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Abstract

How does the brain acquire multiple overlapping schemas, the structured bodies

of knowledge supporting our categorization and anticipation about what will come?

We investigated this question using a novel board game paradigm where participants

learned two games, Four-in-a-row and Knobby, with shared board configurations but

differing win conditions requiring distinct optimal strategies. We conducted analysis

on both game-level and move-level to compare effectiveness of schema acquisition in

blocked and interleaved learning conditions (N=26). Several key findings emerged: 1)

Blocked learning facilitated better overall performance, suggesting minimal interfer-

ence between schema. 2) A primacy effect, where the first schema learned gained a

substantial and persistent advantage. 3) Blocked learning renders better separation

between schema, which is reflected as better moves to the specific game. Addition-

ally, the study highlights the utility of game-based learning environments in cognitive

research, offering a dynamic and engaging platform that closely mirrors real-world

learning scenarios. This research contributes to our understanding of how different

learning strategies affect the retention and application of new knowledge, particularly

in settings where multiple schemas are involved.
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1 Introduction

Our perception of the world is constantly scaffolded by the knowledge we gained from the

past. The brain extracts structured bodies of knowledge, or schemas, about how events

are typically unfolded in a given context, from prior experience to generate predictions

about what is likely to occur in the future [10, 2, 4, 5, 22]

Schema plays various roles in our day-to-day life: schemas about social behaviors

help you foresee the social repercussions of a behavior; motor schemas for producing and

evaluatingmuscle coordination andmovement [24]; story schemas that underpins howwe

predict and comprehend narrative structures [16] and many more. Specifically, our study

is focused on event schemas that assist the anticipation of events over time, particularly

the next possible actions in a given game state.

1.1 Learning overlapping schemas

To understand the world, we need to learn and maintain many new schemas with very

little interference to existing ones.

A new schema is often created to resolve any inconsistencies between new informa-

tion and existing schema, also called restructuring [27]. Consider the following example:

suppose that a tea-lover who would make a cup of tea every morning starts learning to

make pour-over coffee. Initially, they would see both tea-making and coffee-making as

a processes of pouring hot water over raw materials to produce a beverage. Over time,

however, they would realize the unique specificities of coffee, such as the influence of wa-

ter temperature, speed and timing at which water is poured, and other techniques on the

flavors of the final product. A new body of knowledge is thus needed for anticipating how
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the coffee will taste differently in a certain water temperature, pressure, and so on. For-

mation of a new schema is not always necessary when new information can be integrated

into existing schema without fundamentally altering it (accretation [27]), or only demand

minor tweaks in the schema (tuning [27]). For instance, a Spanish speaker starts learning

Portuguese will notice similar patterns in the grammatical principles and vocabularies of

the two languages, and thus naturally extend what they already know about Spanish to

understand and produce Portuguese in a conversation. In this case, the existing schema

about Spanish is modified to capture the domain of Portuguese, rather than forming an

entirely separate schema. Our study probes into the prior case when distinct but overlap-

ping schemas do exist.

While maintaining multiple schemas is essential to human intelligence, it presents a

challenge to artificial neural networks, which are especially prone to catastrophic forget-

ting or catastrophic interference (CI) [13, 19, 18]. Thismeans that when trained onmultiple

tasks sequentially, these models forget how to perform previously learnt tasks. CI occurs

primarily because of re-appropriation of networks that are important for previously learnt

task for a new task, causing disturbances in weights or complete lost of representations.

Several approaches exist to tackle this problem. One approach is interleaved-learning,

which ensures that tasks are trained in a mixed fashion. In this case, forgetting can be pre-

vented due to the joint optimization of network weights for all tasks. Successful results

include training a single agent able to play multiple Atari games [23, 20]. To make sure

that past knowledge interleaves with new tasks, an episodic memory system is needed

for replaying previous episodes to the network [14, 18]. However, this approach has been

shown to slow down learning [17] and it is impractical to execute for a high amount of

tasks with large-scale data. A second approach is blocked-learning or split-learning. This
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approach is often combined with additional mechanism for deciding the point of splitting,

for example, splitting off weights when high prediction errors present [3]. This allows the

model to completely master one task before transitioning to another. Essentially, mod-

els learn to allocate network resources—specific sets of weights—in a way that prevents

competing representations from interfering with each other.

