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Abstract
Understanding human–object interactions is critical for extracting meaning from everyday visual scenes and requires
integrating complex relationships between human pose and object identity into a new percept. To understand how the brain
builds these representations, we conducted 2 fMRI experiments in which subjects viewed humans interacting with objects,
noninteracting human–object pairs, and isolated humans and objects. A number of visual regions process features of human–
object interactions, including object identity information in the lateral occipital complex (LOC) and parahippocampal place
area (PPA), and human pose information in the extrastriate body area (EBA) and posterior superior temporal sulcus (pSTS).
Representations of human–object interactions in some regions, such as the posterior PPA (retinotopic maps PHC1 and PHC2)
are well predicted by a simple linear combination of the response to object and pose information. Other regions, however,
especially pSTS, exhibit representations for human–object interaction categories that are not predicted by their individual
components, indicating that they encode human–object interactions asmore than the sumof their parts. These results reveal
the distributed networks underlying the emergent representation of human–object interactions necessary for social
perception.
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Introduction
Our visual experience consists not of a jumble of isolated objects
but of coherent scenes, in which objects are arranged in mean-
ingful relationships. Neuroscientists have long studied recogni-
tion of isolated objects, and we have at least a qualitative
understanding of where and how the brain constructs invariant
object representations (DiCarlo et al. 2012). A largely separate
body of research has studied the perception of complex scene
images containing diverse collections of objects and has identi-
fied brain regions supporting the recognition of broad scene cat-
egories (Walther et al. 2009; MacEvoy and Epstein 2011). The
connection between these 2 domains, however, has gone largely
unstudied: how do objects come together to compose complex
scenes with emergent semantic properties?

One scene category in which semantic meaning is critically
driven by the relationship between scene components is that of

human–object interactions. Understanding the differences be-
tween images of people riding horses, petting horses, leading
horses and feeding horses, for example, cannot be accomplished
by simply recognizing the person and horse in isolation. More-
over, understanding human–object interactions is essential for
both developmental learning about object manipulation (Want
and Harris 2002) as well as everyday social cooperation. Yet, we
know surprisingly little about how such interactions are encoded
in the brain.

It is clear that understanding human–object interactions will
depend on brain regions involved in processing object identity
(e.g., the lateral occipital complex, LOC) and the relative positions
of body parts (e.g., the extrastriate body area, EBA). We hypothe-
size, however, that extractingmeaning fromhuman–object inter-
actions will require areas sensitive not just to object or pose, but
also to higher order emergent features of the interaction relevant
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to understanding human’s actions and goals. In other words,
we expect that the object and human representations must be
integrated into a neural representation that is “more than the
sum of its parts.”

To identify such a representation, we used multi-voxel
pattern analysis (MVPA) to compare the representation of
human–object interaction categories to the linear combinations
of responses evoked by isolated humans and objects. Although
somemultiobject scenes can bemodeled bya linear pattern aver-
age of the responses to each object individually (Zoccolan, Cox,
and DiCarlo, 2005; MacEvoy and Epstein 2009; Baeck et al. 2013;
Kaiser et al. 2014; Kubilius et al. 2015), we find that human–object
interactions break this linear assumption in regions such as the
posterior superior temporal sulcus (pSTS), evoking novel cat-
egory representations distinct from pattern averages. In particu-
lar, this analysis revealed nonlinear representations across
multiple components of the social cognition network (Saxe 2006).

We conclude that understanding human–object interactions
involves distributed occipitotemporal networks, which support
the creation of emergent representations in social cognition
regions. These results demonstrate the critical impact of interac-
tions between scene components on scene representation, pro-
viding a new bridge between isolated object perception and full
scene recognition.

Materials and Methods
Subjects

We collected data from 10 subjects (2 female, aged 22–28, includ-
ing one of the authors) in Experiment 1, and 12 subjects (5 female,
aged 20–32, including one of the authors, 5 subjects overlapping
with first experiment) in Experiment 2. Subjects were in good
health with no past history of psychiatric or neurological
diseases and with normal or corrected-to-normal vision. The ex-
perimental protocol was approved by the Institutional Review
Board of Stanford University, and all subjects gave their written
informed consent.

Stimuli

For Experiment 1, we created 128 person-riding-horse and 128
person-playing-guitar images by manually segmenting images
from the Stanford 40 Actions database (Yao et al. 2011). Each
image was scaled to contain the same number of pixels, such
that every image fits with a 450 × 450 square. We created 128
horse images (using images and masks from the Weizmann
horse database; Borenstein and Malik 2006) and 128 guitar
images (using images from the Caltech Guitar dataset, andman-
ually segmenting them from the background; Tirilly et al. 2008).
We also created 128 person images using images and masks
from INRIA Annotations for Graz-02 (Opelt et al. 2006; Marszalek
and Schmid 2007) in additional to manually segmented people
from the Stanford 40 Actions database (Yao et al. 2011). Each of
the isolated images was scaled to contain half as many pixels
as the interacting images. Half of the horses were horizontally
mirrored (since all of the Weizmann horses face to the left), and
the guitars were rotated so that the distribution of the neck an-
gles exactly matched that of the person-playing-guitar images.

