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Peripherally presented stimuli evoke stronger activity in
scene-processing regions than foveally presented stimuli,
suggesting that scene understanding is driven largely by
peripheral information. We used functional MRI to
investigate whether functional connectivity evoked during
natural perception of audiovisual movies reflects this
peripheral bias. For each scene-sensitive region—the
parahippocampal place area (PPA), retrosplenial cortex,
and occipital place area—we computed two measures: the
extent to which its activity could be predicted by V1 activity
(connectivity strength) and the eccentricities within V1 to
which it was most closely related (connectivity profile).
Scene regions were most related to peripheral voxels in V1,
but the detailed nature of this connectivity varied within
and between these regions. The retrosplenial cortex
showed the most consistent peripheral bias but was less
predictable from V1 activity, while the occipital place area
was related to a wider range of eccentricities and was
strongly coupled to V1. We divided the PPA along its
posterior–anterior axis into retinotopic maps PHC1, PHC2,
and anterior PPA, and found that a peripheral bias was
detectable throughout all subregions, though the anterior
PPA showed a less consistent relationship to eccentricity
and a substantially weaker overall relationship to V1. We
also observed an opposite foveal bias in object-perception
regions including the lateral occipital complex and fusiform
face area. These results show a fine-scale relationship
between eccentricity biases and functional correlation
during natural perception, giving new insight into the
structure of the scene-perception network.

Introduction

Visual receptive-field position is one of the organiz-
ing principles of visual processing in the brain. Early

comparisons between eccentricity preference and cate-
gory selectivity revealed a surprising correspondence
between these low- and high-level properties, with face
and object regions driven more by foveal stimulation,
and scene regions (Epstein, 2014) by peripheral
stimulation (Hasson, Levy, Behrmann, Hendler, &
Malach, 2002; Levy, Hasson, Avidan, Hendler, &
Malach, 2001). These results suggested an intimate
relationship between category selectivity and eccen-
tricity preference, linked by innate cortical structure
(Kanwisher, 2001) and/or acuity demands (Malach,
Levy, & Hasson, 2002). More recent work has
confirmed this retinotopic organization of high-level
cortex (Goesaert & Op de Beeck, 2010; Huang &
Sereno, 2013) and identified peripherally biased field
maps overlapping with scene regions (Arcaro,
McMains, Singer, & Kastner, 2009). The peripheral
bias in scene-sensitive regions is also reflected in
behavior, since subjects show superior recognition in
the periphery for certain scene properties (Boucart,
Moroni, Thibaut, Szaffarczyk, & Greene, 2013; Lar-
son, Freeman, Ringer, & Loschky, 2014; Larson &
Loschky, 2009).

Studies of eccentricity dependence of higher level
visual regions have generally relied on eccentricity-
controlled stimuli (i.e., requiring fixation), using
checkerboard rings (Arcaro et al., 2009), rings of
objects (Goesaert & Op de Beeck, 2010; Hasson et al.,
2002; Levy et al., 2001), or a moving annulus window
over a natural movie (Huang & Sereno, 2013). Real-
world perception, however, differs markedly from these
stimuli, since objects and scene structures stretch across
both foveal and peripheral eccentricities, and the retinal
image changes in a structured way over time due to
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both events in the world and eye movements. Under
these naturalistic conditions, it is not known how
information from different eccentricities propagates to
higher level visual regions, or whether eccentricity
dependence is even detectable.

To circumvent the need for controlled and unnatural
viewing conditions, we turned to functional connectiv-
ity, which can be computed under natural viewing
conditions and during eye movements. Regions with
similar eccentricity properties have been shown to be
strongly functionally connected, both within early
visual cortex (Arcaro, Honey, Mruczek, Kastner, &
Hasson, 2015; Baldassano, Iordan, Beck, & Fei-Fei,
2012; Bock et al., 2015; Heinzle, Kahnt, & Haynes,
2011) and between hV4 and higher level category-
specific regions (Baldassano et al., 2012). We therefore
make the assumption that those regions of the brain
that are primarily driven by peripheral representations
will mirror the activity of (i.e., will be functionally
connected to) peripheral representations in V1 (re-
gardless of the visual input or where the eyes are
pointing), whereas those areas that are driven more by
foveal representations will show tighter coupling with
the activity in foveal regions of V1. Thus, rather than
compare conditions in which only foveal or peripheral
stimulation is present, we can use data from subjects
who were freely viewing intact movie clips. Because
these analyses are stimulus independent, we have the
ability to combine data from many data sets in which
subjects are viewing time-varying visual stimuli rather
than being restricted to a single controlled stimulus.

Previous work on topographies of functional con-
nectivity has largely relied on discrete binning of foveal
and peripheral connections (Arcaro et al., 2015), which
leads to very coarse approximations of eccentricities (if
large bins are used) or can lead to poor signal-to-noise
ratios (if small bins are used). Instead, we use a
specialized method to estimate smooth connectivity
maps (Baldassano et al., 2012). We show that this
sensitive analysis not only identifies more peripherally
and foveally connected vertices or voxels but also
allows us to examine more fine-grained structure within
scene regions and relationships between different pairs
of regions. As we will show, this approach uncovers a
distributed network involved in peripheral visual
processing that overlaps with scene-sensitive networks.

