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A B S T R A C T

Several research groups have shown how to map fMRI responses to the meanings of presented stimuli. This
paper presents new methods for doing so when only a natural language annotation is available as the
description of the stimulus. We study fMRI data gathered from subjects watching an episode of BBCs Sherlock
(Chen et al., 2017), and learn bidirectional mappings between fMRI responses and natural language
representations. By leveraging data from multiple subjects watching the same movie, we were able to perform
scene classification with 72% accuracy (random guessing would give 4%) and scene ranking with average rank in
the top 4% (random guessing would give 50%). The key ingredients underlying this high level of performance
are (a) the use of the Shared Response Model (SRM) and its variant SRM-ICA (Chen et al., 2015; Zhang et al.,
2016) to aggregate fMRI data from multiple subjects, both of which are shown to be superior to standard PCA in
producing low-dimensional representations for the tasks in this paper; (b) a sentence embedding technique
adapted from the natural language processing (NLP) literature (Arora et al., 2017) that produces semantic
vector representation of the annotations; (c) using previous timestep information in the featurization of the
predictor data. These optimizations in how we featurize the fMRI data and text annotations provide a
substantial improvement in classification performance, relative to standard approaches.

1. Introduction

Recent work has provided convincing evidence that fMRI readings from
human subjects can be related to semantics of presented stimuli. Such
experiments consist of finding (1) low-dimensional representations of the
fMRI signals, and (2) low-dimensional semantic representations of the
external stimulus. These tasks often build upon work in machine learning.

The earliest work concerned simple settings with carefully con-
trolled stimuli, such as subjects being presented (visually or auditorily)
with one of a set of carefully selected words (Mitchell et al., 2008). The
semantic representation of a word was computed using word embed-
dings, a tool from natural language processing (Deerwester et al., 1990)
that represents each word as a point in a d-dimensional meaning space.
This work was extended (Pereira et al., 2011) to perform “brain
reading”, using fMRI readings and a popular text-analysis tool called
topic modeling to reconstruct word clouds from brain activity evoked
by a word/concept stimulus.

The next obvious step in this research program is to understand
fMRI readings collected from subjects as they process more complex
stimuli such as movies. In such settings, it is not clear how to
represent the semantics of the stimulus, since a multitude of signals
(auditory as well as visual) are presented within a short time
interval. One approach to solving this task was presented in Huth
and Nishimoto (2012), which studied fMRI responses to a natural
movie stimulus. In this case, the movie stimulus was represented
with a feature space of 1705 distinct nouns and verbs. A subsequent
study (Huth et al., 2016) examined fMRI responses to audio stories,
and departed from the previous work by applying distributional
embeddings to featurize the dialog and predict voxel activation. The
goal in these papers was to derive a semantic word map for the
voxels of the brain. Another paper (Wehbe et al., 2014) gathered
fMRI data from subjects reading a story, and used unweighted
averages of distributional embeddings to featurize sentences for
predicting voxel activity.
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In this paper, we study the Sherlock fMRI dataset (Chen et al.,
2017), which consists of fMRI recordings of 16 people watching the
British television program “Sherlock” for 50 min; this time series was
broken into 1973 TRs, where each TR corresponds to 1.5 s of film. As a
proxy for the semantics of the movie, we use externally annotated
English text scene annotations of the program (average annotation
length 15 words per TR). We examine brain data from predefined
regions of interest (ROIs) in the brain, and separately analyze each one.
In particular, we examine the default mode network (DMN), dorsal and
ventral language areas, the occipital lobe, and a 26000-voxel mask
containing voxels with high intersubject correlation across the whole
brain. We seek to determine whether various modifications to fMRI
and text featurization as well as the usage of previous timepoint
information help to improve bidirectional mappings between fMRI
data and semantic meaning vectors. In particular, we examine the
effects of three featurization methods for fMRI and text data: Low-
dimensional shared fMRI representation across subjects, weighted
semantic embeddings of text annotations, and using previous time-
points in the performance of linear maps between people.

Aggregating fMRI responses across subjects. In prior work,
combining fMRI response data from multiple subjects is often solved
by averaging, anatomical alignment and smoothing, or latent multi-
variate feature modeling (Wehbe et al., 2014; Conroy et al., 2013; Huth
et al., 2016). Further work concludes that high-level representations of
content from movies are shared across people and that there can be
considerable de-noising benefits from averaging across people (Chen
et al., 2017). Another recent paper (Chen et al., 2015) introduced the
Shared Response Model (SRM), an algorithm that stems from previous
work on hyperalignment (Haxby et al., 2011). The SRM in Chen et al.
(2015) optimizes the objective X W S∑ ∥ − ∥i

n
i i F=1 for a low-dimensional

shared space S and orthogonal-column subject specific maps Wi, and
can be thought of as a multi-subject extension of PCA. Simultaneously
reducing dimensionality across subjects outperforms other averaging
approaches at matching up specific timepoints in a movie across
subjects.