1.2 Blocked-learning vs. Interleaved-learning

A natural question arises as how the brain implements its solution for preventing catas-

trophic interference while acquiring multiple schemas. Studies about memory encoding

revealed that the brain is selective about choosing neural ensembles for storing newmem-

ory. When a newmemory is encoded, the brain selects a neural ensemble that is less active

or excitable, reducing the likelihood of interference with previously stored memories. This

process, known as "engram competition," helps ensure that distinct memories are allocated

to separate neural populations [21].

Recent research suggests that the effectiveness of Blocked-learning over Interleaved-

learning in preventing catastrophic interference extends beyond memory encoding to the

acquisition of complex schemas. Beukers et al [3] investigated schema learning using nar-

rative event prediction tasks, where participants learned the transition structures of two

different narrative "chains" with shared states but different transition probabilities. They

found that participants who learned the schemas in a blocked fashion (multiple instances

from one schema before switching to the other) outperformed those who learned in an

interleaved fashion (schemas alternating on each trial).

The authors proposed a Bayesian model that incorporates representational splitting

when there are large prediction errors. In the blocked condition, the large error when
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switching between narratives triggers the creation of a separate schema, preventing the

neural network from reusing the same set of weights. This mechanism aligns with the

concept of engram competition inmemory encoding, suggesting a common principle of al-

locating distinct neural resources to mitigate interference between schemas or memories.

Furthermore, Beukers et al. [3] demonstrated that the timing of Blocked vs Interleaved

training matters. Inserting a block of training on each schema early in an otherwise inter-

leaved sequence led to better performance than inserting blocks late, as early blocks allow

proper segmentation of the schemas before interference occurs. In other words, the effec-

tiveness of blocked-learning is likely due to successfully prompting the initial formation

of separate schemas, which may not have occurred in Interleaved-learning to begin with.

Building on these findings, we consider competing theories regarding the effective-

ness of blocked and interleaved learning in environments where schemas are distinct yet

complex. Our study aims to determine: 1) the extent to which each learning strategy

supports the acquisition of multiple complex schemas without triggering catastrophic in-

terference; 2) how the first-learned schema might interfere with the learning of a second,

through either catastrophic interference or incomplete schema separation; 3) the ability

of individuals to alternate decision-making effectively between two overlapping contexts.

To explore these theories, we employed a novel board game paradigm, providing a

dynamic and ecologically valid setting to examine schema acquisition. By manipulating

the game rules and the learning sequence, we assess how different learning strategies

impact schema acquisition and interaction between schemas. The interactive nature of

board games allows us to gather rich behavioral data, such as move-level decisions and

reaction times, offering deeper insights into the cognitive processes involved in learning

and applying schemas.

5 of 25



Figure 1: Winning conditions for Four-in-a-row and Knobby.

The two versions of the game in our study, "Four-in-a-row" and "Knobby", shared the

same game board configuration and both involved getting four pieces into a particular

shape in order to win. 1 But the difference in the winning conditions (creating a straight

line versus a specific shape) created a large difference in the optimal strategies and moves

in each game type, which we expected to lead to the formation of distinct schemas for

each game. This assumption of schema dissimilarity is crucial for our hypotheses:

We hypothesized four possible outcomes for learning two distinct board games, Four-

in-a-row and Knobby, under blocked and interleaved learning conditions. Each hypothesis

about the outcome reflects a different interaction between the schemas:

H1: Independent Learning: Performance metrics (e.g., win rates) are similar for both

games, suggesting that learning one game does not affect the learning of the other.

This scenario would indicate complete separation of schemas.

H2: Reduced Learning for the Second Game: If learning the second game is less effi-

cient than the first, this would imply incomplete separation and partial interference

between the schemas.

H3: Facilitated Learning for the Second Game: An improvement in learning effi-

ciency for the second game would indicate that the first game’s schema facilitates

the second. In other words, transfer learning happens between the games.

6 of 25



H4: Inability to Learn Either Game: This would suggest complete interference be-

tween the schemas, an outcome predicted by Beukers et al [3] but expected only

under interleaved conditions due to increased competition for representational re-

sources.