Methods

Participants

Fifteen subjects (seven female,, eight male; ages 24–
34 years) with normal or corrected-to-normal vision
freely viewed movie stimuli while imaging data was

acquired. The study protocol was approved by the
Princeton University Institutional Review Board, and
all subjects gave their written informed consent.

Experimental stimuli

Subjects watched a variety of natural movies, with
total acquisition times ranging from 8 to 50 min across
subjects. Ten subjects viewed a portion of the movie
Dog Day Afternoon (including audio), as described in a
previous publication (Arcaro et al., 2015); note that we
used free-viewing runs (rather than the fixation runs
analyzed previously). Eight of these subjects watched a
5-min clip six times: twice unaltered from the original
movie, twice with coarse temporal reordering (ran-
domly ordered movie segments of 7–20 s), and twice
with fine temporal reordering (randomly ordered movie
segments of 0.5–1.5 s). One subject viewed only the two
unaltered runs of the clip, and one viewed the clip once
in each condition. The remaining five subjects watched
other clips also taken from popular movie and
television shows: One watched a 25-min episode of The
Twilight Zone titled ‘‘The Lateness of the Hour’’ (1960;
Chen, Honey, Simony, Arcaro, Norman, & Hasson,
2015); two watched a 50-min segment from the episode
‘‘A Study in Pink’’ of BBC’s Sherlock (2010; Chen,
Leong, Norman, & Hasson, 2016); one watched a 26-
min segment from an episode of BBC’s Merlin (2008);
and one watched a 4-min clip from Charlie Chaplin’s
1921 The Kid twice. We note that the variety of movies
used ensures that our connectivity measures are not
driven by a specific stimulus, and instead reflect a more
general pattern of connectivity.

Functional MRI (fMRI) acquisition and
preprocessing

A gradient echo, echo planar sequence was used to
acquire data from the whole brain, with an in-plane
spatial resolution of 33 3 mm (field of view: 1923 192
mm), a slice thickness of 4 mm (27 slices), and a
repetition time of 1.5 s (for full details, see Arcaro et al.,
2015). In addition, a high-resolution anatomical image
at an isotropic resolution of approximately 1 mm was
collected for each subject.

Data were minimally preprocessed using the FsFast
analysis stream from Freesurfer (Dale, Fischl, &
Sereno, 1999; Fischl, Sereno, & Dale, 1999). Each run
was corrected for head motion, registered to the
subject’s anatomical image, and then resampled both
into MNI volume space and onto the subject’s cortical
surface using the vertices of the fsaverage6 mesh (no
explicit spatial smoothing was applied). Our spatial
units of study are therefore surface vertices rather than
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volume voxels. The data were then imported into
MATLAB (The MathWorks Inc., Natick, MA), and
we regressed out time-course components related to
motion (three translation and three rotation compo-
nents), the average signal in deep white matter (at least
3 voxels from gray matter), and linear drift. A high-
pass filter with a cutoff of 150 s was applied to remove
slow drift, and then each vertex’s time course was
converted to a z-score. Finally, we regressed out the
global signal averaged over all gray-matter vertices,
which has been shown to increase the specificity of
functional correlations between regions (Fox, Zhang,
Snyder, & Raichle, 2009).

Retinotopic mapping and regions of interest

The borders of V1 and the eccentricity preferences
for V1 vertices were measured in each individual
subject using a traveling-wave paradigm (Swisher,
Halko, Merabet, McMains, & Somers, 2007), with four
or five runs for polar angle and two or three runs for
eccentricity (with logarithmically scaled eccentricity
steps). Due to limitations imposed by the scanner
display, the mapping stimuli did not extend beyond 158
eccentricity. V1 was defined as the region above and
below the calcarine fissure, delineated ventrally and
dorsally by the presence of a vertical meridian and
anteriorly by the end of the peripheral maps. The log
eccentricity of each vertex was defined by computing
the phase of its response to the eccentricity traveling
wave (at the wave frequency), which was then
exponentiated and scaled to the range of 08 to 158.

All but one of the subjects had previously partici-
pated in a standard category localizer experiment
(Mruczek, von Loga, & Kastner, 2013) to define
category regions of interest (ROIs) including the lateral
occipital complex (LOC), fusiform face area (FFA),
parahippocampal place area (PPA), occipital place area
(OPA, also known as the transverse occipital sulcus),
and retrosplenial cortex (RSC). Fourteen subjects had
individual PPA, FFA, and LOC ROIs in at least one
hemisphere, and eight had individual OPA and RSC
maps. For retinotopic regions beyond V1 (notably
PHC1 and PHC2), a group-level maximum probability
atlas was used (Wang, Mruczek, Arcaro, & Kastner,
2014). This allowed the definition of the anterior PPA
(aPPA) as the portion of PPA anterior to PHC2 in 13
subjects.

