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The Parahippocampal Place Area (PPA) has traditionally been considered a homogeneous region of interest, but
recent evidence from both human studies and animal models has suggested that PPA may be composed of func-
tionally distinct subunits. To investigate this hypothesis, we utilize a functional connectivity measure for fMRI
that can estimate connectivity differences at the voxel level. Applying this method to whole-brain data from
two experiments, we provide the first direct evidence that anterior and posterior PPA exhibit distinct connectivity
patterns, with anterior PPA more strongly connected to regions in the default mode network (including the
parieto-medial temporal pathway) and posterior PPA more strongly connected to occipital visual regions. We
show that object sensitivity in PPA also has an anterior–posterior gradient, with stronger responses to abstract
objects in posterior PPA. These findings cast doubt on the traditional view of PPA as a single coherent region,
and suggest that PPA is composed of one subregion specialized for the processing of low-level visual features
and object shape, and a separate subregion more involved in memory and scene context.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Over the past two decades, functional magnetic resonance imaging
(fMRI) has identified a number of category-selective regions involved
in visual processing. Most of these regions have been defined based on
differential activation to one category of stimuli over another, but this
hypothesis-driven approach to mapping brain regions has significant
drawbacks. Adjacent areas that have similar response profiles to the
presented stimuli, but different functions, may be mistakenly conflated;
for example, functionally distinct subregions have been identified in both
object-sensitive lateral occipital complex (LOC) (Grill-Spector et al.,
1999) and the extrastriate body area (Weiner and Grill-Spector, 2011).

Another visual region that has been proposed as a candidate for
subdivision is the Parahippocampal Place Area (PPA) (Epstein and
Kanwisher, 1998). This scene-sensitive area has been heavily implicated
in visual scene perception, though the precise nature of the representa-
tion in this area has been controversial. Leading models have argued
that PPA represents local scene geometry (Epstein et al., 2003), spatial
expanse (Kravitz et al., 2011a; Park et al., 2011), space-defining objects
(Mullally and Maguire, 2011), or contextual relationships (Bar, 2004).
All of these models have implicitly assumed that PPA is a homogeneous
unit performing a single functional role, but this view has recently been
called into question. In the last several years, a number of researchers
have suggested that PPA could have multiple functional components.
Differences in spatial frequency response (Rajimehr et al., 2011),
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varying deficits resulting from PPA lesions (Epstein, 2008), PPA's over-
lapwithmultiple visual fieldmaps (Arcaro et al., 2009), and a clustering
meta-analysis (Sewards, 2011) all hint at the possibility that PPA may
be comprised of at least two functionally distinct subunits along its
posterior–anterior axis. However, studies explicitly searching for a dis-
tinction between posterior and anterior PPA have failed to identify
major differences (Cant and Xu, 2012; Epstein and Morgan, 2012).

Anatomical data from a proposed macaque homologue of PPA
presents an interesting possibility for identifying subregions of human
PPA. Although the definition of macaque PPA is still a matter of ongoing
research (Nasr et al., 2011; Rajimehr et al., 2011; Sewards, 2011), a pos-
sible candidate spans cytoarchitectonically defined parahippocampal
areas TH, TF, and TFO (Kravitz et al., 2011b). The most anterior area,
TH, is primarily connected to retrosplenial cortex (RSC) (Kravitz et al.,
2011b; Suzuki, 2009) and is also connected to the caudal inferior parietal
lobule (cIPL) through a parieto-medial temporal pathway (Cavada and
Goldman-Rakic, 1989; Kravitz et al., 2011b). The more posterior TF is
connected to a similar set of regions, but receives stronger input from
ventral visual areas V4 and TEO (Suzuki, 2009). The specific connectivity
properties of themost posterior area (TFO) are not yet known, but it has
been shown that TFO has a neuronal architecture highly similar to that of
ventral visual regions (Saleem et al., 2007). In short, these macaque
parahippocampal regions exhibit an anterior–posterior gradient, with
the anterior side most related to RSC and cIPL and the posterior side
most related to ventral visual areas.

Connectivity results in humans, using both diffusion tensor imaging
(DTI) and fMRI, have shown that the parahippocampal region is
connected to occipital visual cortex (Kim and Kim, 2005; Libby et al.,
2012; Rushworth et al., 2006) as well as RSC and posterior parietal
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cortex (Caspers et al., 2011; Kahn et al., 2008; Libby et al., 2012;
Rushworth et al., 2006; Uddin et al., 2010), and PPA is known to com-
bine both spatial and object identity information (Harel et al., 2012).
However, it is not known whether the posterior and anterior parts of
the PPA connect differentially to these two networks. If human PPA cor-
responds to some or all of the macaque areas TH/TF/TFO, it should be
possible to identify an anterior–posterior gradient in the functional con-
nectivity properties of PPA. Such a finding would not only reinforce the
proposed link between PPA and these macaque parahippocampal
regions, but also demonstrate that PPA is actually composed of at least
two regions operating on different types of visual information, shedding
new light on the controversy over its functional properties.

To test whether voxels within PPA have differing connectivity prop-
erties, we apply our recentmethod for learning voxel-level connectivity
maps (Baldassano et al., 2012). Unlike standard functional connectivity
measures that examine each voxel independently, our method con-
siders all PPA voxels simultaneously to identify subtle differences in
connectivity between voxels. After examining how several predefined
ROIs connect to PPA, we perform a whole-brain searchlight analysis to
identify the distinct cortical networks that connect preferentially to
anterior or posterior PPA. We then demonstrate that these connectivity
gradients are paired with gradients in functional selectivity, by evaluat-
ing the response to scenes and objects across PPA. Finally, we show that
the connectivity gradients within PPA extend beyond PPA's borders,
placing PPA in the context of ventral occipital and parahippocampal
regions.

