
Learning to perform role-filler binding
with schematic knowledge
Catherine Chen1, Qihong Lu2, Andre Beukers2,
Christopher Baldassano3 and Kenneth A. Norman2

1 Department of Computer Science, Princeton University, Princeton, NJ, USA
2 Department of Psychology, Princeton University, Princeton, NJ, USA
3 Department of Psychology, Columbia University, New York, NY, USA

ABSTRACT
Through specific experiences, humans learn the relationships that underlie the
structure of events in the world. Schema theory suggests that we organize this
information in mental frameworks called “schemata,” which represent our
knowledge of the structure of the world. Generalizing knowledge of structural
relationships to new situations requires role-filler binding, the ability to associate
specific “fillers” with abstract “roles.” For instance, when we hear the sentence Alice
ordered a tea from Bob, the role-filler bindings customer:Alice, drink:tea and barista:
Bob allow us to understand and make inferences about the sentence. We can perform
these bindings for arbitrary fillers—we understand this sentence even if we have
never heard the names Alice, tea, or Bob before. In this work, we define a model as
capable of performing role-filler binding if it can recall arbitrary fillers corresponding
to a specified role, even when these pairings violate correlations seen during training.
Previous work found that models can learn this ability when explicitly told what the
roles and fillers are, or when given fillers seen during training. We show that
networks with external memory learn to bind roles to arbitrary fillers, without
explicitly labeled role-filler pairs. We further show that they can perform these
bindings on role-filler pairs that violate correlations seen during training, while
retaining knowledge of training correlations. We apply analyses inspired by neural
decoding to interpret what the networks have learned.

Subjects Psychiatry and Psychology, Computational Science, Data Science
Keywords Schema, Schemata, Neural networks, Frames, Roles, Fillers, Role-filler binding

INTRODUCTION
As humans, we have a powerful ability to learn the relationships underlying the structure
of events, and to use them to organize and guide cognition. Knowing how events are
structured in the world allows humans to understand and interact with novel situations.
Schema theory suggests that mental frameworks called “schemata” organize our
knowledge of the world. Humans learn schemata through experiences and use them as
building blocks for understanding the world. For example, we learn the schema for
“visiting coffee shops” based on individual experiences at specific coffee shops. Although
each coffee shop visit differs slightly from the others, the experiences share some
underlying structure, which we are able to learn without being explicitly instructed about
the underlying structural relationships. Previous work studying these phenomena has

How to cite this article Chen C, Lu Q, Beukers A, Baldassano C, Norman KA. 2021. Learning to perform role-filler binding with schematic
knowledge. PeerJ 9:e11046 DOI 10.7717/peerj.11046

Submitted 5 November 2019
Accepted 10 February 2021
Published 31 March 2021

Corresponding author
Catherine Chen,
cc27@alumni.princeton.edu

Academic editor
Leonardo Gollo

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj.11046

Copyright
2021 Chen et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.11046
mailto:cc27@�alumni.princeton.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11046
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

referred to these structures as “scripts” (e.g., Schank & Abelson, 1977; Bower, Black &
Turner, 1979; Miikkulainen & Dyer, 1991) and “frames” (e.g., Minsky, 1974; Brachman &
Schmolze, 1985), and has shown that they affect people’s memory of events (Frederic
Charles Bartlett, 1932; Bower, Black & Turner, 1979).

These structures can be viewed as frames consisting of abstract “roles” which are
occupied by specific “fillers” (Minsky, 1974; Brachman & Schmolze, 1985). For instance, a
schema for coffee shops might include the roles barista, drink, and customer. Knowing the
coffee shop schema allows us to understand and make inferences based on the sentence
Alice ordered a tea from Bob, by inferring the role-filler relations barista:Bob, drink:tea,
customer:Alice. We can do this even if we have no idea what the words Alice, tea, and Bob
mean. This kind of inferential process critically relies on an operation that binds a specific
filler (e.g., Alice) to a known structural “role” (e.g., customer). This process is commonly
referred to as “role-filler binding”. Role-filler binding is essential for understanding and
organizing structural relationships within the world, allowing us to learn flexible,
composable building blocks with which we can understand new situations.

Role-filler binding involves the ability to systematically apply propositions to new fillers.
It allows us to generalize schematic knowledge to novel instances, by applying the
relationships in a schema to arbitrary fillers. For instance, if we understand the phrase
Alice ordered a tea from Bob, we should be able to understand the phrase A ordered
a C from B for any fillers A, B, and C. Previous work suggests two important features that
can allow systems to perform complex compositional reasoning: dynamic binding
(the ability to bind the same filler to different roles), and independent binding (using
representations in which bindings are independent of bound arguments) (Holyoak &
Hummel, 2000).

In this work we focus on learning to extract role-filler bindings from sentence structure.
We create a task in which role-filler bindings are identified based on the structure of input
sentences, and test whether networks learn to recall role-filler pairs based on an input
sentence. We test whether networks can perform this task for arbitrary role-filler pairs,
including those that violate role-filler correlations seen during training, while still
remembering those correlations. We identify a training regime and model that satisfy these
criteria.

We characterize architecture- and task- boundaries of this ability by identifying models
that are not sufficient for role-filler binding. We also identify test inputs with structures
that heavily diverge from those seen during training, that our model and training
combinations do not solve.

Specifically, we show that connectionist architectures with external memory (the Fast
Weights and Differentiable Neural Computer architectures) are able to perform role-
filler binding without explicitly labeled roles and fillers, and that they can generalize to
arbitrary fillers if they see a sufficiently diverse set of training examples. We find that if
we impose statistical regularities between roles and their corresponding filler distributions,
the Fast Weights network displays knowledge of these correlations, while still generalizing
to role-filler pairs that violate these regularities. Lastly, we provide additional analyses
inspired by neural decoding that give insights into how the models solve this task.

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 2/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

RELATED WORK
Previous work pointed to the importance of being able to represent role-filler bindings
independently and dynamically, such that roles can be bound to different fillers in different
scenarios (e.g., Hummel & Biederman, 1992; Doumas & Hummel, 2005). Traditional
connectionist models that achieve role-filler binding through conjunctive coding are
unable to dynamically represent these symbolic relations, because of an inability to
separate the representations of role-filler bindings from the representations of the fillers
themselves (e.g., Fodor & Pylyshyn, 1988; Doumas & Hummel, 2005).

Prior work has shown that neural networks can learn role-filler binding if they are
given inputs that explicitly provide the role corresponding to each filler, or if they are given
train and test inputs that share the same pool of fillers. For instance, some models use
specific input units to encode roles such as the action and agent of the example (Kriete
et al., 2013; Elman & McRae, 2019), and others use holographic reduced representations
(Plate, 1995) to explicitly encode the action, agent, and patient of the input examples
(Franklin et al., 2019). Another line of work identified models that can perform role-filler
binding when tested on examples containing the same pool of fillers during train and test
(St. John & McClelland, 1990; Miikkulainen & Dyer, 1991; Hinaut & Dominey, 2013).
In some cases, these models can generalize to unseen grammatical constructions that
are compositions of trained constructions, if the examples contain the same set of fillers
during train and test (Hinaut & Dominey, 2013). Others have tested relational role-filler
binding in neural networks, testing models’ ability to perform role-filler binding on
examples containing previously unseen fillers, role-filler bindings that violate statistical
correlations seen during training, and input segments that are presented in a shuffled order
(Puebla, Martin & Doumas, 2019). This work showed that a Story Gestalt (St. John &
McClelland, 1990) and a Seq2Seq with Attention (Bahdanau, Cho & Bengio, 2015) model
fail to perform role-filler binding when given novel fillers or bindings that violate
correlations seen during training.