Connectivity analyses

Our goal was to determine which specific portion of
V1 is most functionally connected to a seed ROI
elsewhere in the brain. Possible approaches based on

previous work include correlating the seed ROI’s time
course with each individual surface vertex in V1 (Butt,
Benson, Datta, & Aguirre, 2013) or with the average
time courses of V1 eccentricity bins (Arcaro et al.,
2015). Instead, we can improve our statistical power
and avoid discrete bins by treating vertex-level con-
nectivity as a multiple-regression problem (Baldassano
et al., 2012), in which we attempt to describe the
average time course from a seed region as a linear
weighted combination of time courses of V1 vertices
(from both hemispheres; Figure 1a). Every vertex is
assigned a weight in this regression, which indicates
how much unique information about the seed time
course is present in this particular vertex. For example,
if the seed time course is related only to activity in
peripheral V1, then only peripheral V1 vertices will
receive nonzero weights. In addition to the map of
fitted weights, we can gain additional insight by looking
at the degree of fit, measured as the fraction of variance
in the seed ROI that could be explained by this optimal
combination of V1 time courses. We refer to this as the
connectivity strength between V1 and the seed ROI,
since it measures the degree to which the seed ROI is
functionally correlated with signals within V1. If a seed
region is totally unrelated to V1, it will have a
connectivity strength near zero, since it will not be
possible to predict its activity from V1 activity. We note
that with this analysis, it is possible to observe a strong
bias (i.e., clear relative differences in the peripheral
versus central weights) but weak connectivity strength
(i.e., the V1 model captures little of the variance in the
seed area overall), or vice versa.

In this data set, as in most fMRI data sets, we do not
have enough data to perform this regression without
incorporating some prior knowledge. In fact, since the
number of V1 surface vertices (and hence the number
of weights we are trying to learn) exceeds the number of
time points for some subjects, it is not even possible to
construct the pseudoinverse required for the least-
squares normal equations (i.e., the problem is highly
underconstrained and ill posed). In keeping with the
known retinotopic gradients in V1 and the smoothness
of the blood-oxygen-level-dependent signal more gen-
erally, we solved this problem by enforcing spatial
smoothness, requiring that adjacent vertices be as-
signed similar weights in the regression. This smooth-
ness prior can be viewed as a compromise between
methods without any spatial constraints, which require
large amounts of training data (Heinzle et al., 2011),
and connective field methods that specify a receptive-
field shape, losing flexibility (Haak et al., 2013). The
full optimization objective can be written as

min
w
jjV �w� sjj22 þ k

XN

i¼1

X

j�ni

ðwi � wjÞ2

jnij
;
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where w is the V1 connectivity weight vector, V is the
matrix of V1 time courses, s is the seed time course, N is
the number of V1 vertices, and ni is the set of spatial
neighbors of vertex i. The first term implements a
standard least-squares multiple regression, while the
second term penalizes weight differences for neighbor-
ing vertices; see our full paper (Baldassano et al., 2012)
for additional description.

The overall level of smoothing is controlled via a
hyperparameter k, which interpolates between no
smoothing (k¼ 0) and a constant weight map over the
whole ROI (k¼ ‘). However, note that even for a
particular choice of k, the strength of the spatial
smoothness can vary locally over V1, with weights
changing faster in some regions than others depending
on the underlying signals’ similarity to the searchlight
time course. This is a major advantage over pre-
smoothing the data with a fixed Gaussian kernel, which
would force us to pick a fixed amount of spatial
smoothing that is constant through all of V1. The k
parameter therefore only sets a rough spatial scale over
which we would like the weight maps to vary. In all
experiments in this article, we use k¼ 1000, in order to
yield maps that are smooth on the scale of about 5–10
mm (Supplementary Figure S1). A precise setting of k is
not required to obtain the eccentricity preference
results we report, as shown in Supplementary Figure
S2.

In this work we specifically restricted the weights to
be positive; negative weights in multiple regression can
be challenging to interpret, especially after global signal
regression (Murphy, Birn, Handwerker, Jones, &
Bandettini, 2009). The regularized regression problem
(with nonnegative weight constraint) is a simple
quadratic program, which we solve using two passes of
MATLAB’s quadprog. We first used the interior-point
solver to obtain an approximate solution, and then
applied the trust-region solver to refine the weights.
Please see https://www.bitbucket.org/cbaldassano/
voxel-level-functional-connectivity for publicly avail-
able MATLAB code.

After fitting a map of V1 connectivity weights, we
examined the relationship between these weights and
the independently measured eccentricity preferences
within V1 determined from retinotopic mapping
(Figure 1b). We can summarize this relationship by
calculating the average weight as a function of
eccentricity. For every eccentricity, we compute the
average weight in a small neighborhood around this
eccentricity (using a Gaussian kernel with standard
deviation equal to 10% of the full eccentricity range).
This yields a connectivity profile over V1, describing
which eccentricities in V1 are most related to the time
course of this ROI in this subject. For example, the
connectivity profile in Figure 1b (in orange) shows that
weights generally increase with eccentricity, indicating