Materials and methods

Regularized connectivity method

Investigating our hypothesis requires a method that characterizes
functional connectivity patterns within a region of interest (ROI), at
the voxel level. A number of studies have used fMRI functional connec-
tivity measures to investigate structure within ROIs (Chai et al., 2009;
Cohen et al., 2008; Kim et al., 2010; Margulies et al., 2007, 2009; Roy
et al., 2009; Zhang et al., 2008), but most previous approaches either
do not measure connectivity at the voxel level (requiring spatial
downsampling to a small number of subregions) and/or learn connec-
tivity weights separately for each voxel (decreasing sensitivity and
making comparisons between voxels more difficult). In our datasets,
the PPA connectivity effects are too subtle to be detected by learning
weights separately for each voxel (see Supplementary Fig. 1), and re-
quire the use of a method which can learn voxel-level connectivity
maps that consider all voxels simultaneously. Support vector regression
can learn these type of voxel-level connectivity maps (Heinzle et al.,
2011), but does not utilize information about the spatial arrangement
of the voxels and therefore requires a relatively large amount of data.
To address this issue, we developed amethod for examining connectiv-
ity differences within ROIs that is specifically tailored to small training
sets typical in the fMRI setting. This method has been shown to recover
voxel-level connectivity propertiesmore accurately and efficiently than
previous approaches (Baldassano et al., 2012).

The most common type of analysis for computing functional
connectivity between two regions A1 and A2 measures how well the
mean of all voxel timecourses in A1 predicts the mean timecourse in
A2. We generalize this approach to identify voxel-level connectivity dif-
ferences, by learning aweightedmean over the voxel timecourses in A1

that best predicts themean timecourse in A2. The learnedweights of the
voxels in A1 will then indicate the strength of the functional connection
between each voxel and region A2. Simply allowing each voxel weight
to be learned independently leads to severe overfitting on typical
fMRI datasets, but fMRI data naturally satisfies some regularity assump-
tions that can constrain our model. In particular, voxel connectivity
properties are likely to be spatially correlated, with nearby voxels typi-
cally having more similar connectivity properties than spatially distant
voxels. This reflects a common view of cortical organization, and is
especially applicable to blood-oxygen-level dependent (BOLD) signals
such as fMRI, since the hemodynamic response is spatially smooth. To
incorporate this assumption, we add a spatial regularization term to
our model, which encourages each voxel in A1 to have a connectivity
weight similar to its spatially adjacent neighbors.

The learned connectivity maps are therefore a compromise
between two objectives. Our first goal is tomatch theweighted average
of the A1 timecourses to the mean A2 timecourse, by adjusting the
weights. Our second goal is to make the weights spatially smooth, to
prevent overfitting and allow our weights to generalize to independent
data runs. The relative importance of this second goal is controlled by a
hyperparameter λ, allowing us to trade off between having all weights
be learned independently (λ = 0) and having all weights be identical
(λ = ∞).

Mathematically, the connectivity weights are learned by minimiz-
ing the convex optimization objective

Minimize
a;b

‖ aT ⋅A1 þ bÞ−meanυ A2Þ‖22 þ λ‖D⋅a‖22
��

where a is the connectivityweightmap, b is a constant offset, A1 and A2

are the (# voxels × # timepoints) data matrices from two ROIs, and
meanυ denotes an average across voxels.D is the voxel connectivityma-
trix, whichwe design to penalize themean squared difference between
the weight ai of voxel i, and the weights of voxel i's neighbors:

jjD⋅aj 2
2 ¼ ∑N

i¼1
1
nij j ∑j∈ni

ai−aj
� �2��� where N is the number of voxels in

A1 and ni is the set of i's neighbors. The optimal a (for a given choice
of λ) can be found efficiently by using a convex optimization package
such as CVX (Grant and Boyd, 2011). For further details and validation
experiments, see Baldassano et al. (2012).

The following sections describe the collection of the datasets used to
learn the connectivity weights a. As will be shown in the Results, PPA's
functional connectivity properties are not sensitive to the choice of
experimental dataset; the specific details of the stimuli and tasks in
these experiments are provided only for reference purposes.

Localizer and object-in-scene experiments

Participants
10 subjects (3 female) with normal or corrected-to-normal vision

participated in the object-in-scene and localizer fMRI experiment. The
study protocol was approved by the Stanford University Institutional
Review Board, and all subjects gave their written informed consent.

Scanning parameters
Imaging data were acquired with a 3 T G.E. Healthcare scanner. A

gradient echo, echo-planar sequence was used to obtain functional
images [volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip
angle, 80°; matrix, 128 × 128 voxels; FOV, 20 cm; 29 oblique 3 mm
slices with 1 mm gap; in-plane resolution, 1.56 × 1.56 mm]. The func-
tional data was motion-corrected and each voxel's mean value was
scaled to equal 100 (no spatial smoothing was applied). We collected
a high-resolution (1 × 1 × 1 mm voxels) structural scan (SPGR; TR,
5.9 ms; TE, 2.0 ms, flip angle, 11°) in each scanning session. The struc-
tural scan was used to calculate a transformation between each
subject's brain and the Talairach atlas.