Other related work developed a model that learns role-filler bindings based on the
features of objects, in a manner related to behavioral observations of how children learn
relations (Doumas, Hummel & Sandhofer, 2008). The model begins with representations
of objects as collections of features (for instance, apple could be represented by the
collection of features (red, size-2, fruit)). It uses asynchronous firing sequences and
comparator functions to learn representations of predicates (for instance, forming an
explicit representation of the idea red based on seeing apple and firetruck), as well
as relations between objects (for instance, learning that the respective features size-2
and size-5 for apple and firetruck imply the relation bigger(firetruck, apple)).

Our work builds upon these findings by identifying models that learn role-filler
bindings, in a way that generalizes to novel fillers, and that also generalizes to fillers that
violate correlations seen during training. In our setting, the networks must learn to
perform role-filler binding based on the structure of the sentence. Rather than representing
inputs as the conjunction of a filler’s features or using input representations that explicitly

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 3/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

provide role-filler conjunctions, we focus on a setting in which input words are represented
by randomly generated vectors.

Our decoding analyses are inspired by multivariate pattern analyses used to decode
neural data (Norman et al., 2006). Rather than neuroimaging data, we apply these methods
to neural network activity. Previous researchers have used various mapping methods to
gain insight into neural network activity based on the activation of network layers.
For instance, previous work has used stimulus-decoding analyses and activation similarity
to probe for features represented by networks and to gain insight into the processing stages
corresponding to layers of the networks (e.g., Ettinger, Elgohary & Resnik, 2016; Qian,
Qiu & Huang, 2016; Hupkes, Veldhoen & Zuidema, 2018; Guest & Love, 2019; Lakretz
et al., 2019; Tenney, Das & Pavlick, 2019).

METHODS
Given a sentence such as Alice ordered a tea from Bob, humans know to extract the
associations barista:Bob, drink:tea, customer:Alice. From this we can infer the relation
served(Bob, Alice). This operation is dependent on the structure of the sentence—given
the sentence Bob ordered a tea from Alice, we would instead extract the associations
barista:Alice, drink:tea, customer:Bob and therefore infer the relation served(Alice, Bob).
Furthermore, we are able to generalize this to arbitrary fillers—given the sentence Alice
ordered a tea from Sam, we can extract the associations barista:Sam, drink:tea, customer:
Alice even if we have never encountered Sam, or if Sam is usually the customer rather
than the barista. Though we can extract arbitrary role-filler bindings, we also retain
knowledge of the likely fillers for each role. If Alice is usually the customer, but an
input sentence explicitly states that Sam is the customer, we know to extract customer:Sam
in this situation. However, given an ambiguous input sentence such as BLANK ordered
a tea from Bob, we would tend to guess customer:Alice. In the remainder of this section,
we describe experiments designed to test these behaviors in neural network models.

We represented a schema as an underlying graph that defines story states and transition
probabilities between those states, and we produced stochastically generated stories
based on the schema. Each state includes fixed frame-text and variable roles, and the roles
are substituted with fillers drawn from a specified pool in each instance of the story.
For example, consider the state order_food:

[subject] ordered a plate of [dessert]

In a specific instance of the state, the roles subject and dessert would be occupied by
randomly chosen fillers, such as Alice and chocolate.

In Fig. 1 and Table 1, we show the specific schema used in our experiments.

Main task
Our main task tests each model’s ability to extract role-filler pairs based on the structure of
an input sentence. We presented networks with stories generated from the specified

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 4/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

schema, and then queried the networks for the filler corresponding to a specified role.
For instance, the network might receive the input

begin alice sit alice bob poet_performs chris subject_performs alice bob say_goodbye alice
bob end alice qpoet

In this case the correct output is chris, because chris is the filler corresponding to the role
poet in the schema we define in Fig. 1 and Table 1.

We train each model on a certain pool of fillers, and construct test sets in which inputs
contain fillers not seen during training. The position of the filler corresponding to a given
role is not necessarily the same in each story because transitions between states are
probabilistic. To successfully complete these tasks, the models must learn to extract the

Figure 1 Story graph for role-filler binding experiments. Each edge indicates a possible transition.
For states with multiple outgoing transitions, each outgoing transition is equally likely.

Full-size DOI: 10.7717/peerj.11046/fig-1

Table 1 Story states for role-filler binding experiments. We provide the text of each state of the story,
where the bracketed roles are substituted by specific fillers in each story.

BEGIN begin [Subject]

ORDER DRINK order_drink [Subject] [Drink]

EXPENSIVE too_expensive [Subject]

SIT sit_down [Subject] [Friend]

INTRO emcee_intro [Emcee] [Poet]

POETRY poet_performs [Poet]

DECLINE subject_declines [Subject]

PERFORM subject_performs [Subject] [Friend]

GOODBYE say_goodbye [Subject] [Friend]

ORDER DESSERT order_dessert [Subject] [Dessert]

END end [Subject]

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 5/27

http://dx.doi.org/10.7717/peerj.11046/fig-1
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

filler corresponding to each role, store these role-filler pairs during the input sequence, and
select the correct filler to output after receiving the query.

We note that our goal is to identify models that can perform role-filler binding in
this setting, rather than to prove that some specific network architecture performs best on
a downstream language processing task. Therefore our evaluation metrics are meant to
show that networks are capable of learning the task, and we do not compare
hyperparameters or sample efficiency in this work.

Input representations
We represented each word of the input sentence as a vector. This vector is a fixed mapping
from a one-hot V-dimensional vector that encodes word identity, to a randomly generated
50-dimensional word embedding. Each 50-dimensional filler vector that is not seen
during training represents a novel filler, since it constitutes a unit in the V-dimensional
word-identity space that is not used during training.

In our first three experiments, each index of the vector is independently drawn from a
N(0,1) distribution, and then the vectors are normalized to have unit Euclidean norm.
We tested different distributions in our tests of correlation violation and retention, which
we describe in the “Correlation Violation and Retention Tests” section of our Methods.
We used randomly generated vectors rather than pretrained word vectors such as
word2vec (Mikolov et al., 2013) to show that networks can learn role-filler binding even
without strong prior information about semantic similarities between input words.

We sequentially fed the words of the story into the networks, followed by a query word
indicating which filler to retrieve. The network then outputted a 50-dimensional vector,
and we computed the cosine similarity between this prediction and each vector in the
experiment’s corpus, choosing the most similar word as the network’s prediction.

We designated one word in the vocabulary as a padding word and inserted it into a
randomly chosen location in the input story, to force the network to learn representations
of the schema that are robust to small position shifts.

To ensure that all inputs have the same number of words, we appended the padding
word between the end of a story and the appearance of the query.

Training regimes
We ran experiments with two types of training regimes: Limited Filler Training and
Unlimited Filler Training. In “Limited Filler Training” experiments, we substituted roles
with fillers drawn from a small, finite pool of fillers (with six possible fillers for each
role). Within this category of experiments, we tested the network using examples with
previously seen and previously unseen fillers. When testing with previously seen fillers,
the pool of fillers is the same during training and testing. When testing with previously
unseen fillers, we drew from disjoint pools of fillers during training and testing,
meaning that the network needed to perform role-filler binding with fillers it had never
seen before. In all experiments, we ensured that the train and test set contained distinct
input sequences (i.e., they could not contain inputs with both the same sequence of states
and the same role-filler pairs).

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 6/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

In “Unlimited Filler Training” experiments, we randomly generated a new vector for
each filler in each input story during both training and testing, rather than using a
finite pool of fillers. In this case, during both training and testing, the network was
continuously asked to perform role-filler binding using previously unseen fillers.

Prediction method
To determine the network’s prediction, we used networks in which the final layer has
50 nodes. We computed the cosine similarity between the output vector and the vector
embedding of each word in the experiment’s corpus, and selected the word with the
highest cosine similarity to the network’s output vector.

The set of possible words is the corpus created by combining the words seen in all
stories in a particular training batch. For fixed embeddings, the corpus therefore
consists of all of the words that occur in the stories generated for a particular experiment.
For experiments in which we generated a new random embedding for each story, the
corpus also includes all the filler vectors newly generated for stories in that particular
batch.

Chance rates
In each experiment, the network’s chance rate depends on the number of words in the
corpus.