Figure 1. Measuring the eccentricity profile of connectivity to V1. (a) Given the mean time course from a region of interest (or

searchlight), we fit a set of weights over V1 vertices (purple) such that the weighted average of the V1 time courses best

approximates the ROI time course. We refer to the goodness of fit (fraction of ROI time-course variance explained by V1) as the V1

connectivity strength for this ROI. (b) We then compare the fitted weight at each V1 vertex to its independently defined eccentricity

preference. The smoothed connectivity profile of weights versus eccentricity indicates which V1 eccentricities are most strongly

connected to the ROI time course. For example, this connectivity profile (orange) would indicate stronger connectivity to peripheral

than foveal V1. (c) We measure the consistency of these profiles across subjects, to determine if an ROI shows a consistent functional

connection to particular eccentricities.
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a bias toward peripheral connectivity. We can test these
eccentricity profiles for foveal versus peripheral pref-
erence by computing the Pearson correlation between
weights and eccentricity; positive values indicate a
peripheral bias (weights increasing with eccentricity),
while negative values indicate a foveal bias (weights
decreasing with eccentricity).

Searchlight and statistical analyses

A searchlight analysis was performed for each
subject. We selected a center vertex on the subject’s
cortical surface and defined a small searchlight region
as all vertices fewer than 5 faces away (approximately 7
mm away) from the center along the cortical sheet. To
reduce computation time, rather than centering a
searchlight on each of the ;80,000 surface vertices we
randomly selected searchlights in each subject such that
every vertex was included in at least one searchlight
(yielding approximately 2,600 searchlights per subject).

The vertex time courses within the searchlight were
averaged together to produce a single searchlight time
course. We then applied our connectivity method as
with the ROIs, yielding a connectivity strength (how
well this searchlight’s activity could be predicted by V1
activity), a profile of weights as a function of
eccentricity, and the linear correlation between weights
and eccentricity; the latter is used to indicate foveal or
peripheral eccentricity bias. Results for each vertex
were calculated by averaging the results from all
searchlights overlapping that vertex. For comparison
purposes, we also binned the V1 vertices by eccentric-
ity, into foveal (;08–18), parafoveal (;18–58), and
peripheral (;58–158) thirds with equal numbers of
vertices in each. We measured the correlation between
the searchlight time course and the mean time courses
in each of these bins.

Finally, we determined which profiles and correla-
tions were consistent across subjects (Figure 1c). For
the profiles, we measured their consistency across
subjects in a manner similar to that used for computing
time-course similarities across subjects (Regev, Honey,
Simony, & Hasson, 2013). Each subject’s profile (for a
particular ROI or searchlight vertex) was correlated
with the mean profile of all other subjects, and then
these correlation values were averaged together. If all
subjects have a similar profile, then this intersubject
correlation will be high, whereas it will be close to zero
if subjects have unrelated profiles. We used a permu-
tation test to determine a significance threshold,
creating a null searchlight map in which the vertex
correspondence was shuffled across subjects. In this
null map, the consistency of a vertex in the group map
was computed as the average of consistencies from 15
random vertices, one from each subject. No vertex

should have a high consistency value in this map, since
each is an average of vertices drawn from random parts
of the brain across subjects. Pooling across all ;80,000
vertices, this produced a null distribution that esti-
mated the likelihood that a high consistency value
could occur due to chance. For each vertex and in each
ROI, we compared its profile consistency to this null
distribution and computed a p value as the fraction of
null consistencies that were at least as large. This p
value therefore represents the probability that a
consistency value could have been generated by a
random draw of 15 eccentricity profiles. For detecting
differences between profiles, we also constructed a null
distribution by computing all differences between
consistencies in the null map, and defined a p value as
the fraction of null differences whose absolute consis-
tency difference was at least as large as the true profile
difference. Linear correlations of weight versus eccen-
tricity were Fisher transformed and then subjected to a
t test; one-sided t tests were used in the ROIs (based on
previous work identifying LOC and FFA as foveal and
OPA, RSC, and PPA as peripheral), whereas two-sided
t tests were used in the searchlight. For the binning
analysis, the correlation in each bin was compared to
the mean correlation in the other two bins with a one-
sided t test. Searchlight p values were corrected for
multiple comparisons using the false discovery rate (q),
calculated with the same calculation as AFNI’s 3dFDR
(Cox, 1996).

Results

For each visual ROI, we computed a map of weights
over V1 such that the weighted average V1 time course
predicted the ROI’s mean time course as closely as
possible. Regions of V1 with high weights are most
predictive of, and therefore most functionally related
to, activity in the ROI. Having a fine-grained map of
connectivity with V1, we can compare the map of V1
weights to the subject-specific map of eccentricity
preferences in V1 (as determined by the retinotopic
mapping procedure) to determine if the ROI is
preferentially connected to specific V1 eccentricities.