Semantic representation of stimulus. To find semantic re-
presentations of English annotations, it is natural to draw upon related
work in natural language processing. One common approach involves
word embeddings created by using co-occurrence information in a
large corpus like Wikipedia. A simple technique for representing longer
pieces of text is to average the vectors for the individual words (Wehbe
et al., 2014). Recently, this simplistic idea has been extended in natural
language processing by using recurrent neural nets (Kiros et al., 2015)
or by modifying the original model for learning word vectors to learn
word sequence chunks (for instance, paragraphs) directly from the text
(Le and Mikolov, 2014). These more powerful methods have the
drawback of requiring large corpora, making them unusable in our
current setting where we only have 1973 brief text annotations. Very
recently, Arora et al. (2017) suggested a simpler method for this task
that requires no additional information beyond the existing word
embeddings, yet beats these more complicated methods in standard
natural language tasks. We adapt this method to construct annotation
embeddings using weighted combinations of the vector representations
for the words in each annotation. One of our key results is that this new
embedding significantly outperforms unweighted averaging of word
vectors.

Using previous timestep information. A movie stimulus
naturally breaks up into multi-timestep scenes that occur at different
timepoints. Thus, at any given timepoint, there may be a window of
previous timesteps that are part of the current scene and thus are
relevant to understanding the current time point in both fMRI and Text
space. We would like to incorporate this past information shared within
scenes in order to learn better maps between fMRI and Text. Other
models (Huth et al., 2016; Wehbe et al., 2014) incorporate past
information by modeling the hemodynamic response function (HRF)
that describes the fMRI BOLD response to a stimulus. However, this

approach focuses on small timescales, and only accounts for the
delayed and temporally-smeared BOLD response rather than attempt-
ing to aggregate scene information. Our approach is to first approx-
imate the HRF delay with a simple one-time shift of 4.5 s, and to then
incorporate longer time-scales into our model by including in the
featurization a k-sized window of previous timesteps, where k is varied
from 0 to 30 (these numbers correspond to 0 to 45 s).

To evaluate the effect of each of these featurization methods, we use
linear maps to relate the fMRI signal to the representation of the
semantic content, using only the first half of the movie. These maps are
validated with two experiments: scene classification and scene ranking.
We divide up the second half of the movie into 25 uniformly-sized
chunks. Scene classification is the task of using correlation to match
predicted intervals of fMRI or semantic activity with the ground truth,
and reporting the percentage of the time that the match is perfect.
Since there are 25 intervals, random chance performance at this task is
4%. Scene ranking is the same task, except we measure the average
rank of the correct answer: Random chance performance here is 50%.
For a visual summary of the setup, see Fig. 1. These experiments are
executed with the fMRI → Text maps (given fMRI data, predict text
annotations) as well as the Text → fMRI maps (give text annotations,
predict fMRI data).

1.1. Main results

Our goal in this study is to characterize the usefulness of the
representation learned by the Shared Response Model, the importance
of including previous time steps, and the ideal method for featurizing
text information for future predictive tasks. We measure success by
evaluating the performance of different featurization approaches on the
scene classification and scene ranking tasks.

Our main results are (i) showing that fMRI responses from multiple
individuals can be effectively combined using SRM to improve the
matching accuracy (1.3 × average improvement over our baseline, the
average PCA representation) between the fMRI and the text annotation
(Table 1, Figs. 6, 7), (ii) demonstrating that a method for combining
word vectors into annotation vectors via a suitable weighting (Arora
et al., 2017) for averaging word vectors on average improves 1.2 × over
unweighted averaging (Table 1, Figs. 6, 7), and (iii) finding that
appropriate inclusion of information from previous time steps yields
as much as a 5.3 × improvement (on average,1.8 × ) in tasks measuring
the performance of mapping from fMRI to Text (see Fig. 6, Dorsal
Language ROI). There are diminishing returns after a certain point to
including more time steps: The optimal number seems to be around
5 − 8 previous time steps. For the Text → fMRI task, using previous
time steps decreases performance.

We also report the top performances for each task. For the fMRI →
Text task, our top scene classification performance is 72% accuracy,

Fig. 1. Summary of Experimental Setup: We learn a shared response for the brain
activity of 16 different subjects watching BBC's Sherlock, construct semantic featuriza-
tions for associated semantic annotations, and learn bidirectional linear maps between
the two data modes.
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meaning that for 72% of the time intervals we examine, our predicted
annotation representation correlates the most with the true annotation
representation for that time interval (see Fig. 5, Whole Brain ROI).
Notably, this result improves considerably over the random guessing
rate of 4%. The corresponding scene ranking performance is 96%,
meaning that on average, the rank of the true annotation representa-
tion is within the top 4% when sorted by correlation with the predicted
annotation representation. This number implies that, on average, the
correct scene is ranked in the top 1 or 2 over all 25 scenes— since there
are several more than 1 or 2 scenes in the movie with a single,
prominent character like Sherlock or John Watson present, our results
imply that our methods can distinguish between scenes that are similar
with respect to measures like the presence of certain characters.