Given the similarities in the game boards and action spaces, we proposed that neither

complete independence (H1, or Hypothesis 1) nor facilitated learning of the second game

(H3) were likely. Because both the number of required pieces to win and the shape of

the board are intentionally designed to be exactly the same, it is impossible to observe

complete independence. Facilitated learning of the second game was considered unlikely

given the distinct strategies required for each game, which can be quantitatively measured

by themove evaluation by AI players (see Section 3.2). Our experiments aimed to test these

predictions and assess the extent of interference or facilitation between the schemas.

In the following sections, we first describe the design of our board game paradigm

and the experimental procedure. We then present our findings on how blocked and

interleaved-learning affect game performance, move-level decisions, and reaction times.

Finally, we discuss the implications of our results for theories of schema acquisition and

catastrophic interference, and suggest directions for future research.

2 Methods

2.1 Experiment Design

Motivated by whether blocked or interleaved training curricula facilitate better schema

learning, we developed a board game paradigm based on previous studies in the lab [10, 9].

On a 6 × 6 board, participants play two different games against distinct AI opponents
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Figure 2: Two learning paradigms.

trained with neural networks based on Q-learning, a reinforcement learning paradigm.

The first game, Four-in-a-row, is a more advanced version of tic-tac-toe that asks

players to construct four pieces in a consecutive sequence horizontally, vertically, or diag-

onally in order to win. In comparison, the winning condition of the second game Knobby

is aligning four pieces so as to construe a T-shape with the stem directed toward left,

right, up or down for winning. The two games are designed to ensure that the format of

the game for learning schemas, that is the size of the board and numbers of pieces neces-

sary for winning, remain the same, while the distinct winning condition leads to different

optimal move strategies.

The study employs a between-subjects design. Preceding the experiment, par-

ticipants were randomly allocated to two groups, the block-learning group and the

interleaved-learning group, in a blinded manner. Within the block-learning group, partici-

pants engage in the game under one rule for 100moves before transitioning to another rule

for an equivalent number of moves. In contrast, participants in the interleaved-learning

group alternate between rule types after every game they complete, i.e. the winning rule

changes with each game. Before participants start the first game, they are instructed
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clearly on the winning condition in each game. The initiation order of each rule within

both groups is equally probable, and the current game rule is consistently communicated

explicitly to participants. Either the participant or the AI was randomly chosen to make

to first move in each game.

The experimental procedure was automated through a Python script, and all partici-

pants conducted the experiment on a Windows computer. Participants were instructed to

self-pace, and asked to take breaks only between games, and no more than twice.

2.2 Neural Network Model Configuration and Training

In our experiment, we used an artificial neural network model called AlphaZero Gomoku

[26], which was originally designed for the game of Gomoku or five-in-a-row. We adapt

it for our games Four-in-a-row and Knobby and train two separate models for playing

against human participants during the experiment aswell as evaluating participants’move

quality later in the analysis stage. AlphaZero Gomoku is a specific implementation of Alp-

haZero [25] and uses Q-learning, amodel-free reinforcement learning algorithm that seeks

to learn a policy telling an agent what action to take under what circumstances. It does

not require a model of the environment or a database of example games, instead learning

through self-play which strategies are effective for winning the game. This approach al-

lows the model be trained on its own data for developing a strategy from scratch, learning

from each game played without prior knowledge of the game dynamics.

In the section below, we documented the technical design of the model and the ex-

perimental as well as analytical pipeline of the study. The codes and data collected can be

found on GitHub Repository at https://github.com/zhannahz/AlphaZero_Gomoku.
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2.3 Experiment Pipeline

2.3.1 Game logic handling

The experiment procedure including inputting participant information and experiment

conditions is mostly implemented in experiment.py, with some steps such as getting

the score of an action from a MCTS player for evaluating player move handled in

human_play.py.

The game environment is represented by the Board class, which is initialized with a

width𝑤 , height ℎ, and the number of pieces in a row required for a win n_in_row. While it

is as simple as setting both𝑤 andℎ as 6, and n_in_row as 4 to get a Four-in-a-rowmodel, we

wrote a separate game logic for training the Knobby model. The board state is stored as a

dictionary, with keys representingmoves as locations on the board and values representing

the player who made the move. The game logic, including move validation, win condition

checks, and game flow management, is handled by game.py and human_play.py.