Results for all major scene ROIs are shown in Figure
2 (left column). OPA, PPA, and RSC all have weight-
versus-eccentricity profiles that are consistent across
subjects (all ps , 0.001 by permutation test) and show a
marked connectivity preference for portions of V1
beyond 58 of eccentricity. This peripheral bias is
revealed by a highly significant and positive linear trend
of weight versus eccentricity in each ROI—OPA: t(7)¼
3.59, p¼ 0.004; PPA: t(13)¼ 6.49, p , 0.001; RSC: t(7)
¼ 6.69, p , 0.001 (one-tailed t test). The results also
reveal some differences among the regions. OPA shows
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peak connectivity around 108 of visual angle, while
PPA and RSC maintain high weights out to the
maximum eccentricity measured (158), and hence OPA
shows a weaker overall linear trend between weight and

correlation—PPA . OPA: t(8)¼ 5.22, p¼ 0.001; RSC
. OPA: t(8) ¼ 4.14, p ¼ 0.004 (two-tailed t test). In
addition, RSC shows a more pronounced weight
difference between foveal and peripheral eccentricities

Figure 2. Connectivity properties for category-selective ROIs. (Top) For each ROI, the z-scored weight-versus-eccentricity connectivity

profile was averaged across all subjects. All scene-sensitive regions (OPA, PPA, and RSC) show a sharp increase in V1 connectivity as

we move outside of 58 of eccentricity. Within PPA, PHC1 and PHC2 show similar profiles, while aPPA has a much less pronounced

eccentricity preference. FFA and LOC show the opposite behavior, with connectivity weights concentrated on foveal eccentricities less

than 58. (Middle) We can test whether weights in each ROI increase or decrease with increasing eccentricity by measuring the linear

correlation between fitted weights and eccentricity. OPA, PPA, and RSC all connect consistently to more peripheral portions of V1,

with the strongest peripheral biases in PPA and especially RSC. There is a detectable peripheral bias throughout all subregions of PPA,

though it is weak in aPPA. V1 weights indicating connectivity to FFA and LOC correlate negatively with eccentricity, indicating a foveal

connectivity preference. (Bottom) A substantial portion of the variance in visual ROIs can be predicted by a weighted average of V1

time courses, but OPA and PPA are significantly more coupled to V1 than RSC. There is a sharp gradient across PPA, with more

posterior subregions highly related to V1 activity and more anterior subregions less predictable from V1.
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compared to PPA, and has a stronger weight–
eccentricity correlation—RSC . PPA: t(8) ¼ 2.74, p ¼
0.029 (two-tailed t test). We note that many of these
subtler effects, and particularly the detailed informa-
tion about peak connectivity and eccentricity, would be
lost in methods that use fixed foveal versus peripheral
stimulation (Hasson et al., 2002) or fixed bins across V1
(as in our comparison bin analysis later).

Another difference among the scene regions is in
their overall degree of coupling, or connectivity
strength, with V1. To measure how strongly each ROI
time course is related to V1 activity, we measured the
fraction of variance in the ROI time course that could
be explained by the weighted combination of V1 time
courses. This connectivity strength is substantial
(greater than 10%) for all scene regions, but signifi-
cantly higher in OPA and PPA than RSC—OPA .
RSC: t(8)¼ 2.80, p¼ 0.027; PPA . RSC: t(8)¼ 7.97, p
, 0.001 (two-tailed t test)—indicating that a smaller
portion of RSC’s activity can be predicted purely by V1
activity.

Based on our previous work (Baldassano, Beck, &
Fei-Fei, 2013, 2015), we segmented PPA into three
subregions, corresponding to retinotopic maps PHC1
and PHC2 and a region anterior to these maps (aPPA).
As in the aforementioned ROI analyses, weight maps
were learned separately based on the mean time course
within each of these subregions (Figure 2, middle
column). PHC1 and PHC2 show weight profiles that
are consistent across subjects (p , 0.001 by permuta-
tion test) and more strongly connected to peripheral
than foveal eccentricities. The connectivity profile for
aPPA, however, is not very correlated across subjects
(p . 0.1 by permutation test), indicating that this
region has a much less well-defined preference for
specific eccentricities; aPPA’s connectivity profile is
significantly less consistent than that of PHC1 (p ,
0.001, permutation test) and PHC2 (p , 0.02,
permutation test). When testing simply for a linear
correlation between weights and eccentricity, it is
possible to detect a peripheral bias in all three
subregions—PHC1: t(14) ¼ 6.96, p , 0.001; PHC2:
t(14) ¼ 3.83, p , 0.001; aPPA: t(12) ¼ 2.08, p¼ 0.030
(one-tailed t test)—including a weak peripheral pref-
erence in anterior PPA. There is an even larger
difference between the subregions in V1 connectivity
strength, with PPA subregions becoming less and less
predictable from V1 activity as we move posterior to
anterior—PHC1 . PHC2: t(13) ¼ 4.42, p , 0.001;
PHC1 . aPPA: t(13)¼4.53, p , 0.001; PHC2 . aPPA:
t(13) ¼ 2.85, p ¼ 0.014 (two-tailed t test). It is unlikely
that this gradient is driven by local noise correlations,
since V1 and PHC1 are separated by more than 25 mm.