In Experiments 1 (Limited Filler Training, tested with previously seen fillers) and 2
(Limited Filler Training, tested with previously unseen fillers), the network must choose
from a corpus of 50 words, corresponding to a chance rate of 2%.

In Experiment 3 (Unlimited Filler Training, tested with previously unseen fillers) the
network must choose from all the words in the initial story corpus (30) and the newly
generated representations for each story in the batch. Since we used a validation batch
size of 16, and six new filler vectors are generated for each input, this results in a total of
30 + 16 × 6 = 126 words, for a chance rate of 0.8%.

Epoch sizes
In Experiment 1 we used 63,175 train and 15,794 test stories. We created these stories by
first generating 5,000 stories for each of the 24 possible state sequences, with six choices for
each type of role, and then removing repeated story sequences. 80% of stories were
used for training and the remaining 20% for testing. In Experiment 2 we trained networks
using the same set of train stories, and tested networks with a separate set of 3,658 test
stories. We created this separate set of test stories by first generating 250 stories for each
of the 24 possible state sequences, using a pool of fillers that did not overlap with fillers
used in the train set, and then removing repeated story sequences.

In Experiment 3 we used 112 train and 112 test story frames. The number of story
frames corresponds to the number of possible queries (queries that can be answered using
the information in the story; for instance, some stories may not include an Emcee and
therefore the input must not use QEmcee as a task) for each possible traversal through the
story graph. This gives us 112 story frames, which are filled with newly generated fillers in
each example.

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 7/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

Models
We tested four recurrent neural network (RNN) architectures. RNNs are a class of neural
network architectures with weights that form directed cycles. The cycles form feedback
loops that allow networks to maintain an internal state. The structure of RNNs allows us to
provide the input story one word at a time, followed by the query. The feedback loops
allow for a form of short-term memory (where we define “short-term” as the timescale of a
single story), with which they could maintain relevant parts of the story. We tested
multiple RNN network architectures, to investigate which memory components (if any)
are sufficient for role-filler binding. For each of our architectures we used 50 hidden units
and a learning rate of 1e−4.

In addition to a standard RNN, we tested Long Short-Term Memory (LSTM), Fast
Weights, and Differentiable Neural Computer (DNC) architectures. We used layer
normalization for the RNN, LSTM and Fast Weights architectures. Layer normalization
re-centers and re-scales the networks’ layers and serves to stabilize the network dynamics
(Ba, Kiros & Hinton, 2016).

The LSTM consists of an RNN with gates to control what the internal state stores,
forgets, and displays to the rest of the network (Hochreiter & Schmidhuber, 1997). The Fast
Weights architecture consists of an RNN with a matrix of quickly changing “fast weights”
(Ba et al., 2016). This extra matrix of weights allows for auto-associative memory, and
the combination of the quickly changing fast weights matrix and more slowly changing
standard weights is inspired by different speeds of change in biological neuronal
connections (Martin, Grimwood & Morris, 2000). The DNC is an RNN with an LSTM
“controller” that learns to read from and write to an external buffer (Graves et al., 2016).
The network can use an external buffer as a “mental scratchpad” to store and retrieve
memories. The controller must learn how to use this external buffer. The combination
of a controller and external memory buffer is inspired by interactions between the
hippocampus and cortex in the human brain. This interaction plays a key role in human
memory (O’Reilly et al., 2014). Our DNC model has a memory size of 128, a word size
of 20, 1 write head, and 1 read head. These networks have shown success on a range of
tasks including speech recognition (Graves, Mohamed &Hinton, 2013), language modeling
(Mikolov & Zweig, 2012) and associative recall (Graves, Wayne & Danihelka, 2014).

Decoding analysis
We performed decoding analyses to analyze the mechanisms underlying task performance.

For each model, we recorded network activity after the model received each word in an
input sequence. For each example and each model, this resulted in one 50-dimensional
vector of hidden unit activity per input word. The Fast Weights and DNC networks
consist of two memory components (the hidden state and an external memory
component), and we recorded the values of the hidden states and the external memory
components. From the Fast Weights network, we obtained a 50-dimensional vector of
hidden unit activity, and a 50-by-50-dimensional matrix (which we flatten into a
2,500-dimensional vector) of fast weights activity, after each word in the input sentence.
From the DNC, we obtained a 50-dimensional vector of hidden unit activity, and a

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 8/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

128-by-20-dimensional matrix (corresponding to 128 memory slots each of size 20, which
we flatten into a 2,560-dimensional vector) of memory buffer activity, after each word in
the input sentence.

We constructed 100 input sequences with the same story frame and completed each
sequence with distinct fillers (i.e., the frame text for each sequence is identical, but the
fillers were different). For each role, we trained a ridge regression mapping (with
regularization strength 1.0) between each memory state vector and correct output filler,
using 80 of the sequences for training. For each role, this resulted in six regression
mappings: four mappings from each model’s 50-dimensional hidden state to the
50-dimensional correct output filler, one mapping from the 2,500-dimensional vector of
fast weights to the 50-dimensional correct output filler, and one mapping from the
2,560-dimensional DNC memory buffer to the 50-dimensional correct output filler.
Then on each of the remaining 20 sequences, we used this mapping to predict the output
filler. We ranked each corpus vector in terms of its cosine similarity with the predicted
output, and computed the ranking score (1� rank of actual output

corpus size) for each test sequence.
These ranking scores have a maximum score of 1, with a chance rate of 0.5.

Correlation violation and retention tests
Previous work suggested that connectionist networks learn statistical correlations rather
than relational structure; for example, a recent study showed that network performance
falls below chance when the network receives test examples with different statistical
structure from training examples (Puebla, Martin & Doumas, 2019). We constructed two
experiments to assess how well the models generalize to role-filler bindings that violate
correlations seen during training.

The first task probed whether networks can perform role-filler binding on test examples
that break correlations observed during training. Networks were trained on stories
constructed from the frame begin subject sit subject friend announce emcee perform poet
consume dessert drink goodbye. In this experiment, the fillers for subject, friend, emcee, and
poet were drawn from a pool of fillers, while all other words stayed constant in each
example. There were 1,000 possible fillers, and during training each role could be filled by a
fixed subset of 750 of these fillers (i.e., each filler is excluded from one of these four
roles during training). During test, each role is filled only by fillers that were excluded from
that role during training, to test whether networks learn a strategy for role-filler binding
that is robust to violations of correlations seen during training.

Our second test is motivated by humans’ ability to generalize role-filler binding to
arbitrary fillers that violate correlations seen in previous experiences, while also retaining
knowledge of the correlations seen during training. Continuing our example from the
beginning of this section, if during training we usually see Alice as the customer and Bob as
the barista, we can remember this statistic while still extracting the associations barista:
Alice, customer:Bob from the sentence Bob ordered a tea from Alice.

In this experiment, we consider three distributions, each of which starts from a
50-dimensional vector drawn from a N(0,1) distribution. In the first distribution, which
we call distribution X, with 90% probability we add 0.5 to each even index, and with 10%

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 9/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

probability we subtract 0.5 from each even index. In the second distribution, which we
call distribution Y, with 10% probability we add 0.5 to each even index and with 90%
probability we subtract 0.5 from each even index. In the third distribution, which we call
distribution Z, we perform no extra additions or subtractions to any of the indices. Each
vector is normalized to have Euclidean norm 1.

During training and testing, each frame word (i.e., each non-filler word) is drawn from
distribution Z. During training, three of the roles (Dessert, Emcee, Poet) are drawn from
distribution X while the other three roles (Subject, Friend, Drink) are drawn from
distribution Y.

To test networks’ ability to perform role-filler binding on arbitrary fillers, we test
networks in four settings: each filler is drawn from distribution X, each filler is drawn from
distribution Y, each filler is drawn from distribution X or Y with equal probability, or each
filler is drawn from distribution Z.