Localizer stimuli and procedure
For the localizer experiment, subjects performed 2 runs, eachwith 12

blocks drawn equally from six categories: child faces, adult faces, indoor
scenes, outdoor scenes, objects (abstract sculptures with no semantic
meaning), and scrambled objects (these stimuli have been used in previ-
ous studies such as Golarai et al., 2007). Images (240 × 240 pixels;
subtending 12.8 × 12.8° of visual angle) were presented at fixation.
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Examples of scene and object stimuli are shown in Fig. 1a. Blocks were
separated by 12 s fixation cross periods, and consisted of 12 image
presentations, each of which consisted of a 900 ms image followed by
a 100 ms fixation cross. Each image was presented exactly once, with
the exception of two images during each block that were repeated
twice in a row. Subjects were asked to maintain fixation at the center
of the screen, and respond via button-press whenever an image was
repeated. The total number of timepoints was 300 (150 per run).

Object-in-scene stimuli and procedure
For the object-in-scene experiment,wepresented two types of stim-

uli, as shown in Fig. 1b: (1) boats and cars on a blankwhite background
(isolated objects); and (2) boats and cars with a street or water scene
background (objects in context). Images (450 × 450 pixels; subtending
24 × 24° of visual angle) were presented 100 pixels (5°) away from fix-
ation in randomly determined directions. Subjects were informed that
each image contained either a boat or a car, and were asked to indicate
as quickly as possible whether the object was on the left half of the
image or the right half of the image (using a button box). Subjects
performed 4 runs, with 16 blocks per run (with a 14 s gap between
blocks) and 9 images per block. The first 8 blocks of each run showed
a boat or car placed in a photographic scene; for each block, the object
could violate a semantic relationship (appearing in the wrong type of
scene, e.g. a boat on a city street) and/or a geometric relationship
(appearing in the wrong position in the scene, e.g. a car above a tree
rather than on the street). Each presentation consisted of a 500 ms fix-
ation cross, an image flashed for 100 ms, a 300 ms mask, and then a
1300 ms response period (blank gray screen). The last 8 blocks of
each run showed a boat or car on a white background; these images
were identical to those presented in thefirst eight blocks, with the back-
grounds removed (and presented in a different random order). Each
presentation consisted of a 500 ms fixation cross, an image flashed for
350 ms, and then a 1300 ms response period (blank gray screen). The
total number of timepoints was 1224 (306 per run). Timepoints were
classified as “resting” if they occurred more than 4 s after the end of
one stimulus block and less than 4 s after the start of the next stimulus
block.

Functional region of interest definition
Regressors for faces, scenes, objects, and scrambled objects in the

localizer experiment were constructed by using the standard block
hemodynamic model in AFNI (Cox, 1996). LOC, PPA, RSC, and TOS
were defined using the following contrasts: LOC, top 500 voxels for
a b

Fig. 1. Sample stimuli used in our experiments. (a) Scene and object stimuli from the localiz
object-in-scene stimuli from the object-in-scene experiment. (c) Beach and mountain stim
Objects > Scrambled near lateral occipital surface; PPA, top 300 voxels
for Scenes > Objects near parahippocampal gyrus; RSC, top 200 voxels
for Scenes > Objects near retrosplenial cortex; TOS, top 200 voxels for
Scenes > Objects near the transverse occipital sulcus. The volume of
each ROI in mm3 was chosen conservatively, based on previous results
(Golarai et al., 2007). Consistent with the meta-analysis by Nasr et al.
(2011), PPA in our subjects was found to be centered on the collateral
sulcus adjacent to the parahippocampal gyrus.

Scene category experiment

Participants
8 subjects (4 female) with normal or corrected-to-normal vision

participated in the scene category fMRI experiment (these subjects
did not overlap with those in the object-in-scene experiment). The
study protocol was approved by the University of Illinois Institutional
Review Board, and all subjects gave their written informed consent.

Scanning parameters
Functional imaging data were acquiredwith a 3 T Siemens Trio scan-

ner. A gradient echo, echo-planar sequencewas used to obtain functional
images [volume repetition time (TR), 1.75 s; echo time (TE), 30 ms; flip
angle, 90°; matrix, 64 × 64 voxels; FOV, 19 cm; 29 oblique 3 mm slices
with 0 mm gap; in-plane resolution, 3.0 × 3.0 mm]. The functional
data was motion-corrected and each voxel's mean value was scaled to
equal 100 (no spatial smoothing was applied). We collected a high-
resolution structural scan for each subject; 4 subjects were scanned in
a 3 T Siemens Trio scanner (MPRAGE; 1 × 1 × 1.2 mm, TR, 1900 ms;
TE, 2.25 ms, flip angle, 9°) and 4 subjects were scanned in a 3 T Siemens
Allegra (MPRAGE; 1.25 × 1.25 × 1.25 mm, TR, 2000 ms; TE, 2.22 ms,
flip angle, 8°). The structural scanwas used to calculate a transformation
between each subject's brain and the Talairach atlas.