2.3.2 Neural Network Architecture

Implemented in the PolicyValueNet class, the policy-value network used in this study

(policy_value_net_pytorch.py) follows the architecture described in the AlphaGo Zero

paper [25]. It takes the current board position 𝑠 as input, represented by a 4× 6× 6 tensor

encoding the board position using 4 binary feature planes, and outputs a policy vector p,

representing the probability of each action, and a scalar value 𝑣 , estimating the expected

outcome of the game from the current player’s perspective.

In each self-play game, the current best model plays against itself, starting from an

empty 6×6 board. At eachmove, themodel usesMonte Carlo Tree Search (MCTS) to select
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actions, with 400 simulations per move. The search is guided by the policy and value

outputs of the neural network. To ensure diversity in the self-play data, Dirichlet noise

with 𝛼 = 0.3 is added to the prior probabilities of the root node, and actions are sampled

based on the visit counts of each branch of the root node. The self-play game ends when a

winner is determined or the board is full. The game data, consisting of the board positions

𝑠 , MCTS action probabilities 𝜋 , and gamewinner 𝑧 ∈ 1(ℎ𝑢𝑚𝑎𝑛𝑝𝑙𝑎𝑦𝑒𝑟 ), 2(𝐴𝐼𝑝𝑙𝑎𝑦𝑒𝑟 ), 3(𝑡𝑖𝑒),

is saved from the perspective of the current player at each move.

The MCTS algorithm is implemented in the MCTS class in mcts_alphaZero.py. It uses

the policy-value network to guide the tree search and evaluate leaf nodes. Each node in

the MCTS tree (TreeNode) maintains its own value𝑄 , prior probability 𝑃 , and visit-count-

adjusted prior score𝑢. The node expansion is guided by the action priors, which are tuples

of actions and their prior probabilities according to the policy function.

The search process is described as below:

1. Expansion: Each tree node can be expanded based on the potential actions and

their associated prior probabilities. This expansion is performed once an action is

selected that has not been explored yet, leading to the creation of a new child node

for each unexplored action.

2. Selection: During the tree search, actions are selected among the children nodes

based on a combination of the action value𝑄 and a bonus 𝑢 (𝑃), which incorporates

the exploration-exploitation trade-off controlled by a parameter 𝑐puct.

3. Update: After simulating a game through the leaf node, the node values are updated

based on the simulation results. This update is recursively applied to all ancestors of

the leaf node to ensure that all relevant paths are updated with the new information.
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2.3.3 Training Pipeline

The training process in train.py follows the self-play reinforcement learning paradigm.

In each iteration, the current best model plays against itself to generate training data. The

generated data, consisting of board states, MCTS move probabilities, and game outcomes,

is then used to train the neural network. The trained model is evaluated against the pre-

vious best model, and if its win rate is better than previous win rate, it becomes the new

best model. Both the Four-in-a-row model and the Knobby model achieved a win rate >

80 percent against itself. It took 5 to 10 hours to train an AI model for our experiment.

Prior to training a model, we set up relevant hyperparameters as below:

• 𝑐puct: The exploration coefficient which determines the weight given to the prior

probability P in the bonus term. Due to a high branching factor in the board games,

this value is set to 5 for a higher tendency to explore.

• temp (𝜏): The temperature parameter for the softmax function applied to the visit

counts during move selection, set to 0.75 for training and 10−3 for playing against

participants.

• 𝑛playout: The number of MCTS playouts per move, set to 400.

• learn rate (𝛼): The learning rate for the neural network optimizer, set to 2 × 10−3.

2.4 Participants

On the Columbia SONA platform, we recruited 32 students seeking research participation

credit as part of their introductory psychology classes. All participants were over 18 years

of age and gave informed consent for the study. The experimental protocol was approved

by the Institutional Review Board of Columbia University (AAAS0252).
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Following the exclusion of data from six participants due to technical issues, the re-

vised participant count for each experimental condition was as follows: in the blocked

condition, N=13 (7 participants started with Four-in-a-row, and 6 with Knobby); in the

interleaved condition, N=13 (6 participants start with Four-in-a-row and 7 with Knobby).