To test networks’ ability to retain statistical correlations, we test networks in two
settings: In the first setting, we construct ambiguous input sentences that contain
insufficient information for determining the correct response, following St. John &
McClelland (1990). In these ambiguous experiments, the queried filler is substituted with a
vector consisting of all zeros. This vector is not present in the corpus and has no bias
towards greater even or odd indices. We compare the even and odd indices of the
50-dimensional vector predicted by the network, to test whether the networks’ responses
to ambiguous examples mirror regularities seen during training.

In the second setting, we test the networks on fillers that are drawn from distribution
Z, and simultaneously measure accuracy of recall and statistical learning (i.e., whether
the network shows biases mirroring the statistical regularities seen during training).
Accuracy of recall was operationalized as whether the networks produce a vector vpred
that is closer (in terms of cosine similarity) to the correct answer vcorrect than to other
vocabulary items. To measure statistical bias, we compared the even and odd indices of
vpred − vcorrect to test whether the predictions are biased towards statistics seen during
training even when they provide the correct answer.

We also performed an experiment in which the structure of the input story was
drastically different from the structure seen during training. Networks were trained on the
story begin subject sit subject friend announce emcee perform poet consume dessert drink
goodbye, and tested on a shuffled version of the story: consume dessert drink goodbye begin
subject sit subject friend announce emcee perform poet.

Code
We used TensorFlow to implement our experiments, adapting existing architecture
implementations from Mohandas (2018) and DeepMind (2018). We used Coffee Shop
World to generate the stories used in this experiment. This generator is available on
GitHub (https://github.com/PrincetonCompMemLab/narrative).

The code used to generate data, run experiments, and generate the plots in this article is
available on GitHub at https://github.com/cchen23/generalized_schema_learning/.
We also include pre-generated data and checkpoints of trained networks.

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 10/27

https://github.com/PrincetonCompMemLab/narrative
https://github.com/cchen23/generalized_schema_learning/
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

RESULTS
Experiment 1: limited filler training, tested with previously seen fillers
In the Limited Filler Training experiment, train and test inputs contain fillers drawn from
the same pool of fillers. During test, the networks are provided with new stories—they
had seen each word of each input sequence during training, but never with this particular
permutation of words. This experiment tests whether networks possess the ability to learn
associations between roles and fillers, given stories generated from an underlying schema.

As we show in Fig. 2, each architecture performs the experiment task at a significantly
above chance rate. While the basic RNN learns more slowly than other networks, its
architecture is sufficient to learn and apply a schema to situations in which it has seen the
fillers before, in a slightly different context.

Experiment 2: limited filler training, tested with previously unseen
fillers
We conducted a second Limited Filler Training experiment, in which the networks
were tested on stories containing fillers they had not encountered during training.
This experiment tested whether networks can learn to not only perform role-filler binding,
but also to generalize their schematic knowledge to fillers they have never encountered.

All networks fail to do so. While all networks perform far above chance on previously
seen stories presented during training, the test accuracy of each network remains at 0%
(the chance accuracy rate from guessing random vectors is 2%). The test accuracy lies
below the chance rate because the networks overfit to the specific fillers seen during
training. When we examined the specific words predicted by the networks, we found that
the networks always predict fillers from the train set. In this experiment the train and test

Figure 2 Test scores for Experiment 1. Each architecture is able to learn to perform role-filler
binding on a story it has not previously seen, if it has encountered each of the story’s words during
training. The chance accuracy rate is 2%, bar heights denote mean training accuracies, and error bars
denote maximum and minimum accuracies over three trials. Full learning curves are available in the
Supplemental Material. Full-size DOI: 10.7717/peerj.11046/fig-2

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 11/27

http://dx.doi.org/10.7717/peerj.11046#supplemental-information
http://dx.doi.org/10.7717/peerj.11046/fig-2
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

fillers are drawn from disjoint pools. Therefore the networks always predict the wrong
response during test.

Experiment 3: unlimited filler training, tested with previously unseen
fillers
We conducted an Unlimited Filler Training experiment, in which we tested the networks
with previously unseen fillers. We constructed train and test sets in which fillers were
represented by new randomly generated fillers in each example; thus, the networks
need to generalize to previously unseen fillers to succeed in both the train and test sets.

As we show in Fig. 3A, all architectures reach above-chance test accuracy, showing that
all architectures are sufficient for some amount of generalization to previously unseen
fillers, when given a train set with an unlimited pool of fillers.

The different degrees of success shown in Fig. 3A reflect the uneven difficulty of queries.
In Fig. 3B, we show network performance separated by query. The RNN does not
consistently succeed in answering any role query, and the LSTM succeeds only in
answering queries for the Subject role. The Fast Weights and DNC networks learn to
perform role-filler binding for all queries. As indicated by the schema structure in Fig. 1,
the filler corresponding to the Subject role is easiest to identify, as it always occurs at
the same location in the story. In contrast, all other roles have variable locations within the
story, depending on the stochastically chosen sequence of story states. We experimented

Figure 3 Overall and query-split accuracies for Experiment 3. (A) Overall accuracies. Three archi-
tectures reach above-chance test accuracy in all three trials, showing that certain networks perform some
amount of generalization when forced to do so during training. (B) Query-split accuracies. The LSTM
and RNN learn to generalize only on the QSubject task. The DNC and Fast Weights networks learn to
solve all six tasks. The figure legend (C) indicates the color that corresponds to each query. The chance
rate is 0.8%, bar heights denote mean accuracies, and error bars denote maximum and minimum
accuracies over three trials. Full learning curves are available in the Supplemental Material.

Full-size DOI: 10.7717/peerj.11046/fig-3

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 12/27

http://dx.doi.org/10.7717/peerj.11046#supplemental-information
http://dx.doi.org/10.7717/peerj.11046/fig-3
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

with larger LSTM networks that are either wider (with 2,500 hidden units) or deeper
(with three layers). These networks reach test accuracies of between 0.25 and 0.30.
This shows that the gap in performance between the LSTM model and the (better-
performing) Fast Weights and DNC models can not be closed simply by performing these
expansions to the LSTM.

The results of this experiment show that if networks receive an unlimited pool of train
fillers, then some networks learn to perform role-filler binding, while simpler networks
either fail to learn role-filler binding, or learn to perform role-filler binding for only the
simplest queries.1

Decoding analysis
We performed decoding analyses on the four networks trained in Experiment 3, to gain
insight into how and if the memory components aid in learning role-filler binding. We find
that the ability to decode correct fillers, at the time that the network is presented with
the query, corresponds to networks’ success in role-filler binding. We show the ranking
scores (averaged over three trials) in Fig. 4. We include the ranking scores, separated by
trial, in the Supplemental Materials.

From the RNN’s and LSTM’s hidden states we can decode only the Subject at an
above-chance rate at query-time, mirroring these network’s ability to only solve QSubject
tasks (Figs. 4A and 4B).

With the Fast Weights architecture, we performed decoding using either the controller’s
hidden state or the set of associative fast weights. We show these decoding scores in
Fig. 4C. The decoding scores of the controller’s hidden state mirror those of the LSTM
network’s hidden state: The scores peak when the network receives the filler in its
input, then decline as the network receives more words. (An exception is decoding scores
for the Subject filler. This could be due to the fixed location of the Subject filler, and the
non-fixed locations of the other fillers.) We see this trend regardless of whether the
network successfully retrieves a certain type of filler. In contrast, the decoding scores of the
Fast Weights matrix increase when the network receives the corresponding filler in its
input and remain above chance at query-time.

We see a similar pattern between standard and external memory components with the
DNC (Fig. 4D), where the decoding scores of the DNC’s controller’s hidden state
mirror those of the LSTM, and the decoding scores of the DNC’s external memory matrix
mirror those of the Fast Weights matrix. These results suggest that networks learn to solve
tasks by storing the relevant information using their external memory components
(either the external memory buffer or the fast weights matrix), while the controller acts
as a conduit to receive these words and move them to the external memory component.