Stimuli and procedure
Images (800 × 600 pixels; subtending 24 × 18° of visual angle) were

presented in the center of the display using a back-projection system
(Resonance Technologies) operating at a resolution of 800 × 600 pixels
at 60 Hz. For each run, subjects were instructed to count the number of
images belonging to a target category (beaches, cities, highways ormoun-
tains; see example stimuli in Fig. 1c). On average, there were 16 target
images per run, ranging from 15 to 17 targets. Stimuli were presented
in blocks of 8 images with a display time of 1.75 s for each image. Images
within a block were primarily from the same natural scene category;
c

er experiment, which also included faces and scrambled objects. (b) Isolated object and
uli from the scene category experiment, which also included cities and highways.
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however, in order to increase the difficulty of the counting task, one or
two outgroup images from different scene categories (intrusions) occa-
sionally appearedwithin a block. A fixation crosswas presented through-
out each block, and subjects were instructed to maintain fixation. There
were 8 blocks in each run (2blocks for eachnatural scene category), inter-
leavedwith 12 s fixation periods to allow for the hemodynamic response
to return to baseline levels. A session contained 16 such runs, and the
order of categories and intrusion images were counterbalanced and
randomized across blocks. The total number of timepoints was 2064
(129 per run). Timepoints were classified as “resting” if they occurred
more than 4 s after the end of one stimulus block and less than 4 s after
the start of the next stimulus block.

Functional region of interest definition
ROIs were defined using an independent localizer scan, consisting of

blocks of face, object, scrambled object, landscape, and cityscape images.
Each block consisted of 20 images presented for 450 ms each with a
330 ms interstimulus interval. Each of the five types of stimuli was
presented four times during a run, with 12 s fixation periods after two
or three blocks. Subjects completed two runs, performing a one-back
task during the localizer by pressing a button every time an image was
repeated. Regressors for faces, scenes, objects, and scrambled objects
were constructed by using the standard block hemodynamic model in
AFNI (Cox, 1996), and the following contrasts were used to define
ROIs: LOC, Objects > Scrambled near lateral occipital surface; PPA,
Scenes > Objects near parahippocampal gyrus; RSC, Scenes > Objects
near retrosplenial cortex; TOS, Scenes > Objects near the transverse
occipital sulcus. A threshold of p b 2 · 10−3 (uncorrected) was applied,
and was tightened to break clusters if necessary.

Caudal IPL definition

Caudal IPL is a region strongly connected to macaque
parahippocampal cortex (Kravitz et al., 2011b) for which we do not
have a functional localizer. In order to evaluate the match between the
macaque and human connectivity patterns, we sought to anatomically
define a human region equivalent to cIPL. The two caudal-most areas
of human IPL (defined using probabilistic cytoarchitectonic maps) are
PGa and PGp, which are thought to correspond to the caudal-most sec-
tions of macaque IPL, PG and Opt (Caspers et al., 2011). Of these, PGp
exhibits significantly stronger functional and structural connectivity
with the parahippocampal gyrus (Uddin et al., 2010), giving the best
match with the proposed parieto-medial temporal pathway targeting
parahippocampal areas from cIPL. We therefore define cIPL in all
subjects using the Eickhoff–Zilles PGp probabilistic cytoarchitectonic
map (Eickhoff et al., 2005, based on Caspers et al., 2006, 2008). We
thresholded the map at p > 0.5, and transformed the map into each
subject's native space. Since cIPL slightly overlapped TOS in some sub-
jects, any voxels shared between cIPL and TOS were excluded from
both regions (no other ROIs included overlapping voxels).

PPA connectivity analysis: ROIs

We first learned PPA connectivity maps for four pre-defined seed
regions: lateral occipital complex (LOC), transverse occipital sulcus
(TOS, also referred to as the “occipital place area” in Dilks et al., 2013),
retrosplenial cortex (RSC), and caudal inferior parietal lobule (cIPL) by
setting A1 to be PPA and A2 to be one of the four seed regions. To
avoid functional connectivity idiosyncratic to a specific experiment or
task, we used data from both the object-in-scene experiment and the
scene category experiment (see above).

We first validated that our method could learn meaningful
voxel-level connectivity maps which provide better generalization
performance, compared to a connectivity map which is constant
over left PPA and constant over right PPA. For each seed region and
subject, we learned a connectivity map using one training run, and
tuned the smoothness parameter λ tomaximize the fraction of variance
explained on a validation set consisting of all but one of the remaining
runs. The classifier was then retrained on both the training run and val-
idation set (using the selected λ value) and tested on the final held-out
testing run. Results were averaged across all choices of training run,
with a random testing run being chosen for each training run. These
results were compared to those from ROI-level connectivity maps, in
which all PPA voxels in each hemisphere were constrained to take on
the same value (equivalent to λ → ∞).

We then learned a weight map over PPA for each subject and for
each seed region using all experimental runs, with λ chosen such that
the average fraction of variance explained, when training on one run
and testing on the other runs, was maximized. Wemeasured the corre-
lation between the connectivity weights and the anterior–posterior
voxel coordinates, to obtain a simple measure of how the learned
weights in PPA varied along the anterior–posterior axis. The correlation
was computed separately for left and right PPA (exceptwhere specified,
results below are collapsed across left and right PPA).

PPA connectivity analysis: whole-brain

To explore the connectivity patterns between PPA and the rest of the
brain, we performed a whole-brain searchlight connectivity analysis in
which our seed region was densely sampled throughout the entire cor-
tex.WefixedA1 to be PPA, and then placed a 3 × 3 × 3 voxel searchlight
A2 at each point on a lattice with 2 voxel spacing. For each searchlight,
we used all experimental runs to learn a map of connectivity weights
in PPA, and then measured the correlation between the learned weights
and the anterior–posterior axis. We obtained an anterior PPA vs. posteri-
or PPA preference for each brain voxel by averaging the correlation value
of all searchlights which included that voxel. In order to speed up com-
putation, we used a single value of λ = 5.5 for all subjects, equal to the
average of the optimal λ values in the ROI experiment (in log space).
Group-level statistics were computed by transforming each subject's
results into Talairach space.