On the other hand, the results for Text → fMRI classification were
somewhat worse, although performance was still well above chance.
The top scene classification performance for Text → fMRI is 56%
accuracy (vs. 4% chance), and the corresponding scene ranking
accuracy is 91% (vs. 50% chance; see Fig. 5, DMN-A ROI).

2. Methods

2.1. Preprocessing the dataset

The dataset we work with in this paper is Sherlock fMRI dataset
(Chen et al., 2017): 16 people watch the “Sherlock” television show for
50 min broken into 1973 TRs, where each TR is 1.5 s of film.

Before performing any analysis, the fMRI data are preprocessed
and standardized using the techniques described in Chen et al. (2017).
Then, we identify six distinct brain regions of interest (ROIs) that we
treat completely separately. That is, we first apply ROI masks to the
whole-brain data and then learn SRM-representations for each of these
ROIs separately. We use the ROIs for the default mode network (DMN-
A, DMN-B) and the ROIs for the ventral and dorsal language areas
identified in Simony et al. (2016). Our methodology for finding the
default mode network relies on intersubject functional correlation
(ISFC), a technique first introduced by Hasson et al. (2004). The
central idea is that natural stimuli (like movies) evoke reliable, time-
dependent activity across a variety of brain networks. For more details,
see Fig. 2. We are interested in the DMN ROIs in particular since prior
work has demonstrated that these regions play a crucial role in tracking
the narrative in settings such as watching movies or reading stories
(Hasson et al., 2004, 2010; Honey et al., 2012; Regev et al., 2013; Ames
et al., 2015; Simony et al., 2016; Yeshurun et al., 2017). The “Whole
Brain” ROI is a 26000-voxel mask of the brain that highlights voxels

that have intersubject correlation >0.2 on the data, and the Occipital
Lobe ROI is defined from the MNI Structural Atlas in FSL (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/Atlases). We include these ROIs for holistic
comparison across the whole brain.

We also truncate the first three TRs of fMRI data and the last three
TRs of semantic annotation data. This operation effectively aligns the
fMRI and semantic data under the assumption that there is a 4.5 s
delay between the onset of the stimulus and the BOLD response signal.

2.2. Constructing and aggregating semantic vectors

The Sherlock fMRI data are supplemented by text annotations
describing each TR with a few sentences. These annotations were
created by human annotators who viewed the film and carefully noted a
couple sentences' worth of detail for every TR. For instance, a moment
from the scene where Sherlock and John first meet is described as
“Sherlock takes the phone that John hands to him. He flips the screen
up, presses a button and blatantly asks: Afghanistan or Iraq?”. Notably,
these annotations contain some inferences about the subtext of the
actions, expressions, and atmosphere of the scene. Adding this
information diversifies the information content of the annotations,
and allows for the creation of diverse and informative embeddings that
capture more semantic content than would otherwise be possible with
current natural language understanding techniques. The improved
diversity of the embeddings makes the task of identifying unique
scenes in text-space easier as well.

In order to represent words, we take advantage of the distributional
properties of words in a large corpus – namely, English Wikipedia. We
train word embeddings as described in Arora et al. (2016), which
perform on par with other standard word embedding techniques like
GloVe and Word2Vec (Arora et al., 2016). Now, we diverge from the
prior work by calculating and applying a domain specific re-centering
of the embeddings. After creating an embedding for each word in the
vocabulary of the Sherlock annotations, we calculate the top principal
component of all word embeddings in the vocabulary. We then scale
the normalized top principal component by the average Euclidean
norm of a word embedding in the Sherlock vocabulary. This vector
represents a kind of average topic for the Sherlock vocabulary. Since we
would like our word embeddings to be discriminative within this
average topic, we algebraically subtract out this component. We can

Table 1
Table of Improvement Ratios for Various Algorithmic Parameters: In this table we give
the maximum and average improvement ratios for a specific algorithmic technique over
another, including usage of previous time steps, SRM/SRM-ICA versus PCA, SIF-
weighted annotation embeddings versus unweighted annotation embeddings, and
Procrustes versus ridge regression for both fMRI → Text and Text → fMRI. When we
use previous timesteps, we consider the results for using 5 − 8 previous time steps. These
numbers are all for the scene classification task. Note that the values from the maximum
columns can be seen visually in Figs. 6 and 7 respectively.

fMRI → Text Maximum Average

Previous Timesteps vs. None 5.3 × 1.8 ×
Procrustes vs. Ridge 2.8 × 1.3 ×
SRM/SRM-ICA vs. PCA 1.8 × 1.3 ×
Weighted-SIF vs. Unweighted 1.6 × 1.2 ×

Text → fMRI Maximum Average

Previous Timesteps vs. None 2.5 × 0.5 ×
Procrustes vs. Ridge 3.0 × 0.8 ×
SRM/SRM-ICA vs. PCA 2.3 × 1.2 ×
Weighted-SIF vs. Unweighted 1.8 × 1.1 ×