For comparison, we also fitted V1 connectivity maps
for FFA and LOC, and saw opposite effects compared
to those of the scene regions. Both of these regions had

weight profiles that were consistent across subjects (p ,
0.001 by permutation test) but had weights that were
highly concentrated within 58 of eccentricity. A linear
correlation of weights versus eccentricity was signifi-
cantly negative in both regions—FFA: t(13)¼ 7.78, p ,
0.001; LOC: t(13)¼ 2.81, p¼ 0.007 (one-tailed t test)—
indicating that weights decreased at higher eccentrici-
ties. Both regions were strongly coupled to V1 activity,
with connectivity strengths similar to those of OPA and
PPA. Together, our ROI results indicate that examin-
ing fine-grained connectivity patterns over V1 reveals
new insights compared to simply measuring overall
correlations between V1 and regions of interest.

Moreover, computing a separate bias measure and
connectivity-strength measure allows for further un-
derstanding of the network. Note that there is no
simple relationship between V1 connectivity strength
and eccentricity preference. For example, RSC has a
very strong peripheral bias but relatively low V1
connectivity strength, while aPPA shows both weak
peripheral bias and weak V1 connectivity. Regions with
similar V1 connectivity strength (e.g., PPA and LOC)
can also have strong eccentricity biases in opposite
directions (peripheral and foveal, respectively).

We performed this same set of analyses in a surface-
based searchlight, to explore regions throughout the
cortex that had V1 connectivity patterns with a
consistent eccentricity preference. Colored vertices in
Figure 3 are those whose weight-versus-eccentricity
profiles were consistently correlated across subjects
(i.e., had a consistent bias to any range of eccentrici-
ties), and the vertex color indicates the position of the
peak of the eccentricity profile (averaged across
subjects). Vertices in red had connectivity profiles that
were highest at foveal eccentricities, indicating that they
were most correlated with foveal V1 in all subjects.
Similarly, yellow and green vertices were most con-
nected to parafoveal eccentricities, and blue and purple
vertices were connected to the most peripheral eccen-
tricities covered by our stimuli. Note that we are not yet
considering the connectivity strength of these vertices;
colored vertices may have very low correlations to all of
V1 but still show a significant bias (i.e., significant
difference in connectivity to different eccentricities).

We observed topographies of eccentricity preference
spanning large portions of the brain, which are
consistent with known retinotopic maps but also extend
into more anterior regions. Foveal connectivity is
observed extending from the foveal confluence in early
visual cortex down the ventral visual stream (including
LOC and FFA) into the anterior temporal lobe and up
into the superior temporal sulcus, and is present near
the intersection of V3a, V3b, and IPS0. A foveal
preference is also observed in lateral and orbital
prefrontal cortex, and in a small patch in the medial
parietal lobe anterior to left RSC. Peripheral connec-
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tivity, by contrast, shows a very different large-scale
pattern. A band of peripherally connected vertices
wraps around visual cortex from PPA, through RSC,
to OPA, covering all major regions of scene-selective
cortex. Peripheral connectivity is also present
throughout the medial frontal lobe, around the central
sulcus, and in the insula.

As in the ROI analysis, we also performed a
searchlight analysis in which we tested for vertices
whose weight maps simply show an overall linear trend
with eccentricity (indicating that connectivity is either
increasing or decreasing with eccentricity). This ap-
proach has the advantage of providing an easy metric
for identifying a peripheral versus foveal bias, but the
disadvantage of obscuring interesting subtleties in the
data: It will fail to find vertices that have preferences
for intermediate eccentricities and ignores the precise

shape of the eccentricity profiles. Nonetheless, this
analysis identifies strongly peripheral and foveal
regions that are consistent with our main analysis (see
Supplementary Figure S3).

Our main searchlight analysis also yielded a map of
V1 connectivity strength for each vertex (the fraction of
its variance that could be explained by the weighted V1
average time course). As shown in Figure 4, all of visual
cortex had activity that was strongly related to V1
signals. This coupling gets weaker as we move to more
anterior regions, with a steep drop-off around RSC and
within the PPA. For parietal, anterior temporal, and
frontal lobes, very little of the time-course variance is
related to V1. This is not inconsistent with the existence
of eccentricity preferences in these regions as observed
in Figure 3; these regions are correlated to some

Figure 3. Peak of learned weight profiles. A weight-versus-eccentricity profile (as in Figure 2, top) was computed in a searchlight

across the surface of all subjects. Colored vertices are those that showed correlated profiles across subjects (q , 0.01 by permutation

test, minimum cluster size¼ 100 mm2). Foveal connectivity extends from the foveal confluence down the ventral visual stream and

into the superior temporal sulcus, and also appears near the intersection of V3a, V3b, and IPS0 as well as in ventrolateral prefrontal

cortex. Peripheral connectivity wraps around from the collateral sulcus to the superior occipital lobe and is also present in medial

prefrontal cortex, precentral cortex, and the insula.
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portions of V1 significantly more than other portions of
V1, but these correlations are low overall.