The age of the remaining 26 participants ranged from 19 to 37 years, with a mean age

of 22.4 years. The average educational attainment was 13.5 years. Gender distribution

was balanced, including 11 females, 11 males, and 3 non-binary individuals. Ethnically,

the cohort included 13 White, 6 Asian, 2 Hispanic or Latino, 2 Black or African American

individuals, and 2 participants of mixed ethnicity, specifically White and Black or African

American.

2.5 Limitations in Methods

This study, constrained by the scope of a senior project, did not include monetary in-

centives or attention checks. The absence of incentives may have influenced participant

motivation and engagement levels, potentially affecting the learning outcomes. Similarly,

without attention checks, it’s challenging to gauge continuous engagement, which is cru-

cial for tasks requiring sustained attention. These limitations highlight areas for future

research to enhance experimental design and data integrity.

3 Results and Findings

3.1 Game-level analysis

Overall, participants are adequately challenged in both the game of Four-in-a-row and

Knobby, with a slightly higher average win rate in Knobby (0.421) 3, aligning with the the-
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Figure 3: Win rates of Four-in-a-row versus Knobby. Each dot represents the average win
rates across participants at a specific round.

oretically lower difficulty of the latter [7]. However, as a novel game that no participants

should have played before, Knobby’s win rates exhibits as a rising learning curve. Four-in-

a-row, on the other hand, maintains a static win rates over the course of the experiment.

One explanation for this surprising observation is that the total length of the experiment

does not offer enough time for participants to improve significantly on Four-in-a-row. In-

stead, players remain an certain level of performance that they inherits from the game of

Tic-tac-toe (three pieces in a row).

The order of play, specifically who goes first, significantly influences the chances of

winning in both games. Participants achieve an average of approximately 70.9%wins when

they make the first move in a game, 27.4% higher than the average win rates in the games

where the AI player goes first. The result shows that both Four-in-a-row and Knobby are

games sensitive to play order due to the possibility to force a win.
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Figure 4: Win rates of games with players going first versus AI going first.

Figure 5: Win rates. Win rates are calculated as the ratio of rounds won to total rounds played
by all participants within both learning paradigms—block and interleaved. Note that win rates are
computed distinctly for the first game and the second game, which are defined by the order by
which the participant encounter them.
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(1) The first schema learned gains significant initial advantage

The win rate comparisons between the first and second game types are presented in 5,

which illustrates the win rates over rounds of gameplay for the Blocked and Interleaved

learning conditions. In the Blocked condition, the initial win rate for the first game type is

significantly higher, with an intercept of 0.463, compared to the second game type, which

has an intercept of only 0.087. This pattern indicates a strong "primacy effect," where

learning and mastering the first schema offers a distinct initial advantage, which can be

crucial in early performance.

In the Blocked condition, win rates of the first game type increase over time, suggest-

ing that participants are consolidating their learning and applying it effectively as they

progress. However, the second game type does not show a similar level of improvement,

maintaining a relatively flat trajectory until the late stage of the experiment, suggesting

a hindrance by the first game type in the learning of the second game type.

In the Interleaved condition, the primacy effect persists, albeit with slightly lower

intercepts: 0.387 for the first game type and 0.092 for the second. The win rates in the

Interleaved condition peak at around the midpoint of the rounds and then slightly de-

cline. This could indicate an intensification of schema interference or a lower ceiling of

performance in the interleaved learning paradigm.

(2) Blocked-learning results in better game performance at the end

The Blocked condition’s learning trajectory is consistent with conventional models, where

cumulative experience correlates with progressive mastery of the schema. The higher ini-

tial win rate, coupled with a positive learning slope, suggests effective strategy consolida-

tion leading to improved performance over successive rounds.
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Conversely, the Interleaved condition exhibits an initial increase in win rate followed

by a subsequent decline in both games, suggesting an earlier attainment of the ceiling.

Notably, thewin rate for the second game type in the Interleaved condition demonstrates a

slight improvement initially, but this is followed by a plateau or even a slight decline as the

rounds progress. This pattern indicates that consistent performance improvement for the

second game type is severely hindered, in addition to the eventual decline in performance

of the first game type, suggesting that interference is more severe when two games are

played in an interleaved fashion.

(3) Overall faster gameplay over time despite diverse gameplay speed

Figure 6: Move-level reaction time. Reaction times are calculated as the time between the onset
of a participant’s turn and the execution of their move are recorded to access the learning process.
A Mixed linear effect regression is conducted across group (n=13 for Blocked and for Interleaved
respectively).