Fig. 2. Visualization of the DMN and Ventral/Dorsal Language Area ROIs (Simony et al.,
2016): Here, we display four of the regions of interest on a brain map. These masks were
collected on the Pie Man dataset (Simony et al., 2016), then fit to a standard anatomical
brain (MNI152), and interpolated to 3-mm isotropic voxels (Simony et al., 2016). In
order to define the DMN-A and DMN-B regions, as well as the Ventral and Dorsal
language area regions, the intersubject functional correlation matrix (Hasson et al.,
2004) was calculated from the fMRI data of 36 subjects collected while they were
listening to stories (Simony et al., 2016). Then, k-means clustering was applied to find
the networks. The DMN-A and DMN-B networks were identified by comparing the
resultant clusters to the DMN ROIs derived by thresholding the functional correlation
between the posterior cingulate (identified from an atlas) and the rest of the brain in
resting-state fMRI data from 36 subjects (Simony et al., 2016). The Ventral and Dorsal
language areas were identified by comparing the clusters to previous results in the
literature (Simony et al., 2016).

K. Vodrahalli et al. NeuroImage xxx (xxxx) xxx–xxx

3

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases


view this step as finding a translation operation that moves the word
embeddings away from the region of semantic space that is close to
generic words in the Sherlock annotation corpus.

The central assumption in Arora et al. (2016) is the probability
model for a word w in a vocabulary V given a context c, where the
context represents a small window of words in the corpus. This model
is given by w c v c[ | ] = exp( )

Z w
T1

c
where vw represents the vector for a

given word and Zc is a term that normalizes the distribution. The idea is
that the context vector c represents the subject matter of the text at a
given point in time.

Using this assumption and a few others, the word vector learning
problem is phrased in Arora et al. (2016) as the squared-norm
objective:

∑ X X v v Cmin (log( ) − ∥ + ∥ − )
v C w w

w w w w w w
{ } , ,

, , 2
2 2

w w V∈
1 2

1 2 1 2 1 2

where C is a bias term, X is the co-occurrence count matrix between
single words in a small window of text (fixed at ≈5 words) and vw are
the word vectors we are trying to learn. This objective can be optimized
with gradient descent. For a full treatment of the theoretical properties
of the word vectors and the derivation of the squared-norm objective,
see (Arora et al., 2016).

For every 1.5-second time-point in our Sherlock movie, annotators
were asked to provide a natural description of what is happening in
the movie: actions, dialog, and so on. This annotation is typically a
few sentences long, and contains around 15 words on average. We can
think of each annotation as the current context of the movie narrative.
The log-linear probability model of Arora et al. (2016) for words given
context c implies that the maximum likelihood estimator of the
context is simply the average of all words in the annotation. (This
formulation is a theoretical justification for a standard rule of thumb
in natural language processing for representing the sense of a small
piece of text by the average of the embeddings for the words in the
text). We will call these representations the unweighted annotation
vectors.

However, one imagines that not all words in the annotation are
equally important, and that a better representation might be possible
by taking this idea into account. This approach has been studied in
various neural network frameworks (Kiros et al., 2015); however,
applying these kinds of models requires a large annotation corpus,
while we only have 1973 15-word annotations. A recent paper (Arora
et al., 2017) suggests a principled approach for computing a repre-
sentation of a small piece of text. The intuition from Arora et al. (2017)
is that words that occur with much greater frequency in the original
corpus may inherently contain less information, since these words are
in some sense uniform with respect to the whole word distribution.
Therefore, more frequent words should be weighted less. The paper
(Arora et al., 2017) modifies the above language generation model as
follows: For a word w given context c, the probability of a word w given
context c is

w c α w α
v c

Z
[ | ] = [ ] + (1 − )

exp( )w
T

c
(1)

where Zc normalizes the distribution and α ∈ [0, 1]. We can think of
this model as a weighted sum of the probability of a word w appearing
not conditioned on the context c and the probability of a word w
appearing conditioned on the context c.

The revised estimate of the context vector c in this modified
objective is

∑v β
β p

v=
+

·annotation
word∈annotation word

word (2)

where β≔ α
αZ

1 − . Typically, we choose α such that β ≈ 10−4. These
representations are called the smooth inverse frequency (SIF)
annotation vectors, or weighted annotation vectors. Fig. 3 depicts a

example sentence with the respective word weights colored according
to importance in the sentence embedding.

Using either the unweighted or weighted approach will produce one
annotation vector for each of our T time steps. On the training portion of
the data (the first half of the movie), we calculate an average annotation
vector and subtract it from all data. Here, we assume that the average
annotation vector is invariant, which turns out to be a good assumption.

2.3. Shared Response Models for Multi-Subject fMRI

The Shared Response Model (SRM) (Chen et al., 2015) is an
unsupervised probabilistic latent variable model for multi-subject
fMRI data under a time-synchronized stimulus. From each subject's
fMRI view of the movie, SRM learns projections to a shared space that
captures semantic aspects of the fMRI response.