Furthermore, the read and write weights of the DNC indicate that the network learns to
store and retrieve role-filler bindings using a location-based strategy. The read weights
influence where in the external memory buffer the network should read from, and the
write weights influence where in the external memory buffer the network should write to.
In Fig. 5 we show the maximum write weights at input timesteps corresponding to the

1 The focus of our experiments here is on
qualitatively comparing different net-
work architectures; while differences in
properties of the individual simulations
(e.g., vocabulary size) might affect the
exact level of performance that is
reached, the qualitative patterns reported
here can not be explained in terms of
simple factors (e.g., larger vocabulary
leading to worse performance).
For example, our results show that net-
works fail to correctly identify the filler in
Experiment 2 (an experiment with a
smaller vocabulary), while succeeding on
the task when given unlimited train fillers
in Experiment 3 (an experiment with a
larger vocabulary).

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 13/27

http://dx.doi.org/10.7717/peerj.11046#supplemental-information
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

appearance of fillers corresponding to each role, and the maximum read weights at the
timestep at which the network makes its prediction. The rows showing network write
weights show that the network associates different slots in memory with each role.
Furthermore, these results show that the distribution of network read weights when a
query word occurs in the input sequence, corresponds to the distribution of network write
weights when the corresponding filler occurs in the input sequence. This suggests that the
network saves and retrieves role-filler pairs using a location-based strategy.

Figure 4 Decoding scores for Experiment 3. For the RNN (A) and LSTM (B), which are unable to solve
any of the tasks other than QSubject, decoding scores of each of the fillers other than the Subject are
around the chance rate at the end of the input sequence. The Fast Weights and DNC architectures show a
similar trend in the hidden internal state of the controllers: decoding scores of the hidden states peak
when the networks receive the respective filler in the input sequence, then decline as the network receives
more words (C and D). In comparison, the decoding scores of the external memory components (the Fast
Weights matrix and the DNC’s external memory buffer) increase when the network receives the cor-
responding filler in its input and the scores remain high throughout the input sequence (C and D).
The figure legend (E) indicates the line representing the decoding score for each filler. The chance rate is
50%. These decoding scores are averaged over three trials. Decoding scores separated by trial are available
in the Supplemental Materials. Full-size DOI: 10.7717/peerj.11046/fig-4

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 14/27

http://dx.doi.org/10.7717/peerj.11046#supplemental-information
http://dx.doi.org/10.7717/peerj.11046/fig-4
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

These findings suggest that networks that learn to perform role-filler binding also learn
to store relevant information in external memory components.

Correlation violation and retention tests
In our test of correlation violation, we trained networks using stories with strong role-filler
correlations. We constructed these correlations by excluding each filler from a specific role
during training. We then constructed a test set that deliberately breaks the correlations

Figure 5 Maximum read and write weights for DNC external memory buffer. Read and write weights indicate that DNC networks use a
location-based strategy. For all examples in the test set of Experiment 3, we determined the index of the external memory buffer with the highest read
or write weights at each input timestep. The network associates different external memory slots more strongly with each role. Correspondence
between write weights when the network receives the filler for role “R”, and read weights when the network is queried for role “R” indicate that
networks use a location-based strategy to save and retrieve role-filler pairs. (A) Histograms of maximum write weights, for input timesteps in which
the network receives the filler corresponding to the role denoted by y-axis labels. (B) Histograms of maximum read weights, for each input timestep
in which the network receives the query denoted by y-axis labels. (C) Pearson correlations between the distribution of maximum write indices when
the network receives fillers corresponding to each role (on the x-axis), and the distribution of maximum read indices when the network receives
queries asking for each role (on the y-axis). This figure corresponds to one of three trials. Analyses for two other trials are available in the
Supplemental Materials. Full-size DOI: 10.7717/peerj.11046/fig-5

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 15/27

http://dx.doi.org/10.7717/peerj.11046#supplemental-information
http://dx.doi.org/10.7717/peerj.11046/fig-5
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

seen during training. In the test set, we associated each role only with fillers that were
excluded from that role during training. When networks receive inputs with role-filler
bindings that violate correlations seen during training, they accurately extract the
correlation-violating role-filler bindings. All networks reach above chance accuracy on this
test set (the DNC and Fast Weights architectures reach 100% accuracy), as we show in
Fig. 6, showing that the networks can generalize to role-filler bindings that violate statistics
seen during training.

In our test of correlation retention we trained the Fast Weights and DNC models on
examples in which the even indices of filler vectors were drawn from either N(0.5,1) or
N(−0.5,1), while odd indices of filler vectors (and all indices of non-filler vectors) were
drawn from N(0,1). Fillers for three arbitrarily selected roles (Dessert, Emcee, Poet)
were more likely to contain higher even indices (distribution X), while fillers for the other
three roles (Subject, Friend, Drink) were more likely to contain lower even indices
(distribution Y).

We tested networks on examples in which the fillers are each drawn from distribution X,
each from distribution Y, each from distribution X or Y with equal probability, or each
from distribution Z. As we show in Figs. 7 and 8, the Fast Weights and DNC networks
both reach above-chance accuracy for each of these distributions. We note that, although
the networks see non-filler words drawn from distribution Z during training, all filler
words presented during training are drawn from distributions X or Y.

We then tested whether networks retain information about the distributions associated
with each role during training. We constructed test examples in which each filler is drawn

Figure 6 Test accuracy in correlation violation experiment. Some networks learn to perform role-filler
binding, even when test examples break role-filler correlation observed during training. The chance
accuracy rate is 0.02%, bar heights denote mean accuracies, and error bars denote maximum and
minimum accuracies over three trials. Full-size DOI: 10.7717/peerj.11046/fig-6

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 16/27

http://dx.doi.org/10.7717/peerj.11046/fig-6
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

from distribution X or Y with equal probability, and then the queried filler vector is
replaced with a vector of all zeros. Distributions X and Y differ in the relative values of the
even indices of the word vectors. In Figs. 9 and 10 we show that the Fast Weights
predictions mirror these biases. Figure 9 shows that the distributions of the even and odd
indices of vectors predicted in response to each query (the predictions were aggregated
over five trials) are biased towards the training distributions for each role. To measure the
extent of these biases, we computed the difference between the predicted even and odd
indices, using the t-statistic between the predicted even and odd indices in response to
each filler. We show the t-statistic for each of five trials in Fig. 10. The Fast Weights
network reliably demonstrates biases towards the training distributions. The DNC does
not display these biases in response to our probes.

In non-ambiguous examples, networks exhibit these biases as well. To correctly answer
a query, networks need to predict a vector that is closer to the queried filler than to
any other corpus word. Importantly, these predictions are robust to small differences from
the actual filler (so long as the predictions remain closer to the queried filler than to any

Figure 7 Test accuracy in correlation retention experiment: Fast Weights. The Fast Weights model
reaches high accuracies when extracting role-filler pairs from examples in which each filler is drawn from
distribution X (A), each from distribution Y (B), each from distribution Z (C), or each from distribution
X or Y with equal probability (D). Bar heights denote mean test accuracy, and error bars denote mini-
mum and maximum accuracy across five trials. For instances in which all five trials achieved the same
accuracy, no error bars are shown. Full-size DOI: 10.7717/peerj.11046/fig-7

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 17/27

http://dx.doi.org/10.7717/peerj.11046/fig-7
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

other word in the corpus)—this provides the network with a means of showing subtle
statistical biases even when the response is correct. We compared the difference between
the predicted and actual fillers, and in Fig. 11 we show that the Fast Weights network
retains statistical correlations seen in training while predicting the correct response to
arbitrary role-filler pairs.

In summary: In these tests of correlation retention, the Fast Weights networks
generalize to examples that violate correlations seen during training, and also display some
knowledge of correlation statistics seen during training.

No networks consistently succeed in performing role-filler binding with shuffled story
test sets.