While win rates reflect the outcome of the game, reaction times capture the speed

of decision-making processes and may suggest the extent of patience. Both Blocked and

Interleaved-learning groups showed improvement in gameplay speed over time, as seen

in 6. The Blocked condition (left) shows a significant decrease in reaction time in the first
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game (coef. = -4.700, P < 0.001, group variance = 36.234) and a non-significant shallower

slope in the second game (coef. = -0.432, P = 0.590, group variance = 13.198). The relatively

static trend of the second game type in blocked condition shows that participants did not

slow down when they encounter the second game type, suggesting that the decrease in

reaction time is due to the experimental progress in general. Similarly, the Interleaved

condition (right) exhibits significant decreases in both the game type (coef. = -4.015, P

< 0.001, group variance = 9.183) and second game type (coef. = -3.437, P < 0.001, group

variance = 18.093). One explanation is that participants are going faster regardless of

game order and regardless of conditions.

3.2 Move-level analysis

To find out how well participants are learning the game, we need to access move-level

performance. The quality of a move can be accessed by the extent to which the move

adheres to the optimal strategy of playing the game given a particular circumstance.

Eachmove’s quality was assessed by comparing the estimated probability scores gen-

erated by two distinct neural network models. These models estimate the probabilities of

possiblemoves by simulating the game and recording the number of visits to each available

board position. Because it is possible for a move to have 0 probability if a board position

was never samples, we smoothed all probability estimates by taking a weighted average

of the model probabilities with a uniform distribution over unoccupied squares (with a

weight of 𝛼 = 0.01 for the uniform distribution and 1 − 𝛼 = 0.99 for the model distribu-

tion). Then, we take the difference between the model probabilities of the first and second

game type. Finally, we applied a mixed linear effect model to analyze this difference. The

model was set up as a function of game type and game progress, in addition to accounting
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for the random effects of game progress within each participant. Game progress was de-

fined as the fraction of the current round number divided by the total number of rounds

in the given game type. The mixed linear effect model was structured as follows:

smoothed_modelm1 = (1 − 𝛼) · 𝑝raw_m1 + 𝛼 ·
(

1
# empty squares

)
(1)

smoothed_modelm2 = (1 − 𝛼) · 𝑝raw_m2 + 𝛼 ·
(

1
# empty squares

)
(2)

modeldiff = smoothed_modelm1 − smoothed_modelm2 (3)

modelmle = modeldiff ∼ game_type × game_progress + (game_progress | participant) (4)

Figure 7: Probability difference. Probabilities associated with each possible move preceding
a participant’s action is extracted from the two distinct AI models, each trained on the separate
games. A mixed linear effect regression is conducted across group (n=13 for Blocked and for Inter-
leaved respectively) to reveal the trend of probability difference across game progression.

To assess the effectiveness of each learning condition, we computed a mixed-effects

model to analyze the probability differences between the moves in each game type. This

model included fixed effects for game type (first game versus second game), game progress

(fraction of games played so far), and their interaction, and random effects for subjects to
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account for individual differences in learning and performance.

(4) Blocked-learning better help establish and stabilize distinct schemas

Both conditions showed a significant difference between the first and second game, with a

more pronounced effect observed in the Blocked condition (coef. = -1.079, P < 0.001) than in

the Interleaved condition (coef. = -0.813, P < 0.001). This indicates that, overall, participants

were more (correctly) playing moves that were more aligned with the first-game model

when playing their first game andmore alignedwith the second-gamemodel when playing

their second game. The interaction between game type and progression fraction was not

significant in either condition, but was numerically larger in the Blocked (coef. = -0.218, P

= 0.253) versus the Interleaved condition (coef. = -0.158, P = 0.400), suggesting that there

was more learning occurring in the Blocked condition (since participants were becoming

more aligned with the correct game models over the course of the experiment).

4 Discussion

How are overlapping schemas learned consecutively? We proposed a novel board game

paradigm to investigate this systematically, focusing on whether blocked- or interleaved-

learning facilitates better schema acquisition. The key finding of this study that blocked

learning facilitates better schema separation and performance aligns with previous work,

while extending it to a more naturalistic, interactive setting.