Scene- and object-sensitivity analysis

After identifying connectivity differences among PPA voxels, we
investigated whether these connectivity gradients corresponded to func-
tional differences in stimulus selectivity. Tomeasure the response proper-
ties of individual PPA voxels, we examined the statistics from the
regressors in the localizer experiment. For each voxel, the t-statistics
from the scene and object regressors were recorded, and each voxel
was also given a binary label of “significantly activated” or “not signifi-
cantly activated” based on whether its false discovery rate (FDR) for
each category was less than or greater than 0.05. To detect a sensitivity
gradient across PPA, the correlation between the anterior–posterior axis
and the t-statistics was computed. For visualization purposes, each
subject's PPAvoxelswere binned into 10 bins running anterior–posterior,
and themean t-statistic andpercentage of activated voxelswas calculated
for each bin, to give a sensitivity profile.

LOC/TOS vs. RSC/cIPL connectivity

After discovering that LOC/TOS and RSC/cIPL connect preferentially
to different voxels in PPA (see Results), we sought to place these con-
nectivity gradients in the context of the entire parahippocampal region.
For each cortical voxel, we averaged the coefficients for the voxel's cor-
relations with LOC and TOS, and compared it to the average of the coef-
ficients for the voxel's correlations with RSC and cIPL. We transformed
each subject's correlation maps into Talairach space, and identified
voxels at the group level that showed a consistent different across sub-
jects for LOC/TOS functional connectivity vs. RSC/cIPL functional con-
nectivity. In addition to the parahippocampal region, we searched all
of cortex for voxels with this connectivity pattern.
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Results

Sincewe are interested in the intrinsic connectivity properties of PPA
(rather than functional correlations idiosyncratic to a specific stimulus
set), we localized PPA in two separate groups of subjects, each of
which then performed a different experimental task with different stim-
uli. Although both experiments included scenes, in one case (identifying
scene category) the sceneswere directly relevant to the task,while in the
other (locating a target object in scenes) scenes were not the primary
focus. Given these datasets, dowe see connectivity differences in anterior
versus posterior PPA analogous to those in macaque parahippocampal
cortex? Note that, since the connectivity patterns were similar in both
datasets (see Supplementary Fig. 4), all connectivity results below are
collapsed across both experiments.

PPA connectivity analysis: ROIs

We began our investigation of PPA's connectivity structure by learn-
ing PPA connectivity maps for four seed regions: two other scene-
sensitive regions (TOS and RSC), an object-sensitive area in ventral
occipital cortex (LOC), and a posterior parietal region known to exhibit
parahippocampal connectivity (cIPL). We first confirmed that, for each
individual subject, we could learn weight maps over PPA (describing
its connectivity with each of these regions) that generalize well across
runs. As shown in Fig. 2a, spatially smooth voxel-level connectivity
maps in PPA predict activity in LOC, TOS, RSC, or cIPL better than a
map which has only a single weight for left PPA and a single weight
for right PPA (LOC: t17 = 4.42; TOS: t17 = 4.63; RSC:t17 = 7.80; cIPL:
t17 = 3.28; all p b 0.01, two-tailed paired t-test). These results were
computed by choosing λ tomaximize the fraction of variance explained
(on an independent validation set) but improvement over the traditional
constant-weight connectivity held for a wide range of regularization
strengths λ (see Supplementary Fig. 2). Although all regions showed at
least some activity related to PPA's timecourse, a significantly smaller
amount of the cIPL timecourse can be predicted by PPA (ROI-level:
LOC > cIPL: t17 = 7.31; TOS > cIPL: t17 = 10.58; RSC > cIPL: t17 =
10.23; Voxel-level: LOC > cIPL: t17 = 6.58; TOS > cIPL: t17 = 12.12;
RSC > cIPL: t17 = 11.81; all p b 0.01 two-tailed paired t-test), consistent
with its proposed role as a general processing hub in parietal cortexwith
connections to many regions besides PPA (Caspers et al., 2011; 2012).

Since meaningful voxel-level weight maps can be learned for indi-
vidual subjects, we can ask whether these weight maps show any
anterior–posterior differences which are consistent across subjects. If
PPA shows the same gradient of connectivity as TH/TF/TFO, we expect
the posterior portion of PPA to be more strongly connected to occipital
visual regions LOC and TOS, with the anterior portion of PPA more
strongly connected to RSC and cIPL. As shown in Fig. 2b, this is precisely
what we observed; LOC and TOS connectivity weights tend to increase
moving anterior to posterior, while RSC and cIPL weights increase in
the opposite direction (LOC: t17 = 3.10,p b 0.01; TOS: t17 = 2.72,
p = 0.01; RSC: t17 = −3.76,p b 0.01; cIPL: t17 = −3.24,p b 0.01;
two-tailed t-test after z-transform). These results are collapsed across
left and right PPA; both hemispheres showed similar connectivity pat-
terns, though effects were somewhat stronger in left PPA, by an average
of 0.13 (t17 = 2.20,p = 0.042; two-tailed t-test after z-transform). We
did not observe significant differences along the inferior–superior axis
or medial–lateral axis, except for preferential connectivity of cIPL to
medial PPA (see Supplementary Fig. 3).