DISCUSSION
In previous work, models successfully perform role-filler binding when they are given
explicitly labeled inputs (Kriete et al., 2013; Elman & McRae, 2019; Franklin et al., 2019),
or when they are given train and test examples with the same set of fillers (St. John &
McClelland, 1990; Miikkulainen & Dyer, 1991; Hinaut & Dominey, 2013). They fail when

Figure 8 Test accuracy in correlation retention experiment: DNC. The DNC model reaches high
accuracies when extracting role-filler pairs in inputs in which each filler is drawn from distribution X (A),
each from distribution Y (B), each from distribution Z (C), or each from distribution X or Y with equal
probability (D). Bar heights denote mean test accuracy, and error bars denote minimum and maximum
accuracy across five trials. For instances in which all five trials achieved the same accuracy, no error bars
are shown. Full-size DOI: 10.7717/peerj.11046/fig-8

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 18/27

http://dx.doi.org/10.7717/peerj.11046/fig-8
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

given test stories that include previously unseen fillers that violate correlations seen during
training (Puebla, Martin & Doumas, 2019). In our experiments, we find that some models
can perform role-filler binding on inputs that are not explicitly labeled with role-filler
pairs. Moreover, they can do so on novel fillers and on bindings that violate correlations

Figure 9 Histograms of predicted even and odd indices.We show histograms of even and odd indices
of predicted filler vectors, in response to examples in which (at test) the queried role is substituted with a
vector of all zeros, and all other fillers are drawn from distribution X (higher even indices on average) or
distribution Y (lower even indices on average) with equal probability. During training, filler vectors
corresponding to three roles (Dessert, Emcee, Poet, shown in orange) tend to have greater values in even
indices of the vector, while filler vectors corresponding to the other three roles (Subject, Friend, Drink,
shown in blue) tend to have lower values in even indices of the vector. The Fast Weights networks’
predictions display a bias towards the distributions seen during training (A), while the DNC networks do
not display this bias (B). Results are aggregated across five trials.

Full-size DOI: 10.7717/peerj.11046/fig-9

Figure 10 t-Statistics of predicted even and odd indices: ambiguous queries. We show t-statistics
comparing even and odd indices of predicted filler vectors in response to examples in which the queried
role is substituted with a vector of all zeros, and all other fillers are drawn from distribution X (higher
even indices on average) or Y (lower even indices on average) with equal probability. During training,
filler vectors corresponding to three roles (Dessert, Emcee, Poet, shown in orange) tend to have greater
values in even indices of the vector, while filler vectors corresponding to the other three roles (Subject,
Friend, Drink, shown in blue) tend to have lower values in even indices of the vector. These t-statistics
show that the Fast Weights networks’ predictions reflect role statistics seen during training (A). The DNC
networks do not display this bias (B). Full-size DOI: 10.7717/peerj.11046/fig-10

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 19/27

http://dx.doi.org/10.7717/peerj.11046/fig-9
http://dx.doi.org/10.7717/peerj.11046/fig-10
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

seen during training, while retaining knowledge of statistical correlations observed during
training.

In our experiments we found that networks trained on stories with a small pool of train
fillers (as in Puebla, Martin & Doumas (2019)) fail at generalizing to novel fillers, while the
networks that both have external memory and are trained on a larger pool of fillers
succeed. This suggests that networks must see a sufficiently diverse set of fillers during
training, in order to learn to separate the representations of roles and fillers. Furthermore,
the successful networks contain external memory (the set of fast weights or the DNC’s
external memory buffer). Our findings suggest that external memory could be an
important architectural component for networks to learn role-filler binding. Previous work
emphasized the importance of having independent bindings (i.e., where the binding
relations are represented separately from the bound entities), and of having dynamic
bindings (i.e., where the same filler can be bound to different roles)—according to these
definitions, encoding the role-filler binding by storing a modified representation of the
filler fails to preserve independence between representations of roles and fillers (Fodor &
Pylyshyn, 1988; Hummel et al., 2004).

Networks can come closer to clean combinatorial generalization by forming memory
representations that are separate from the learnable network weights. We hypothesize that
the Fast Weights and DNC models’ external memory components allow them to preserve
this independence, and therefore generalize farther from the statistics of the training
environment. The availability of an external memory buffer makes it possible to store
role-filler bindings by placing the filler in a certain location in memory. When a role is
queried, the model can extract a filler from the corresponding location in memory, without

Figure 11 t-Statistics of predicted even and odd indices: non-ambiguous queries.We show t-statistics
comparing the distance from even and odd indices of predicted filler vectors to the correct filler values, in
examples in which each filler is drawn from distribution Z (each index of the filler vector is drawn fromN
(0,1)). During training, filler vectors corresponding to three roles (Dessert, Emcee, Poet, shown in orange)
tend to have greater values in even indices of the vector, while filler vectors corresponding to the other
three roles (Subject, Friend, Drink, shown in blue) tend to have lower values in even indices of the vector.
These t-statistics show that Fast Weights networks can recall role statistics seen during training (A), and
also produce the correct answer in almost all test instances (see Figs. 7 and 8). The DNC networks do not
display this bias (B). Full-size DOI: 10.7717/peerj.11046/fig-11

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 20/27

http://dx.doi.org/10.7717/peerj.11046/fig-11
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

necessarily relying on characteristics of the filler vector itself. This means that it can
perform this task for any arbitrary filler vector.

Furthermore, despite the trade-off between sensitivity to training distributions and
generalization to arbitrary distributions, Fast Weights networks retain information about
statistical regularities seen during training. The networks display subtle biases towards
training distributions while remaining closest to the correct filler vector. This is possible
because output words are selected as the word in each batch’s corpus that is closest to the
network’s predictions.

Our experiments include bindings that violate correlations seen during training,
and fillers that are not seen during training. This means that, in order to successfully
perform our tasks at test time, networks must store role-filler pairs in a way that is not
specific to role-filler correlations seen during training. Furthermore, our experiments used
randomly generated vectors (rather than pretrained word vectors) to represent input
words, meaning that networks could not rely on pre-encoded linguistic knowledge.

Our decoding analyses suggest that the successful networks learn to store fillers in
their external memory. Specifically, we were able to decode fillers at query-time from
the Fast Weights and DNC models’ external memory components (but not from the
controller); this suggests that these networks perform role-filler binding by first storing
bindings in the external memory components, and then retrieving the correct binding
upon receiving the query. The read and write weight distributions of the DNC suggest
that the network learns to use certain locations in memory to store fillers corresponding to
each role. External memory provides a separate storage space, which gives the model a way
to encode a filler’s role by storing it in a certain location in external memory, without
needing to encode role-filler bindings in a modified representation of the filler.

While the Fast Weights model can perform role-filler binding on arbitrary fillers,
we also found that its responses are biased towards statistical regularities seen during
training. Because correct responding was operationalized using a “nearest neighbor”
metric that is robust (to some degree) to distortions in the response vector, Fast Weights
networks can manifest subtle biases towards statistical regularities from the training
phase without compromising (nearest-neighbor) accuracy. The DNC model performs
role-filler binding on arbitrary fillers without displaying biases towards statistical
regularities seen during training. This suggests that the DNC model learns a procedure for
role-filler binding that stores filler vectors without imposing a bias towards a specific
distribution. This could be due to the presence of read and write gates (the DNC model
contains gates which control external memory updates after each stimulus word, while
the Fast Weights models performs a memory update after each word) or distinct
memory slots (the DNC model contains explicit memory slot locations and addressing
mechanisms, while the Fast Weights model updates an external memory matrix using the
outer product of the network’s hidden state). Future theoretical and empirical work could
further investigate these differences.

We note that our results show that some models are sufficient for performing role-filler
binding tasks, but we do not conclude that all standard RNN and LSTMmodels are unable
to solve these tasks. In our experiments, larger LSTM models (with 2,500 hidden units

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 21/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

rather than 50, or with three layers rather than one) did not solve all tasks. However, future
work with even larger LSTM models might be able to identify LSTMs that can learn
role-filler binding without explicit external memory.