One contribution of this work is the use of a novel board game paradigm. One specific

advantage of using a 6 × 6 board as the base upon which game rules are design for this

study is that it allows us to customize the games for this experiment, ensuring they over-

lap in appearance and actions but differ in optimal strategies. However, our motivation of
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using games as experimental paradigm extends beyond this study. Traditionally, memory

research has oscillated between highly-controlled discrete item tests, which allow for pre-

cise mathematical modeling but lack ecological validity, and narrative-based approaches

that incorporate real-life complexities but struggle with reproducibility and formal mod-

eling constraints [11, 12, 6]. While these methods have advanced our understanding of

cognitive processes, they often fail to capture the dynamic interplay of memory encoding

and retrieval that characterizes everyday cognitive activities [8, 15]. We believe that games

offer an ideal intersection between overly simplistic domains and uncontrolled naturalis-

tic environments. With careful experimental design, games provide just the right amount

of complexity [1] for people to learn abstractions, predict possible upcoming scenarios,

and plan out actions, while being feasible to be captured computationally. In addition,

gameplay as a task facilitates a more internally motivated learning process and affords

participants to have active controls over event sequences, offering a unique opportunity

to study cognitive processes in contexts that resemble everyday event dynamics.

The findings of our study align with Beukers et al. [3], who emphasize the benefits of

Blocked-learning in separating representational resources early for different schemas.This

is particularly evident in the significantly better performance of the first game that partici-

pants play, indicative of faster and more stable schema formation. Furthermore, we found

that the initially learned schema gains a profound and persistent advantage, as partici-

pants in both condition performed better at the first game type they played, suggesting a

primacy effect in consecutive schema learning.

However, it is important to note that our conclusions should only extend to consecu-

tive learning of schemas that are more distinct than similar. In other words, Four-in-a-row

and Knobby are games that demands different mental models for predicting and planning
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moves, despite that they both operate on the same board configuration. Therefore, the ev-

ident interference that occurs in interleaved-learning can be explained from the perspec-

tive of competitions between the representational resources of the two distinct schemas.

On the other hand, two similar schemas are more likely to be captured by a single, more

generalize internal model, leading to assimilation than competition of schema represen-

tations. Future studies are needed to understand the role of task similarity in block and

interleave-learning paradigms, such as varying the degree of similarity between tasks to

examine how this influences schema interference and transfer effects.

Future studies could also build on our paradigm and investigate aspects of multiple

schema learning that were beyond the scope of this study. An unanswered question is

whether schemas learned in the blocked learning condition are better stabilized and re-

tained over the long term, which could be explored by adding a final examination session

to test participants on both games after a period of time.

22 of 25



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my thesis advisor, Prof.

Chris Baldassano, for his invaluable mentorship during my time as a research assistant in

his lab and for his guidance throughout my thesis project. My gratitude goes to Prof. John

Morrison for his steadfast support since I set out to create my own cognitive science major

until earning this degree. I am also grateful to Prof. Seth Cluett and Prof. Mark Santolucito

who, though not in my field, have in their own ways empowered me to fearlessly pursue

what I value intellectually.

I express love to my friends whose belief in my pursuits constantly motivated me.

I cherish my future partner’s immense emotional support this demanding year, despite

long-distance. I owe gratitude to my family for their genuine interest and unconditional

backing, though cognitive science lies outside their realms.

Ultimately, the cognitive science discipline itself provided an intellectual "hometown"

that no physical space has ever provided. The questions and ways of pursuing them in the

field have changed me as a person.

May 5, 2024

New York

23 of 25



References
[1] Marc Malmdorf Andersen, Julian Kiverstein, Mark Miller, and Andreas Roepstorff. Play in

predictive minds: A cognitive theory of play. Psychological Review, 130(2):462, 2023.

[2] Christopher Baldassano, Janice Chen, Asieh Zadbood, Jonathan W Pillow, Uri Hasson, and
Kenneth ANorman. Discovering event structure in continuous narrative perception andmem-
ory. Neuron, 95(3):709–721, 2017.

[3] Andre O Beukers, Silvy HP Collin, Ross P Kempner, Nicholas T Franklin, Samuel J Gershman,
and Kenneth A Norman. Blocked training facilitates learning of multiple schemas. Commu-
nications Psychology, 2(1):28, 2024.