PPA connectivity analysis: whole-brain

Having established a consistent posterior–anterior gradient of con-
nectivity between our regions of interest and PPA, we then performed
a searchlight analysis to search for other brain regions with posterior–
anterior PPA connectivity gradients; rather than using our fixed ROIs
as seed regions, we swept a 3 × 3 × 3 voxel searchlight throughout
the entire cortex. As in Fig. 2b, we learn a PPA connectivity map for
each seed region and compute the correlation of this map with the
anterior–posterior axis; those seed regions which induce a PPA weight
map that is positively correlated with the anterior–posterior axis are
preferentially connected to posterior PPA, while those inducing a nega-
tively correlated weight map are preferentially connected to anterior
PPA. The traditional (homogeneous) model of PPA predicts that consis-
tent preferential connectivity should only occur for seed regions directly
adjacent to posterior or anterior PPA (whichwill be correlated with the
nearer part of PPA due to local noise). If PPA contains subregions similar
to those in macaque, however, we would expect a number of regions
throughout cortex to show preferential connectivity patterns which
are both consistently non-zero and in opposite directions.

Our results are shown in Fig. 3. As predicted by our subregion
hypothesis, seed regions in occipital visual areas (including LOC and
TOS) showed preferential connectivity to posterior PPA, while RSC
and cIPL showed preferential connectivity to anterior PPA. Note that
these results cannot be explained by local noise correlations, since RSC
and cIPL are physically closer to the posterior edge of PPA. We also
observed connectivity to anterior PPA in ventral prefrontal cortex
(PFC) (primarily on the medial surface) and on the lateral surface of
the anterior temporal lobe. Regions immediately anterior to PPA,
including the hippocampus and anterior parahippocampal gyrus, show
preferential correlation with anterior PPA, but it is unclear if this effect
is driven by intrinsic connectivity or local noise correlations. Coronal
and axial slices are shown in Fig. 4, demonstrating that these connectiv-
ity patterns are bilaterally symmetric. This result can also be obtained by
using only “resting” timepoints from between stimulus blocks or using a
different value for λ, and is apparent for both the scene and object tasks
(see Supplementary Fig. 4), suggesting that this connectivity pattern is
intrinsic rather than task-specific. The fraction of variance explained for
the searchlights is consistent with our ROI analysis, showing the stron-
gest coupling between PPA and visual regions including LOC, TOS, and
RSC (see Supplementary Fig. 5).

Scene- and object-sensitivity analysis

Do these connectivity differences give rise to differences in functional
response to stimulus categories? Although the functional roles of anterior
and posterior PPA are likely complex, a simple functional anterior–
posterior distinction can be seen in the scene and object responses
during our localizer experiment. The selectivities of the PPA voxels to
scenes and objects are shown in Fig. 5, binned based on position along
the anterior–posterior axis. At the posterior side of PPA, the sensitivity
to both scenes and objects is high, with nearly all voxels responding
to scene stimuli and a majority of voxels responding to object stimuli.
Moving posterior to anterior, scene selectivity decreases somewhat
(average correlation between t-statistic and posterior–anterior axis of
0.25, t10 = 3.00,p = 0.01 two-tailed t-test after z-transform), although
most voxels respond significantly to scene stimuli across all of PPA.
Object sensitivity, however, substantially decreases (average correla-
tion between t-statistic and posterior–anterior axis of 0.32, t10 = 3.39,
p b 0.01 two-tailed t-test after z-transform), with a majority of voxels
at the anterior edge showing no significant response to object stimuli.

LOC/TOS vs. RSC/cIPL connectivity

A number of studies have examined functional and connectivity
gradients along the entire parahippocampal gyrus, which includes (in
addition to PPA) a portion of parahippocampal cortex anterior to PPA,
and the perirhinal cortex (Aminoff et al., 2007; Bar and Aminoff, 2003;
Libby et al., 2012; Litman et al., 2009; Staresina et al., 2011). In order
to examine how our gradients within PPA fit into the connectivity
patterns of the broader medial temporal lobe, we searched for voxels
which showed the same connectivity differences we observed within
PPA. As shown in Fig. 6, the pattern of connectivity observed in anterior
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Fig. 2. A comparison of the learned PPA weight maps and the overall connectivity strength, for our four ROIs. (a) The timecourses of all four seed ROIs are better explained by a
regularized voxel-level connectivity map in PPA, rather than a single connectivity weight for all of left and right PPA. Activity in LOC, TOS, and RSC is most closely related to PPA
activity, while only a smaller amount of the cIPL timecourse is related to PPA activity. (b) To obtain a simple characterization of the learned maps, we compute the correlation
between the connectivity weights and the anterior–posterior axis. This measure shows consistent differences between the four regions' connectivity maps. LOC and TOS are pref-
erentially connected to posterior PPA (since their corresponding PPA weight maps increase along the anterior to posterior axis) while RSC and cIPL are preferentially connected to
anterior PPA. Error bars represent s.e.m. across subjects, * p b 0.05,* * p b 0.01.
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PPA (RSC and cIPL greater than LOC and TOS) extends anteriorly along
the parahippocampal gyrus and into the hippocampus. The most ante-
rior portion of the parahippocampal gyrus (around perirhinal cortex)
Fig. 3. Searchlight connectivity results. (a) Rendering of the group connectivity bias map on
highly significant (FDR b 0.01, cluster size > 300 mm3) bias in anterior–posterior connec
and the anterior–posterior axis. Bilateral areas RSC and cIPL, as well as ventral PFC and late
while occipital visual areas (including LOC and TOS) exhibited connectivity with posterior
(outlining the location where at least 3 subjects' ROIs overlap). (b–d) The same connectivit
did not show a connectivity pattern matching either anterior or poste-
rior PPA, consistent with previous work on the connectivity properties
of perirhinal cortex (Libby et al., 2012). In general, the regions showing
the left hemisphere of the Talairach 452 brain. Colored voxels are those that showed
tivity to PPA, computed as the correlation between the learned PPA connectivity map
ral anterior temporal regions, exhibited connectivity with anterior PPA (blue voxels),
PPA (orange-yellow voxels). The borders of the group ROIs are shown for reference
y map on an inflated surface and cortical flat map.