Networks fail when given stories presented in a radically different order, showing
that they rely on structural similarities between train and test sentences to identify and
store role-filler pairs. Previous work showed that sufficiently large neural networks can
learn arbitrary functions of the training data if they are trained on randomly assigned
labels. This work used a neural network to memorize a function mapping from a set of
images to randomly assigned labels (Zhang et al., 2017)—by contrast, in our shuffling
experiments, networks are trained on a fixed order of inputs before being tested on a
different (shuffled) order. We speculate that, if a sufficiently large network is trained on
sufficiently many examples with shuffled stages, it could learn a function that generalizes
to shuffled test steps. It could do this by learning to identify a stage based on the
frame-words of that stage only, while ignoring the sequence of the story’s stages. Future
work could explore training regimes that use shuffled stories during training, to see
whether this could make models robust to test stories with shuffled segments. Future work
could also test how the loss of certain architectural components affects the ability to
perform schema-learning, by lesioning certain components of an artificial network.
Our experiments indicate that the diversity of training examples influences whether
networks learn to perform role-filler binding. Future work could investigate how much a
pool of train fillers needs to be expanded to allow networks to learn a representation
that extends to previously unseen fillers. Furthermore, the psychology literature indicates
that schemata can encode biases and stereotypes, affecting how humans interpret new
information and recall previous information (Frederic Charles Bartlett, 1932). Future work
could explore whether and how models adapt to changes in the underlying schema
over the course of training, how examples provided during training might translate into
biases encoded in schemata, and how these principles apply in situations where multiple
schemata need to be learned (Franklin et al., 2019). The impact of external memory
components in our experiments suggests that episodic memory (a cognitive ability that
corresponds to the external memory components) may play an important role in applying
schemata to novel fillers, and further work could investigate this connection.

Another important future direction is to test models of role-filler binding against neural
data. For example, Martin & Doumas (2017) and Martin (2020) recently argued that
models that use the timing of neural firing to bind fillers to roles (Doumas, Hummel &
Sandhofer, 2008) are supported by data showing neural entrainment during language
processing, at frequencies corresponding to multiple layers of the representational
hierarchy (Ding et al., 2017; but see Frank & Christiansen, 2018). Analogously, in
future work, one could use neural data to test key predictions of our neural network
models with external memory. A challenge in this respect is that information stored in
external memory is thought to be latent or activity-silent (i.e., stored in network
weights and not in active patterns of neural firing) and thus should not be decodable from
neural activity measurements. One way to address this challenge would be to take
advantage of newly-developed paradigms for probing the contents of activity-silent

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 22/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

memory (e.g., using transcranial magnetic stimulation to evoke the information into an
actively-represented state) (Rose et al., 2016).

CONCLUSIONS
Our experiments find networks that can perform role-filler binding, where we define
role-filler binding as the ability to bind arbitrary fillers to certain roles without receiving
explicitly labeled bindings, even when these pairings violate correlations seen during
training. Successful models can generalize to previously unseen fillers when given external
memory and when given novel fillers during training. These models can perform role-
filler binding with novel fillers, and with fillers that violate role-filler correlations seen
during training. This suggests that the networks learn to extract relations from the
structure of the input, rather than relying on role-filler correlations seen during training.

Previous work has suggested that indirection can support variable bindings (Kriete
et al., 2013), and Complementary Learning Systems theory hypothesizes that the
coordination of two distinct systems allows models to both learn overall structures shared
between experiences and rapidly learn new items (McClelland, McNaughton & O’Reilly,
1995). While future work could explore whether networks without external memory
can also perform these tasks, our experiments show that, at the very least, there are models
with external memory that learn role-filler binding. These findings provide a possible
mechanism for connectionist architectures to learn role-filler binding relations, which are
a central component for learning flexible, structured cognitive representations.

ACKNOWLEDGEMENTS
Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the Office of Naval
Research or the U.S. Department of Defense.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Funding was provided by a grant from Intel Labs and by a Multi-University Research
Initiative grant to Kenneth A. Norman (ONR/DoD N00014-17-1-2961). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Intel Labs and Multi-University Research Initiative: ONR/DoD N00014-17-1-2961.

Competing Interests
The authors declare that they have no competing interests.

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 23/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

Author Contributions
� Catherine Chen conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Qihong Lu conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

� Andre Beukers conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

� Christopher Baldassano conceived and designed the experiments, authored or reviewed
drafts of the paper, and approved the final draft.

� Kenneth A. Norman conceived and designed the experiments, authored or reviewed
drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Code and data are available at GitHub: https://github.com/cchen23/generalized_
schema_learning.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.11046#supplemental-information.

REFERENCES
Ba J, Hinton GE, Mnih V, Leibo JZ, Ionescu C. 2016. Using fast weights to attend to the recent

past. In: Lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R, eds. Advances in Neural
Information Processing Systems 29. Red Hook: Curran Associates, Inc, 4331–4339.

Ba JL, Kiros JR, Hinton GE. 2016. Layer normalization. Arxiv. Available at http://arxiv.org/abs/
1607.06450.

Bahdanau D, Cho K, Bengio Y. 2015. Neural machine translation by jointly learning to align and
translate. ArXiv. Available at http://arxiv.org/abs/1409.0473.

Bower GH, Black JB, Turner TJ. 1979. Scripts in memory for text. Cognitive Psychology
11(2):177–220 DOI 10.1016/0010-0285(79)90009-4.

Brachman RJ, Schmolze JG. 1985. An overview of the KL-ONE knowledge representation
system�. Cognitive Science 9(2):171–216 DOI 10.1207/s15516709cog0902_1.

DeepMind. 2018. Differentiable neural computer (DNC). Available at https://github.com/
deepmind/dnc.

Ding N, Melloni L, Tian X, Poeppel D. 2017. Rule-based and word-level statistics-based
processing of language: insights from neuroscience. Language, Cognition and Neuroscience
32(5):570–575 DOI 10.1080/23273798.2016.1215477.

Doumas LAA, Hummel JE. 2005. Approaches to modeling human mental representations: what
works, what doesn’t, and why—the Cambridge handbook of thinking and reasoning. New York:
Cambridge University Press, 73–91.

Doumas LAA, Hummel JE, Sandhofer CM. 2008. A theory of the discovery and predication of
relational concepts. Psychological Review 115(1):1–43 DOI 10.1037/0033-295X.115.1.1.

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 24/27

https://github.com/cchen23/generalized_schema_learning
https://github.com/cchen23/generalized_schema_learning
http://dx.doi.org/10.7717/peerj.11046#supplemental-information
http://dx.doi.org/10.7717/peerj.11046#supplemental-information
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://dx.doi.org/10.1016/0010-0285(79)90009-4
http://dx.doi.org/10.1207/s15516709cog0902_1
https://github.com/deepmind/dnc
https://github.com/deepmind/dnc
http://dx.doi.org/10.1080/23273798.2016.1215477
http://dx.doi.org/10.1037/0033-295X.115.1.1
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

Elman JL, McRae K. 2019. A model of event knowledge. Psychological Review 126(2):252–291
DOI 10.1037/rev0000133.

Ettinger A, Elgohary A, Resnik P. 2016. Probing for semantic evidence of composition by means
of simple classification tasks. In: Proceedings of the 1st Workshop on Evaluating Vector Space
Representations for NLP, Berlin, Germany, 134–139.

Fodor JA, Pylyshyn ZW. 1988. Connectionism and cognitive architecture: a critical analysis.
Cognition 28(1–2):3–71 DOI 10.1016/0010-0277(88)90031-5.

Frank SL, Christiansen MH. 2018. Hierarchical and sequential processing of language. Language,
Cognition and Neuroscience 33(9):1213–1218 DOI 10.1080/23273798.2018.1424347.

Franklin N, Norman KA, Ranganath C, Zacks JM, Gershman SJ. 2019. Structured event
memory: a neuro-symbolic model of event cognition. bioRxiv 127(3):327–361
DOI 10.1037/rev0000177.