Specifically, SRM learns N maps Wi with orthogonal columns such
that X W S∥ − ∥i i F is minimized over W S{ } ,i i

N
=1 , where X ∈i

v T× is the ith

subject's fMRI response (v voxels by T repetition times) and S ∈ k T× is
a feature time-series in a k-dimensional shared space. In this paper,
k=20 since low-rank SVD with 20 dimensions captures 90% of the
variance of the original fMRI matrices (Chen et al., 2017). We also
experimented with using k = 50, 80, 100, 1000, but the results barely
varied from using k = 20 dimensions. Note that, for testing, the learned
Wi allow us to project unseen fMRI data into the shared space via
W Xi

T
i
test since Wi has orthogonal columns.

We also examine a variant of SRM called SRM-ICA (Zhang et al.,
2016) that modifies the SRM algorithm with an independent compo-
nents analysis (ICA) objective. ICA is an unsupervised learning
technique that identifies independent signals from a mixture by looking
for rotations of the data that produce non-Gaussian signals. SRM-ICA
brings this approach to learning a shared space: While in SRM we
alternated by solving forWi by minimizing X W S∥ − ∥i i F and updating S
with the average ofW Xi

T
i, we change the objective we use to update each

Wi to an ICA objective: Maximizing the non-Gaussianity of the shared
response S W X= ∑

n i
n

i i
1

=1
+ , individually with respect to each X W( , )i i pair.

Here we are using the Shared Response Model to highlight aspects
of the neural signal that are shared across people. To the extent that the
information in the text annotations is reflected in the thoughts of most
or all subjects, SRM should be helpful in mapping between fMRI and
this (shared) information. Note that an alternative use of SRM is to
take the shared variance identified by SRM and subtract it out, thereby
highlighting idiosyncratic neural variance; this could be useful in
situations where fMRI is being mapped to more idiosyncratic cognitive
states. In the original Shared Response Model paper (Chen et al.,
2015), the authors include an experiment where they apply SRM to two
groups that were expected to have differing perceptions of the stimulus.
They found that subtracting out shared variance across the groups
using SRM improved subsequent discrimination of fMRI time series
from the two groups.

In our experiments, we use the implementation of SRM due to
Anderson et al. (2016). We compare average SRM and SRM-ICA
projections ( W X∑

N i
N

i
T

i
1

=1
test) against the baseline average principal

components analysis (PCA) projections. PCA is a standard linear
dimensionality reduction technique that finds an optimal (in
Frobenius norm) orthogonal projection of the data onto a low-dimen-
sional subspace.

2.4. Learning linear maps

Our approach to predicting semantic annotation vectors from fMRI
vectors and vice versa is simply linear regression with two kinds of
regularization. Letting X ∈ v T× represent the fMRI data matrix (either
SRM, SRM-ICA, or PCA) for a specific ROI and Y ∈ T100× represent the
annotation vectors, our main approach is given by solving the Procrustes
problem Y ΩXmin ∥ − ∥Ω 2

2 with orthogonal columns constraint
Ω Ω I=T

v v× . Thus, we learn a matrix Ω ∈ v100× as a map from X Y→ ,

K. Vodrahalli et al. NeuroImage xxx (xxxx) xxx–xxx

4



decoding fMRI vectors into semantic space. Our other approach is given by
the ridge regression problem y ω X ωmin ∥ − ∥ + ∥ ∥ω j j

T
j2

2
2
2

j where
j ∈ [1, 100] for each word vector dimension. Putting the ωj together forms

Ω ∈ v100× as before, with the orthogonality constraint replaced by a row-
wise ℓ2-norm regularization.

2.5. Adding Previous Timesteps

One could augment the fMRI and annotation vectors using past
time steps by finding a complicated combination of the features at each
time step, resulting in a representation with the same number of
dimensions. For now, we sidestep the complexity of this task by simply
concatenating k previous vectors to the predictor vector at each time
step (TR) before learning mappings as before. A potential downside to
this approach is that we linearly increase the dimensionality with k,
which can be intractable for large k. However, this approach allows
every predictor feature at every timepoint to have its own weight in the
linear map, creating a powerful model. Thus, in the fMRI → Text case,
we stacked the k previous fMRI vectors onto each fMRI vector, and did
not modify the text annotation vectors. In the Text → fMRI case, we
stacked k previous text annotation vectors and left the fMRI vectors
unmodified. When previous time steps do not exist, we append an all-
zeros vector instead. We can think of the modified representations as
capturing a notion of the dynamics occurring over an interval of

k1.5( + 1) (TR length × total number time points) seconds. In this
paper, we tried k = 1 – 9 in steps of 1, and then k = 10 – 30 in steps of
5. See Fig. 4 for a visualization.

