic
graph-based segmentation with shape priors for the functional parcellation of the cortex.
Neuroimage 106:207–221 DOI 10.1016/j.neuroimage.2014.11.008.

Jbabdi S, Woolrich MW, Behrens TE. 2009. Multiple-subjects connectivity-based parcellation
using hierarchical Dirichlet process mixture models. Neuroimage 44(2):373–384
DOI 10.1016/j.neuroimage.2008.08.044.

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. 2012. FSL. Neuroimage
62(2):782–790 DOI 10.1016/j.neuroimage.2011.09.015.

Johansen-Berg H, Behrens TEJ, Robson MD, Drobnjak I, Rushworth MFS, Brady JM,
Smith SM, Higham DJ, Matthews PM. 2004. Changes in connectivity profiles define
functionally distinct regions in human medial frontal cortex. Proceedings of the National
Academy of Sciences of the United States of America 101(36):13335–13340
DOI 10.1073/pnas.0403743101.

Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, Seo SW, Cox RW, Na DL, Kim SI, Saad ZS.
2010. Defining functional SMA and pre-SMA subregions in human MFC using resting state
fMRI: functional connectivity-based parcellation method. Neuroimage 49(3):2375–2386
DOI 10.1016/j.neuroimage.2009.10.016.

Klein JC, Behrens TEJ, Robson MD, Mackay CE, Higham DJ, Johansen-Berg H. 2007.
Connectivity-based parcellation of human cortex using diffusion MRI: establishing
reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA.
NeuroImage 34(1):204–211 DOI 10.1016/j.neuroimage.2006.08.022.

KML–Cartographic Boundary Files—Geography—U.S. Census Bureau. Available at http://www.
census.gov/geo/maps-data/data/tiger-kml.html (accessed 17 April 2014).

Korattikara A, Chen Y, Welling M. 2014. Austerity in MCMC Land: cutting the
Metropolis–Hastings Budget. In: Proceedings of the 31st international conference on machine
learning. Available at http://machinelearning.wustl.edu/mlpapers/paper files/icml2014c1
korattikara14.pdf.

Krause AE, Frank KA, Mason DM. 2003. Compartments revealed in food-web structure. Nature
426:282–285 DOI 10.1038/nature02115.

Lee MH, Hacker CD, Snyder AZ, Corbetta M, Zhang D, Leuthardt EC, Shimony JS. 2012. Clus-
tering of resting state networks. PLoS ONE 7(7):e40370 DOI 10.1371/journal.pone.0040370.

Legendre P, Fortin MJ. 1989. Spatial pattern and ecological analysis. Vegetatio 80:107–138
DOI 10.1007/BF00048036.

Baldassano et al. (2015), PeerJ, DOI 10.7717/peerj.784 21/24

https://peerj.com
http://dx.doi.org/10.3389/fninf.2011.00018
http://dx.doi.org/10.1093/cercor/bhu239
http://dx.doi.org/10.1038/35011540
http://dx.doi.org/10.1016/j.neuroimage.2006.04.233
http://dx.doi.org/10.1016/j.neuroimage.2014.11.008
http://dx.doi.org/10.1016/j.neuroimage.2008.08.044
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1073/pnas.0403743101
http://dx.doi.org/10.1016/j.neuroimage.2009.10.016
http://dx.doi.org/10.1016/j.neuroimage.2006.08.022
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://www.census.gov/geo/maps-data/data/tiger-kml.html
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2014c1_korattikara14.pdf
http://dx.doi.org/10.1038/nature02115
http://dx.doi.org/10.1371/journal.pone.0040370
http://dx.doi.org/10.1007/BF00048036
http://dx.doi.org/10.7717/peerj.784


Liu H, Qin W, Li W, Fan L, Wang J, Jiang T, Yu C. 2013. Connectivity-based parcellation
of the human frontal pole with diffusion tensor imaging. The Journal of Neuroscience
33(16):6782–6790 DOI 10.1523/JNEUROSCI.4882-12.2013.

Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P,
Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S,
Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC,
Kennedy H. 2014. A weighted and directed interareal connectivity matrix for macaque cerebral
cortex. Cerebral Cortex 24(1):17–36 DOI 10.1093/cercor/bhs270.

Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C,
Mitchell AS, Baxter MG, Behrens TEJ, Johansen-Berg H, Tomassini V, Miller KL,
Rushworth MFS. 2011. Diffusion-weighted imaging tractography-based parcellation of the
human parietal cortex and comparison with human and macaque resting-state functional
connectivity. The Journal of Neuroscience 31(11):4087–4100
DOI 10.1523/JNEUROSCI.5102-10.2011.
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