Fig. 4. Three slices of the group connectivity bias map. Seed voxels for which the PPA connectivity map has a strong anterior–posterior gradient (FDR b 0.01, cluster size > 300 mm3) are
shown in blue (preferential connectivity to anterior PPA) and yellow (preferential connectivity to posterior PPA). (a) In this coronal slice (y = −73 mm), we identify bilateral cIPL regions
that show a different connectivity pattern from adjacent area TOS. (b) At z = 10 mm,we observe anterior PPA connectivity in RSC, aswell as posterior PPA connectivity in TOS and early visual
areas. (c) At z = −5 mm, ventral occipital areas including LOC showconnectivity to posterior PPA. Additionally, anterior PPA connectivity canbe seen in the frontal and anterior temporal lobes.
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connectivity similar to anterior PPA overlap very well with the Default
Mode Network (Fox et al., 2005) (see Supplementary Fig. 6).

Discussion

Our results demonstrate that human PPA exhibits a gradient in con-
nectivity along the anterior–posterior axis analogous to the gradient in
connectivity along macaque TH/TF/TFO. This connectivity gradient was
a

Fig. 5. Functional gradients across PPA. The proportion of voxels responsive to scene and objec
culated in 10 bins along the anterior–posterior axis in each subject. The dotted line indicates th
ulus categories). Scene sensitivity decreased from posterior to anterior PPA, but nearly all vo
decreased from posterior to anterior PPA, with the majority of anterior PPA voxels failing to re
also pairedwith a functional gradient of sensitivity to scene and abstract
object stimuli. These results present a challenge to current models of
PPA function which assume that PPA is functionally homogeneous,
and demonstrate that anterior and posterior PPA connect differentially
to two distinct cortical networks.

Note that, although our data suggest that PPA might contain identi-
fiable subregions, these subregions should not be considered as
completely independent modules. Both subregions activate selectively
b

t stimuli, and the average t-statistic for the response to scene and object stimuli, were cal-
e average t-statistic value corresponding to FDR = 0.05 (across all subjects, for both stim-
xels across PPA responded significantly to scene stimuli. Object sensitivity substantially
spond significantly to object stimuli. Error bars represent s.e.m. across subjects.
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to scenes, and the parahippocampal region (at least in macaques) is
densely self-connected (Suzuki, 2009), implying that these subregions
cooperate to build a complete representation of a scene. Their distinct
connectivity properties, however, do suggest that eachmay be involved
in specific aspects of visual and cognitive processing involved in the
overarching goal of scene understanding. We discuss some possibilities
for the functional roles of the subregions below.

Posterior PPA

Posterior PPA shows a stronger response to abstract objects than
anterior PPA, and ismore strongly connected to all of occipital visual cor-
tex, including LOC and TOS. These regions have well-defined retinotopic
maps (Arcaro et al., 2009; Nasr et al., 2011), and are associated with the
perception of low-level visual features and object shape. Previous work
has hinted that posterior PPA is more responsive to both simple visual
textures and objects; Arcaro et al. (2009) found that a posterior portion
of PPA responded about four times as strongly to a flickering checker-
board stimulus compared to an anterior portion, and that the response
to objects was greater than the response to scrambled images only in
theposterior portion. In otherwords, posterior PPAmay bemore visually
responsive than anterior PPA.

Posterior PPAmay be specifically tuned to visual features in the high
spatial frequency band; PPA has been shown to respond preferentially
to higher spatial frequencies, and this effect tended to be strongest at
the posterior end of PPA (Rajimehr et al., 2011). High-frequency edges
could be the most important visual features for understanding the
structure of a scene and navigating through it (Rajimehr et al., 2011;
Walther et al., 2011). Alternatively, this high-frequency preference
could be related to the perception of large, landmark-like objects. A
comparison of the Fourier spectra of 400 objects with either large or
small real-world size (butmatched visual size) found that larger objects
tend to have more power at high spatial frequencies, especially along
horizontal and vertical orientations; intuitively, larger objects are
Fig. 6. Regions throughout cortex showing connectivity differences similar to anterior
and posterior PPA. In this sagittal slice (x = −26), colored voxels are those showing
significantly (FDR b 0.05, cluster size > 1000 mm3) different connectivity to LOC
and TOS versus RSC and cIPL. The connectivity pattern in anterior PPA extends anteri-
orly along the parahippocampal gyrus and into the hippocampus. The connectivity pat-
terns over the entire surface are shown in Supplementary Fig. 6.
“boxier” while smaller objects are rounder (Konkle, 2011). A region of
cortex selective for large objects has been shown to overlap with
about half of PPA near the collateral sulcus, possibly corresponding to
posterior PPA (Konkle and Oliva, 2012).

It is also possible that posterior PPA performs texture and ensemble
processing, since these tasks tend to activate cortical regions around the
collateral sulcus, overlapping with posterior PPA (Cant and Goodale,
2007, 2011; Cant and Xu, 2012). Although Cant and Xu (2012) failed
to find an anterior–posterior difference within PPA for ensemble or tex-
ture processing by splitting PPA along the center of activation, a more
sensitive voxel-level measure could potentially reveal such a gradient.