2.6. Experiment descriptions

First, we divide our 1973 TRs into 50 uniformly-sized chunks of
time, the first 25 of which are our training data and the latter 25 of
which are our testing data. We learn maps both from fMRI to text
annotations and from text annotations to fMRI on the training data.
From now on, we refer to fMRI → Text experiments as those which
take an fMRI representation as input and attempt to predict a semantic
annotation vector representation. Likewise, Text→ fMRI experiments
are those which take in a semantic annotation vector input and predict
an fMRI representation. Also note that we train the linear maps on the
individual TRs as opposed to the 25 chunks.

We perform two primary experiments in this paper, scene
classification and scene ranking. These experiments are applied
to both the fMRI → Text and Text → fMRI settings. In the following

description, we denote the predictor space by X and the target space by
Y.

Suppose we are in the X Y→ setting. For each time chunk
i ∈ [1, 25] in X-space, we predict chunk i in Y-space using the learned
map, by applying the map individually to each TR within the time
chunk. Then, we calculate the Pearson correlation of the predicted
chunk i (represented by concatenating the representations for each TR
in the chunk into one long vector) with each of the actual time chunks
j ∈ [1, 25], and we rank the chunk indexes by correlation.

Scene classification. Given the ranking of actual time chunks by
correlation with the predicted chunk, we report the proportion of the
time that the correct chunk index is ranked the highest. This measure
has a 4% chance rate, meaning that if we randomly ranked the actual
chunks, any particular chunk would be the top chunk 4% of the time.

Scene ranking. Given the ranking of actual time chunks
by correlation with the predicted chunk, we calculate
1 − average rank of the correct index

25
. This measure has 50% chance rate, meaning

that if we randomly ranked the actual time chunks, the average rank of
any particular chunk would be in the middle.

We report both of these metrics because the 4% chance rate task
gives a better idea of the distribution of the ranking, while other
authors have used the 50% chance rate, obtaining ranking scores
between 70% − 80% (Pereira et al., 2011; Wehbe et al., 2014; Pereira
et al., 2016).

We also give some additional analysis of the properties of stacking
previous time points, and discuss how they affect prediction capabil-
ities. In particular, we observe the dependence of classification
accuracy on the number of previous time steps.

3. Results

3.1. Top absolute performances over all algorithms

Fig. 5 suggests that the DMN regions perform well in the experi-
ments, which fits with prior research in this area (Regev et al., 2013;
Simony et al., 2016). We achieve 72% accuracy over 4% chance with
the Whole Brain region in the scene classification task. Since the scene
ranking measure is always ≥ 80%, the average rank of the correct
answer is in the top 20% of the scenes, which translates to top 5 scenes
out of 25. For fMRI → Text we perform even better, where the average
rank of the correct answer is in the top 10% of the scenes (top 3 scenes
out of 25). Notably, we get excellent performance out of the Whole
Brain region, which has 26000 voxels selected by merely choosing
voxels whose intersubject correlation is above a certain threshold. This
result demonstrates that our methods are not overly dependent on
applying domain-specific knowledge (we do not necessarily have to
preselect an ROI to get good results).

fMRI → Text. Here we discuss the performance of the fMRI →
Text experiments. In Fig. 5, we display the top accuracy over all
algorithmic choices for each experiment. We achieve high accuracy
performance, reaching 72% for the scene classification task for fMRI→
Text and in the mid-90%s for the scene ranking tasks. In particular, the
Whole Brain and the DMN regions perform best, supporting previous
work by Regev et al. (2013) and others demonstrating that the DMN
plays an important role in narrative processing.

Text → fMRI. On the other hand, we see that the Text → fMRI
experiments perform worse than the fMRI → Text experiments. The
best top −1 scene classification accuracy performance is 56% for the
DMN-A region, and the other top performing regions get accuracy in
the mid-to-high 40% accuracy. For the ranking task, performance

Fig. 3. Visualization of Semantic Annotation Vector Weightings: We display an example sentence from the Sherlock annotations, where we have colored important words red, and
unimportant words blue. Brighter red means more important, and darker blue means less important.

Fig. 4. Visualizing Concatenation: We visualize what the single timestep case looks like
compared to a case where we use the previous two timesteps in our featurization as well.
The latter case results in a more complicated model, since one of the dimensions of our
linear map triples in size.
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ranges from 80% − 90%, which is again slightly worse than the fMRI →
Text ranking experiment.

3.2. Comparing algorithmic choices

In order to simplify presentation for Figs. 6 and 7, we chose to fix

the algorithmic parameters that uniformly outperformed other options.
All linear maps for fMRI → Text were learned using the Procrustes
method and all linear maps for Text → fMRI were learned using the
ridge regression approach. We fixed these for comparison purposes
since, for fMRI → Text scene classification, Procrustes performed
1.25 × better than ridge on average (Table 1). On the other hand, ridge

Fig. 5. Best Bidirectional Accuracy Scores for Each Brain Region of Interest for both Scene Classification and Ranking: In this figure, for each ROI and for each experiment (Text →
fMRI 4% (red), 50% (blue) chance rates; fMRI → Text 4% (red), 50% (blue) chance rates), we give the best performance as a percentage. For all measures, closer to 100% is better. We
can see that Whole Brain, DMN-A, and DMN-B tend to perform the best, and that fMRI → Text performs better than Text → fMRI.