We chose to perform our analysis by fitting a
smoothly varying connectivity map over V1 in order to
be as sensitive as possible to potentially subtle
connectivity patterns, but we expected that a more
traditional binning-based analysis (Arcaro et al., 2015)
would yield a similar result, albeit with reduced
sensitivity and less precise estimates of the peak
eccentricity preferences in each region. To confirm this
intuition, we performed a comparison analysis in which
we averaged the time courses of V1 vertices within three
bins based on eccentricity (with equal numbers of
vertices in each bin). The eccentricities within each bin
varied slightly across subjects, but consisted approxi-
mately of a foveal bin (08–18), a parafoveal bin (18–58),

and a peripheral bin (58–158). As in the previous
analysis, we conducted a searchlight over the entire
cortical surface, now calculating the correlation be-
tween each of the three V1 bin time courses and the
average time course in the searchlight. We identified
vertices whose correlation to one of the bins was
significantly greater than the average correlation to the
other two, across subjects. As shown in Figure 5, this
analysis yields a map that matches the broad topogra-
phy found in our analysis (compare to Figure 3), with
foveal connectivity in ventral occipitotemporal cortex,
the superior temporal sulcus, orbital prefrontal cortex,
and anterior to RSC, and with parafoveal or peripheral
connectivity in scene regions, medial frontal cortex, the
central sulcus, and the insula. Our regression analysis,
however, is substantially more sensitive, yielding 51%

Figure 4. Connectivity strength to V1. For vertices showing a significant dependence on V1 eccentricity (Figure 3), we measured their

connectivity strength to V1, defined as the fraction of time-course variance that could be explained by the weighted average of V1

time courses. As in Figure 3, hue represents eccentricity bias. Transparency of that color overlay indicates the connectivity strength,

with fully opaque vertices having at least 30% of their time course predicted by V1 activity. Early visual regions, LOC, FFA, and parts of

OPA are strongly related to V1, but this relationship drops off rapidly around RSC and within PPA. Very little of the activity in regions

anterior to the superior temporal sulcus was related to V1 activity, indicating that although they connect consistently to a particular

portion of V1 (Figure 3), this coupling is relatively weak.
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more significant vertices, as well as a continuous
measure of eccentricity preference (in degrees) rather
than coarse bins. The binning results therefore validate
our results regarding the large-scale eccentricity to-
pographies across the cortex but also demonstrate that
fitting full millimeter-scale weight maps can reveal
details not visible in coarse bins.

Discussion

Using a specialized connectivity method, we mea-
sured the strength and specificity of functional con-
nections between scene-sensitive regions and V1.
Consistent with previous studies, this connectivity was
largely biased toward V1’s peripheral representation,
but we also uncovered complex structure within and
between scene regions. Although all regions of the

scene network showed evidence of a peripheral bias, the
extent to which the regions preferentially connected to
peripheral versus foveal V1 varied, with the weakest
bias in OPA and strongest bias in RSC. Some regions,
such as OPA and PHC1, showed strong connectivity to
V1, whereas activity in RSC and aPPA could not be as
easily predicted from V1 activity. Since our V1 map is
limited to eccentricities within 158, our measurement of
V1 connectivity may underestimate how well peripheral
V1 activity can predict these regions; that is, connec-
tivity strength may improve if more peripheral V1
locations are included. However, it is not the case that a
strong peripheral bias resulted more generally in poor
connectivity strength; for example, PHC1 and PHC2
showed similar peripheral biases, but PHC1 had a
higher V1 connectivity strength.

Activity in the OPA was strongly related to V1
activity and showed a bias away from the fovea, but
peaked in connectivity around 108 of eccentricity. The

Figure 5. Comparison to a binning-based method. Rather than computing a full map over all V1 vertices, we binned each subject’s

vertices into three bins with equal numbers of vertices, representing the foveal, parafoveal, and peripheral visual field. A searchlight

was then carried out to identify vertices showing a consistent connectivity preference for one of the bins (q , 0.01, minimum cluster

size ¼ 100 mm2). This yielded results similar to those in Figure 3, though with reduced power.

Journal of Vision (2016) 16(2):9, 1–14 Baldassano, Fei-Fei, & Beck 10

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934904/ on 05/20/2016



searchlight analysis (Figure 3) showed an interesting
topography of eccentricity preferences around OPA: It
overlaps with peripheral portions of several retinotopic
maps from IPS0 to LO2, but also includes a foveal
preference near the intersection of V3a, V3b, and IPS0.
This matches the location of the V3a/b foveal
representation (Larsson & Heeger, 2006), further
validating that our functional connectivity analysis can
reveal retinotopic biases consistent with traditional
mapping approaches. Functionally, the relatively weak
overall peripheral bias in OPA is consistent with
proposals that OPA processes local scene properties
that require relatively high acuity, such as spatial
relationships between objects (Bettencourt & Xu,
2013), early processing of scene surfaces (Dilks, Julian,
Paunov, & Kanwisher, 2013), or characteristic local
features (Marchette, Vass, Ryan, & Epstein, 2015).

RSC showed the strongest peripheral biases out of
all our ROIs, but was also less related to V1 (compared
to OPA and posterior PPA). This suggests that RSC
combines peripheral visual stimuli with many other
sources of information from outside the visual system,
as opposed to the more exclusively visual regions OPA
and posterior PPA. In keeping with this, RSC is known
to be involved in a wide range of cognitive tasks,
including episodic memory, navigation, and imagina-
tion (Vann, Aggleton, & Maguire, 2009).