Our description of posterior PPA is in fact similar to the original
proposal of Aguirre et al. for a “lingual landmark area” (LLA), slightly
posterior to PPA, which was “specialized for the perception of visual
stimuli with orienting value” (Aguirre et al., 1998) and carried out
bottom-up perceptual analysis to recognize locations or landmarks
(Cant and Goodale, 2007; Epstein et al., 1999). Although the LLA is
no longer identified as an independent region from PPA in current
studies, it is possible that the posterior portion of PPA corresponds
to the properties of the proposed LLA, offering an explanation for
why this region was localized more posteriorly than the full PPA.

Anterior PPA

Anterior PPA is specifically connected to RSC, cIPL, medial PFC, and
the lateral surface of the anterior temporal lobe. In addition, this por-
tion of PPA is less visually responsive to both scenes and objects, with
notably low sensitivity to abstract object stimuli.

The set of regions connected more strongly to anterior PPA is strik-
ingly similar to the Default Mode Network (DMN) (Buckner et al.,
2008; Fox et al., 2005; Raichle et al., 2001), which is known to include
the parahippocampal region. The only portions of the DMN that do not
show differential connectivity to anterior PPA in our data are the rostral
portion of the posterior cingulate cortex (PCC) and the superior frontal
cortex. It is likely that PPA does not have direct connections to these
regions; a DTI study showed that the medial temporal lobe directly con-
nects only to RSC, rather than more rostral PCC (Greicius et al., 2009),
and a functional connectivity analysis showed that the hippocampal for-
mation (including the parahippocampal region) is connected only to the
more ventral portion of the prefrontal cortex, not the dorsal portion
(Buckner et al., 2008). We confirmed that RSC and cIPL showed connec-
tivity with the entire DMN (see Supplementary Fig. 6), suggesting that
anterior PPA does have indirect connections to PCC and superior frontal
cortex.

Although the DMN has been implicated in a large number of
internally-focused tasks, one of its key roles involves autobiographical
memory (Buckner et al., 2008). Models of recognition memory have
previously identified parahippocampal cortex as primarily encoding
spatial context information (Eichenbaum et al., 2007), and data from
Aminoff et al. (2007) has suggested that an anterior portion of PPA
may be involved in recall based on spatial context. Our results are con-
sistent with anterior PPA playing a more central role in memory than
posterior PPA, given anterior PPA's connectivity with the DMN.

PPA is known to represent global scene properties such as spatial
expanse (Kravitz et al., 2011a; Park et al., 2011), and to construct global
scene representations which are not predictable from responses to sig-
nature objects (MacEvoy and Epstein, 2011). Anterior PPA's connectiv-
ity to cIPL and RSC, along with its lower sensitivity to abstract objects,
suggest that it may be more concerned with these types of spatial and
non-object-based scene properties than posterior PPA. Future research
contrasting global and object-based properties of scenes, however,
would be necessary to test such a hypothesis.

The fact that anterior PPA had a lower sensitivity to our abstract
object stimuli does not necessarily imply that this region does not use ob-
ject information. Previous work has shown that PPA responds to objects
that have spatial associations (Aminoff et al., 2007), are space-defining



244 C. Baldassano et al. / NeuroImage 75 (2013) 236–245
(Mullally and Maguire, 2011), and are navigationally-relevant (Janzen
andVan Turennout, 2004). These types of responses require spatialmem-
ory and cannot be based purely on visual features like object shape. If an-
terior PPA is involved in processing spatial context, then space-defining or
navigationally-relevant objects could activate anterior PPAmore strongly
thanour abstract objects,whichwereunfamiliar andprovidedno sense of
context or orientation. Further experimentswill be required to determine
what type of object-related information is used in this region.

Homology with TH/TF/TFO

Given the close match between the connectivity gradients in
macaqueparahippocampal cortex and those in PPA, canwe identify a pre-
cise correspondence between macaque regions TH/TF/TFO and our PPA
subregions? Since the connectivity gradients extend anteriorly beyond
PPA (which terminates in themost posterior part of the parahippocampal
gyrus), a possible homology could identify posterior PPA with TFO, ante-
rior PPAwith TF, and the anterior portion of parahippocampal cortexwith
TH. This labeling would be consistent with previous work showing that
TFO ismore visually responsive than TF andmay have a coarse retinotopy
(Saleem et al., 2007), matching the properties of posterior PPA. This cor-
respondence will only be definitively confirmed, however, if future elec-
trophysiological measurements show that TH does not respond to scene
stimuli (placing it anterior to anterior PPA) while TF and TFO do.

Implications for future work on PPA

Unraveling the functions of the PPA has proven to be a challenging
problem, given the region's involvement in a variety of scene perception
and navigation tasks (Epstein, 2008). Our results imply that a complete
model of PPA's functional properties must account for the differences
in connectivity and function between anterior and posterior PPA.
Although the precise roles of PPA's subregions are yet to be determined,
our results and previous work suggest that posterior PPA is concerned
primarily with perception of low-level visual features and object
shape, while anterior PPA is involved in memory and global contextual
processing. Given the relatively small size of each of these subregions,
voxel-level approaches (such as our connectivity method) as well as
high-resolution fMRI imagingmay be required to identify the represen-
tations evoked within the parts of PPA, and understand how these
regions cooperate to build a coherent scene representation.

Conclusions

Our connectivity findings call into question the traditional view of
PPA as a homogeneous region performing a single functional role, and
provide a starting point for future experimental and modeling work
investigating how different types of cortical networks interact for
scene understanding and recognition. This discoverywasmade possible
by our voxel-level functional connectivity approach, which may prove
fruitful for uncovering subregions in other cortical systems.
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