Fig. 6. Comparisons for all ROIs for the fMRI → Text Top-1 Scene Classification Experiment: The chance rate for this task is 4%. Each plot is for a different ROI. Here, we only display
results which use the Procrustes linear map since it on average performs better than ridge regression for fMRI→ Text. We also fix the number of previous time points used for the shaded
bars at 8 previous time steps, since that tends to be near optimal. We present comparisons between SRM/SRM-ICA and PCA using blue colors versus red colors, and compare weighted
semantic aggregation (left) to unweighted semantic aggregation (right) by x-axis position.
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performed 1.2 × better than Procrustes on average over Text → fMRI
scene classification (Table 1). As a caveat, there were exceptions to the
rule, as the max ratios in Table 1 indicate. In Figs. 6 and 7, for the data
points that are labeled as using previous time steps, we reported the
result for 8 previous time steps. The optimal number of previous time
steps for fMRI→ Text was typically between 5 − 8, and so we fixed that
choice of parameter across all of the graphs in these figures.

Comparing SRM and SRM-ICA to PCA. We see considerable
improvement on best-case performance when using SRM or SRM-ICA
over PCA, particularly on the fMRI → Text tasks, in some cases gaining
as much as1.8 × the top −1 scene classification performance of PCA, as
demonstrated in Fig. 6. Typically, SRM-ICA tends to perform slightly
better, especially on the Whole Brain ROI. The case is weaker for Text
→ fMRI, since though we can find that performance increases by as
much as 2.3 × the top −1 scene classification performance, the average
benefit is smaller (Table 1, Fig. 7). If we look at average case
improvements, we see considerable gains in both directions: SRM/
SRM-ICA improve on average by1.3 × over PCA for fMRI→ Text scene
classification, and on average by 1.2 × over PCA on Text → fMRI scene
classification. For the ranking tasks, we note that while performance
improvement for the best selections of algorithm parameters is not as
distinct, SRM and SRM-ICA can drastically improve upon PCA
performance for poor selection of parameters. This fact suggests that
one should always use SRM or SRM-ICA over PCA, since on new
datasets where it is not known which linear map to use, or the number
of previous time points to incorporate in the analysis and so on, our

results here suggest that these SRM-variants will improve strongly
upon PCA if the parameters are poorly chosen, and still improve
decently upon PCA otherwise.

Weighted vs. Unweighted Aggregation of Word
Embeddings. Using the SIF-weighted embeddings improves upon
unweighted averaging when featurizing the annotation vectors as well.
Examining Table 1 and Fig. 6, we see that for fMRI → Text top −1,
there is improvement on best-case performance by as much as 1.3 × by
using weighted embeddings. On average, we see that weighted embed-
dings improve by 1.2 × over the unweighted embeddings. Looking at
Fig. 7, the case is weaker for Text → fMRI top −1; while for some
algorithms and ROIs we see as much as 2.5 × improvement on best-
case performance by weighted aggregation embeddings, we also see
that sometimes unweighted averaging can outperform weighted aver-
aging. However, on average, weighted embeddings improve by
1.1 × over unweighted averaged embeddings.

The Effects of Previous Time Points. Fig. 6 demonstrates the
positive effect of adding previous time steps to the accuracy scores
for the fMRI → Text case. Table 1 demonstrates that at best, using
previous timepoints can improve performance by as much as 5.3 ×.
On average, this improvement is 1.8 ×, nearly doubling perfor-
mance. On the other hand, Fig. 7 shows that for Text → fMRI,
adding previous time steps almost universally hurts performance
and on average halves performance (Table 1). This fact is
also evident from Fig. 8, which illustrates the situation for the
DMN-A ROI.

Fig. 7. Comparisons for all ROIs for the Text → fMRI Top-1 Scene Classification Experiment: The chance rate for this task is 4%. Each plot is for a different ROI. Here, we only display
results which use the ridge regression linear map since it on average performs better than Procrustes for Text→ fMRI. We also fix the number of previous time points used for the shaded
bars at 8 previous time steps, since that tends to be near optimal. We present comparisons between SRM/SRM-ICA and PCA using blue colors versus red colors, and compare weighted
semantic aggregation (left) to unweighted semantic aggregation (right) by x-axis position.
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Notably, the effect of using previous time steps is different from
learning a hemodynamic response function, which other authors
(Wehbe et al., 2014; Huth et al., 2016) have done in the past.
Instead, we are investigating whether information from longer time
scales helps improve performance. In Fig. 8, we see that there are some
peaks in classification performance between 5 and 8 previous time
steps ago (or 7.5 − 9.0 seconds ago, after having taken into account the
HRF). However, using any number of previous time steps (up to as long
as 30 TRs ago, or 45 s) still improves over the baseline of using no
previous time steps.