The PPA exhibited a strong gradient of V1 coupling
along its anterior–posterior axis, replicating previous
results by our group and others (Baldassano et al.,
2013; Nasr, Devaney, & Tootell, 2013) and showing
that these differences persist during free-viewing
perception of natural movies. Posterior PPA (PHC1
and PHC2) showed a strong peripheral bias, consistent
with the original description of these maps (Arcaro et
al., 2009). We found that this peripheral bias extends
into aPPA, but that the eccentricity profile in aPPA was
much less consistent than in the more posterior
subregions, suggesting that it is not as strongly tied to
particular portions of V1. Together these results
suggest that aPPA is still performing some processing
of peripheral visual information but is less directly
related to low-level visual features encoded in V1. This
is consistent with a previous study of population
receptive fields in posterior versus anterior PPA, which
found that anterior PPA was less related to the specific
position of a stimulus in the visual field (Silson, Chan,
Reynolds, Kravitz, & Baker, 2015). These results join a
broad set of converging evidence for a functional
distinction between posterior and anterior PPA, with
posterior PPA more related to low-level visual features
(Aminoff & Tarr, 2015; Baldassano et al., 2016; Nasr,
Echavarria, & Tootell, 2014; Watson, Hymers, Hartley,
& Andrews, 2016) and anterior PPA more involved in
global and memory-driven image properties (Aminoff
& Tarr, 2015; Linsley & Macevoy, 2014; Marchette et

al., 2015; Park, Konkle, & Oliva, 2014; Watson et al.,
2016).

The searchlight analyses showed that a peripheral
eccentricity bias was also present throughout much of
medial prefrontal cortex (mPFC). Since mPFC exhibits
magnetoencephalography phase coupling with RSC
(Kveraga et al., 2011), with which it also shares a
structural connection (Greicius, Supekar, Menon, &
Dougherty, 2009), its functional relationship with
peripheral V1 is likely due to indirect connections
through RSC. The mPFC has been proposed to serve a
key role in the contextual association network, and is
activated during contextual processing just like tradi-
tional scene regions (Aminoff, Schacter, & Bar, 2008;
Peters, Daum, Gizewski, Forsting, & Suchan, 2009). It
has therefore been proposed that mPFC integrates
current visual information into a context frame
(Kveraga et al., 2011). Our results support this view
that contextual information from the peripheral visual
field is integrated in mPFC.

Other smaller regions anterior to visual cortex also
exhibited connectivity to specific eccentricities in V1.
A broad section of the lateral temporal lobe was
foveally connected, including the superior temporal
sulcus, which is known to be functionally connected
to the V1 fovea in macaques (Vincent et al., 2007) and
to be involved in the foveal processing of faces
(Haxby, Hoffman, & Gobbini, 2000). The peripher-
ally connected patches near the central sulcus overlap
with proposed topographic maps around the precen-
tral sulcus and human frontal eye fields (Kastner et
al., 2009), though our data do not show strong
evidence of topographically organized eccentricities
in this region. The functional role of the insula’s
peripheral bias is unclear, but this bias is consistent
with previous studies that have also identified
functional connectivity between the insula and the
portion of the calcarine sulcus corresponding to
peripheral V1 (Deen, Pitskel, & Pelphrey, 2011). The
foveal connectivity in orbitofrontal cortex likely
comes from its connections with the ventral temporal
lobe, which have been identified both anatomically
(Rolls, 2000) and functionally (Jackson, Hoffman,
Pobric, & Lambon Ralph, 2016).

Conclusions

Topographic relationships between regions are a
fundamental organizing principle of the brain (Jbabdi,
Sotiropoulos, & Behrens, 2013). By examining milli-
meter-scale patterns of connections between V1 and
scene-processing regions during free viewing of an
audiovisual movie clip, we identified complex interac-
tions between retinal eccentricity and functional
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connectivity. Consistent with the known peripheral bias
in scene perception (Larson & Loschky, 2009), we
identified a bias in connectivity to peripheral V1 versus
foveal V1 throughout well-known scene-sensitive re-
gions and in other cortical regions including medial
prefrontal cortex. We also identified differences among
scene-sensitive regions, both in the strength of this
peripheral bias and in the degree of coupling to signals
in V1. OPA’s peripheral bias was the least extreme,
while RSC’s was the most extreme, suggesting that
these regions extract information from different por-
tions of the visual field. Activity in OPA and posterior
PPA (especially PHC1) was strongly related to V1
activity, while RSC and aPPA were less predictable
from visual activity alone, suggesting that OPA and
posterior PPA are closer to purely ‘‘visual’’ regions
while RSC and aPPA are recruited by a more general
set of cognitive functions. These results demonstrate
that functional correlations during natural perception
reflect eccentricity biases in high-level visual regions,
and give insight into the fine-scale organization of the
scene-processing network.

Keywords: fMRI, functional connectivity, eccentrici-
ty, periphery, receptive field, PPA, PHC, OPA, TOS,
RSC, audiovisual
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