Frederic Charles Bartlett. 1932. Remembering: a study in experimental and social psychology.
New York: Cambridge University Press.

Graves A, Mohamed A, Hinton G. 2013. Speech recognition with deep recurrent neural networks.
In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:
IEEE, 6645–6649.

Graves A, Wayne G, Danihelka I. 2014. Neural turing machines. ArXiv. Available at http://arxiv.
org/abs/1410.5401.

Graves A, Wayne G, Reynolds M, Harley T, Danihelka I, Grabska-Barwi�nska A,
Colmenarejo SG, Grefenstette E, Ramalho T, Agapiou J, Badia AP, Hermann KM, Zwols Y,
Ostrovski G, Cain A, King H, Summerfield C, Blunsom P, Kavukcuoglu K, Hassabis D. 2016.
Hybrid computing using a neural network with dynamic external memory. Nature 538:471–476
DOI 10.1038/nature20101.

Guest O, Love BC. 2019. Levels of representation in a deep learning model of categorization.
Neuroscience. arXiv. Available at http://biorxiv.org/lookup/doi/10.1101/626374.

Hinaut X, Dominey PF. 2013. Real-time parallel processing of grammatical structure in the
fronto-striatal system: a recurrent network simulation study using reservoir computing.
PLOS ONE 8(2):e52946 DOI 10.1371/journal.pone.0052946.

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation
9(8):1735–1780 DOI 10.1162/neco.1997.9.8.1735.

Holyoak KJ, Hummel JE. 2000. The proper treatment of symbols in a connectionist architecture.
In: Dietrich E, Markman AB, eds. Cognitive Dynamics: Conceptual Change in Humans and
Machines. Mahwah: Lawrence Erlbaum Associates Publishers, 229–263.

Hummel JE, Biederman I. 1992. Dynamic binding in a neural network for shape recognition.
Psychological Review 99(3):480–517 DOI 10.1037/0033-295X.99.3.480.

Hummel JE, Holyoak KJ, Green C, Doumas LAA, Devnich D, Kittur A, Kalar DJ. 2004.
A solution to the binding problem for compositional connectionism. In: 2004 AAAI Fall
Symposium; Conference date: 21-10-2004 Through 24-10-2004. 31–34.

Hupkes D, Veldhoen S, Zuidema W. 2018. Visualisation and ‘diagnostic classifiers’ reveal how
recurrent and recursive neural networks process hierarchical structure. Journal of Artificial
Intelligence Research 61(1):907–926.

Kriete T, Noelle DC, Cohen JD, O’Reilly RC. 2013. Indirection and symbol like processing in the
prefrontal cortex and basal ganglia. Proceedings of the National Academy of Sciences of the
United States of America 110(41):16390–16395 DOI 10.1073/pnas.1303547110.

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 25/27

http://dx.doi.org/10.1037/rev0000133
http://dx.doi.org/10.1016/0010-0277(88)90031-5
http://dx.doi.org/10.1080/23273798.2018.1424347
http://dx.doi.org/10.1037/rev0000177
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1410.5401
http://dx.doi.org/10.1038/nature20101
http://biorxiv.org/lookup/doi/10.1101/626374
http://dx.doi.org/10.1371/journal.pone.0052946
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1037/0033-295X.99.3.480
http://dx.doi.org/10.1073/pnas.1303547110
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

Lakretz Y, Kruszewski G, Desbordes T, Hupkes D, Dehaene S, Baroni M. 2019. The emergence
of number and syntax units in LSTM language models. In: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis: Association for Computational
Linguistics, 11–20.

Martin AE. 2020. A compositional neural architecture for language. Journal of Cognitive
Neuroscience 32(8):1407–1427 DOI 10.1162/jocn_a_01552.

Martin A, Doumas L. 2017. A mechanism for the cortical computation of hierarchical linguistic
structure. PLOS Biology 15(3):e2000663 DOI 10.1371/journal.pbio.2000663.

Martin SJ, Grimwood PD, Morris RGM. 2000. Synaptic plasticity and memory: an evaluation of
the hypothesis. Annual Review of Neuroscience 23(1):649–711
DOI 10.1146/annurev.neuro.23.1.649.

McClelland JL, McNaughton BL, O’Reilly RC. 1995. Why there are complementary learning
systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological Review 102(3):419–457
DOI 10.1037/0033-295X.102.3.419.

Miikkulainen R, Dyer MG. 1991. Natural language processing with modular pdp networks and
distributed lexicon. Cognitive Science 15(3):343–399 DOI 10.1207/s15516709cog1503_2.

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. 2013. Distributed representations of words
and phrases and their compositionality. In: Burges CJC, Bottou L, Welling M, Ghahramani Z,
Weinberger KQ, eds. Advances in Neural Information Processing Systems 26. Red Hook: Curran
Associates, Inc, 3111–3119.

Mikolov T, Zweig G. 2012. Context dependent recurrent neural network language model. In: 2012
IEEE Spoken Language Technology Workshop. Piscataway: IEEE, 234–239.

Minsky M. 1974. A framework for representing knowledge. Cambridge: Massachusetts Institute of
Technology.

Mohandas G. 2018. Implementation of using fast weights to attend to the recent past. GitHub.
Available at https://github.com/GokuMohandas/fast-weights.

Norman KA, Polyn SM, Detre GJ, Haxby JV. 2006. Beyond mind-reading: multi-voxel pattern
analysis of fMRI data. Trends in Cognitive Sciences 10(9):424–430
DOI 10.1016/j.tics.2006.07.005.

O’Reilly RC, Bhattacharyya R, Howard MD, Ketz N. 2014. Complementary learning systems.
Cognitive Science 38(6):1229–1248 DOI 10.1111/j.1551-6709.2011.01214.x.

Plate TA. 1995. Holographic reduced representations. IEEE Transactions on Neural Networks
6(3):623–641 DOI 10.1109/72.377968.

Puebla G, Martin AE, Doumas LAA. 2019. The relational processing limits of classic and
contemporary neural network models of language processing. CoRR. Available at http://arxiv.
org/abs/1905.05708.

Qian P, Qiu X, Huang X. 2016. Analyzing linguistic knowledge in sequential model of sentence.
In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
Texas, 826–835.

Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ, Meyering EE, Postle BR. 2016.
Reactivation of latent working memories with transcranial magnetic stimulation. Science
354(6316):1136–1139 DOI 10.1126/science.aah7011.

Schank RC, Abelson RP. 1977. Scripts, plans, goals, and understanding: an inquiry into human
knowledge structures. Mahwah: Lawrence Erlbaum.

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 26/27

http://dx.doi.org/10.1162/jocn_a_01552
http://dx.doi.org/10.1371/journal.pbio.2000663
http://dx.doi.org/10.1146/annurev.neuro.23.1.649
http://dx.doi.org/10.1037/0033-295X.102.3.419
http://dx.doi.org/10.1207/s15516709cog1503_2
https://github.com/GokuMohandas/fast-weights
http://dx.doi.org/10.1016/j.tics.2006.07.005
http://dx.doi.org/10.1111/j.1551-6709.2011.01214.x
http://dx.doi.org/10.1109/72.377968
http://arxiv.org/abs/1905.05708
http://arxiv.org/abs/1905.05708
http://dx.doi.org/10.1126/science.aah7011
http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

St. John F, McClelland JL. 1990. Learning and applying contextual constraints in sentence
comprehension. Artificial Intelligence 46(1–2):217–257.

Tenney I, Das D, Pavlick E. 2019. BERT rediscovers the classical NLP pipeline. In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics. Florence: Association
for Computational Linguistics, 4593–4601.

Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. 2017. Understanding deep learning requires
rethinking generalization. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings.

Chen et al. (2021), PeerJ, DOI 10.7717/peerj.11046 27/27

http://dx.doi.org/10.7717/peerj.11046
https://peerj.com/

	Learning to perform role-filler binding with schematic knowledge
	Introduction
	Related work
	Methods
	Results
	Discussion
	Conclusions
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