For Text → fMRI however, the story is different. We see no
improvement in performance when using previous time points, and
in fact performance decreases (Fig. 8). We discuss differences between
the Text → fMRI and fMRI → Text results in the next section.

4. Discussion

In this paper, we have explored several methods that improve our
success at mapping between fMRI response to a natural stimulus and
semantic text data describing this stimulus. We see that SRM and
SRM-ICA perform considerably better than simple averaging or using
PCA. Fig. 6 demonstrates that weighted aggregation of the words in
semantic space to form annotation vectors improves the baseline
accuracy by a reasonable amount, relative to simple averaging. We
also show that adding previous time steps improves accuracy substan-
tially.

Using SRM-ICA in fMRI space, weighted annotation vectors in
semantic space, and a Procrustes linear map learned between the
concatenations of five previous time points in fMRI and semantic
space, we are able to achieve 72% scene classification accuracy over 4%
chance rate for the Whole Brain region on the fMRI → Text task.

Other ROIs are typically above 60% scene classification accuracy as
well. Similarly, in the scene ranking task, we achieve >90% average
rank for the correct answer across ROIs. Text→ fMRI does not perform
as well but is still far above chance (56% with DMN-A ROI for 4%
chance rate, and >80% average rank across ROIs). Another takeaway is
that SRM and SRM-ICA improve upon PCA almost always, and provide
particularly substantial improvement in cases where the other para-
meter settings (like the semantic featurization or selection of linear
map and associated hyper-parameters) are not necessarily tuned.
These results indicate that we are able to use multiple subjects to
learn a 20-dimensional shared space for the fMRI data that increases
performance on our experiments. Thus, we provide concrete evidence
towards the hypothesis made in Huth et al. (2016) regarding the
existence of a shared fMRI representation across multiple subjects

that correlates significantly with fine-grained semantic context
vectors derived via statistical word co-occurrence properties.

The method of combining word vectors is another essential part of
our results. We demonstrate that weighted-SIF averaging (Arora et al.,
2017) for aggregating individual elements of a word sequence performs
on average1.2 × better than unweighted averaging for fMRI→ Text top
−1 scene classification, and on average1.1 × better for Text→ fMRI top
−1 scene classification. Since we use only semantic vectors to featurize a
movie stimulus dataset, our work provides additional support for the
notion that the distributional hypothesis of word meaning may extend
to real life multi-sensory stimuli.

Finally, we note that using multiple previous timepoints when
mapping from fMRI → Text is very beneficial and significantly
improves results by a factor of as much as 5.3 ×, and on average nearly
doubles performance (Table 1).

Overall, accuracy for Text→ fMRI was worse than for fMRI→ Text.
Also, using previous time points hurt performance for Text → fMRI
(whereas it helped for fMRI → Text). One possible cause of these
differences is that, in several places in the movie, text vectors were
almost identical between adjacent TRs, whereas the fMRI patterns
varied. Where this property occurred, Text → fMRI posed a (more
difficult) one-to-many mapping problem, whereas fMRI → Text was an
(easier) many-to-one mapping. These “pockets of stationarity” in the
text vectors are a consequence of our using human-generated annota-
tions to construct our semantic embeddings. As we noted before, these
annotations reflect the annotator's inferences about what is happening
in the movie; if the annotator's understanding of the current situation
in the movie stays relatively stationary, the text embeddings will also
stay relatively stationary. This reasoning may also account for why
adding previous timepoints was not helpful for Text → fMRI; if the
annotations for previous timepoints are the same as for the current
timepoint, adding these previous timepoints has the effect of adding
extra free parameters to the model without adding new, useful
information.

Putting all of these ideas together, we think it is possible that the
annotations left out some details that were nonetheless cognitively
registered by the fMRI participant (and thus registered in their fMRI
data). This suggests that one way to improve Text → fMRI accuracy
would be to identify points in time when text annotations are relatively
stationary, and then go back and encourage the annotator to include
new details that distinguish between the time points that they may not
have noted on the first pass. At the same time, we should note that the
human cognitive system's ability to maintain a stable understanding of
a situation in the face of changing sensory input is a feature and not a
bug; the relative stationarity of the annotations within scenes reflects
our ability to extract deep structure from complex narratives, and in
ongoing, related work we are developing new tools to identify and study
brain regions that are involved in extracting this deep structure
(Baldassano et al., 2016).
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Fig. 8. Varying Previous Timesteps: For the DMN-A region, choosing SRM-ICA,
weighted average, Procrustes for the fMRI → Text linear map, and ridge for the Text
→ fMRI linear map, we plot the relationship between accuracy (y-axis) and number of
previous time points used in the linear map fit (x-axis). We can see a peak at around
using 5 − 8 previous TRs as optimal for the fMRI→ Text tasks, and a relatively monotone
decay for using any previous TRs in the Text → fMRI tasks.
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