[4] Andy Clark. Whatever next? predictive brains, situated agents, and the future of cognitive
science. Behavioral and brain sciences, 36(3):181–204, 2013.

[5] Karl Friston. The free-energy principle: a unified brain theory? Nature reviews neuroscience,
11(2):127–138, 2010.

[6] Orit Furman, NimrodDorfman, Uri Hasson, Lila Davachi, and YadinDudai. They saw amovie:
long-term memory for an extended audiovisual narrative. Learning & memory, 14(6):457–467,
2007.

[7] Martin Gardner. Colossal Book of Mathematics: Classic Puzzles Paradoxes And Problems. WW
Norton & Company, 2001.

[8] Andrew C Heusser, Paxton C Fitzpatrick, and Jeremy R Manning. Geometric models reveal
behavioural and neural signatures of transforming experiences into memories. Nature Human
Behaviour, 5(7):905–919, 2021.

[9] Jiawen Huang, Eleanor Furness, Yifang Liu, Morell-Jovan Kenmoe, Ronak Hasan Elias, Han-
nah Tongxin Zeng, and Chris Baldassano. Making accurate prediction facilitates robust
episodic memory formation beyond learned stimulus probability. 2024. Work In Progress.

[10] Jiawen Huang, Isabel Velarde, Wei Ji Ma, and Christopher Baldassano. Schema-based predic-
tive eye movements support sequential memory encoding. Elife, 12:e82599, 2023.

[11] Michael J Kahana and Jonathan F Miller. Memory, recall dynamics. Encyclopedia of the mind.
Thousand Oaks, CA SAGE Publications Inc, 2013.

[12] Walter Kintsch. Models for free recall and recognition. Models of human memory, pages
331–373, 1970.

[13] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy
of sciences, 114(13):3521–3526, 2017.

[14] Dharshan Kumaran, Demis Hassabis, and James L McClelland. What learning systems do
intelligent agents need? complementary learning systems theory updated. Trends in cognitive
sciences, 20(7):512–534, 2016.

[15] Hongmi Lee, Buddhika Bellana, and Janice Chen. What can narratives tell us about the neural
bases of human memory? Current Opinion in Behavioral Sciences, 32:111–119, 2020.

[16] Jean MMandler. On the psychological reality of story structure. Discourse Processes, 10(1):1–
29, 1987.

24 of 25



[17] James L McClelland. Incorporating rapid neocortical learning of new schema-consistent in-
formation into complementary learning systems theory. Journal of Experimental Psychology:
General, 142(4):1190, 2013.

[18] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are com-
plementary learning systems in the hippocampus and neocortex: insights from the successes
and failures of connectionist models of learning andmemory. Psychological review, 102(3):419,
1995.

[19] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[20] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

[21] Asim J Rashid, Chen Yan, Valentina Mercaldo, Hwa-Lin Hsiang, Sungmo Park, Christina J
Cole, Antonietta De Cristofaro, Julia Yu, Charu Ramakrishnan, Soo Yeun Lee, et al. Competi-
tion between engrams influences fear memory formation and recall. Science, 353(6297):383–
387, 2016.

[22] David E Rumelhart. Notes on a schema for stories. In Representation and understanding, pages
211–236. Elsevier, 1975.

[23] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

[24] Richard A Schmidt. A schema theory of discrete motor skill learning. Psychological review,
82(4):225, 1975.

[25] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[26] Jun Xiao Song. Alphazero_gomoku: Implementation of alphazero algorithm for playing
gomoku. https://github.com/junxiaosong/AlphaZero_Gomoku, 2023. Accessed: 2023-09-15.

[27] Sharon Alayne Widmayer. Schema theory: An introduction. Retrieved December, 26:2004,
2004.

25 of 25

https://github.com/junxiaosong/AlphaZero_Gomoku

	Introduction
	Learning overlapping schemas
	Blocked-learning vs. Interleaved-learning

	Methods
	Experiment Design
	Neural Network Model Configuration and Training
	Experiment Pipeline
	Game logic handling
	Neural Network Architecture
	Training Pipeline

	Participants
	Limitations in Methods

	Results and Findings
	Game-level analysis
	Move-level analysis

	Discussion