To create the noninteracting images, we overlaid an isolated
person and isolated object, with the person and object chosen
so as to avoid pairings that appeared to be interacting. The person
and object images were each centered on a point drawn from a
Gaussian distribution around the fixation point, with standard
deviation set equal to the standard deviation of objects and

people relative to the image centers in the action images (0.62°
of visual angle). To make the images as qualitatively similar to
the action images as possible, the person images were placed
on top of (occluding) the horse images, but were placed behind
the guitar images. The distribution of the relative sizes of the per-
son and object was exactly matched to that of the action images,
and the composite images were scaled to have the same number
of pixels as the interacting images. The total number of stimuli in
Experiment 1 was (3 isolated + 2 interacting + 2 noninteracting) ×
(128 images) = 896 images.

For Experiment 2, 40 imageswere collected fromGoogle Images
and Flickr for each of 4 action categories: pushing shopping carts,
pulling luggage, using a computer, and using a typewriter. All of
the 160 images were manually segmented to remove the person
andobject fromthebackground, and scaled tohave the samenum-
ber of pixels such that every image fitswithin a 900 × 900 square. In
addition to the segmented human–object interaction image, we
manually separated the person and object, creating isolated object
images and isolated human images. Any overlap between the per-
son and object in the human–object interaction images was cov-
ered with a black rectangle (to ensure that the isolated person
images did not contain any information about the object and vice
versa), which was applied to all 3 versions of the image. All images
were superimposed on a background containing 1/f noise in each
color channel, in both their original orientation and mirrored left
to right, fora total of (2 orientations) × (4 categories) × (3 conditions)
× (40 images) = 960 stimuli.

Experimental Design

Each subject viewed blocks of images from different categories,
with a 12 s gap between blocks. Each block started with a
500 ms fixation cross, and then 8 images each presented for
160 ms with a 590 ms blank inter-trial interval. Subjects were in-
structed to maintain fixation at the center of the screen and per-
form a 1-back task using a button box. In Experiment 1, subjects
participated in 8 runs, each ofwhich contained 2 blocks of each of
the 7 stimulus categories (isolated humans, guitars, and horses;
noninteracting human–guitar and human–horse pairs; humans
riding horses and humans playing guitars), for a total of 14 blocks
(126 TRs) per run. Subjects performed a 1-back task, detecting
consecutive repetitions of the same image, which occurred 0, 1,
or 2 times per block. In the Experiment 2, subjects performed 14
runs. Each of the first 10 runs contained 8 blocks, one from every
isolated (person/object) category, for a total of 79 TRs per run. The
last 4 runs contained 20 blocks each (10 per run), with 5 blocks
drawn from each interaction category, for a total of 97 TRs per
run. Subjects performed a 1-back task, detecting consecutive
images that were mirror images of each other, which occurred
0 or 1 times per block (with the same frequency for all categories
and conditions). Note that in both experiments, every stimulus
image was distinct, aside from the adjacent repeated images
in Experiment 1 which were never separated in the analyses.
Thus, all MVPA training and testing were done on distinct
images.

Regions of Interest

The locations of the category-selective ROIs for each subject’s brain
were obtained using standard localizer runs conducted in a separ-
ate fMRI experiment. Subjects performed 2 runs, each with 12
blocks drawn equally from 6 categories—child faces, adult faces,
indoor scenes, outdoor scenes, objects (abstract sculptures with
no semantic meaning), and scrambled objects—and an additional
run with 12 blocks drawn from 2 categories (body parts and
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objects). Blocks were separated by 12 s fixation cross periods and
consisted of 12 image presentations, each of which consisted of a
900 ms image followed by a 100 ms fixation cross. Each image
was presented exactly once, with the exception of 2 images during
each block that were repeated twice in a row. Subjects were asked
tomaintainfixationat the centerof the screenand respondvia but-
ton presswhenever an imagewas repeated. The ROIswere defined
such that each subject hadapproximately the sametotal volumeof
clustered voxels: LOC, approximately 4800 mm3 for Objects >
Scrambled contrast in lateral occipital cortex; EBA, peak clusters
of approximately 2900 mm3 for Body Parts > Objects contrast in
occipital cortex; parahippocampal place area (PPA), peak clusters
of approximately 2900 mm3 for Scenes > Objects contrast near
the parahippocampal gyrus; fusiform face area (FFA), peak clusters
of approximately 960 mm3 for Faces > Objects contrast near the
fusiform gyrus. The volume of each ROI in mm3 was chosen con-
servatively, based on previous results (Golarai et al. 2007).

We defined retinotopic regions PHC1/2 using a group-level
field map atlas (Wang et al. 2014).We also defined a pSTS ROI
for Experiment 2 in MNI space as all voxels within 10 mm of
the peak pSTS voxel in Experiment 1 (see Fig. 4). Both of these 2
ROIs were then transformed into each subject’s native space.

Scanning Parameters and Preprocessing

For Experiment 1 and the ROI localizers, imaging data were
acquired with a 3 T G.E. Healthcare scanner. A gradient echo,
echo-planar sequence was used to obtain functional images
[volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip angle,
80°; matrix, 128 × 128 voxels; FOV, 20 cm; 29 oblique 3 mm slices
with 1 mm gap; in-plane resolution, 1.56 × 1.56mm]. The first 4 vo-
lumes of each run were discarded, and the functional data were
then motion-corrected and converted to percent signal change,
using the AFNI software package (Cox 1996). Since we are using
MVPA, no other preprocessing was performed. We collected a
high-resolution (1 × 1×1 mm voxels) structural scan (SPGR; TR,
5.9 ms;TE, 2.0ms;flip angle, 11°) ineachscanningsession. Forcom-
puting whole-brain results at the group level, each subject’s anat-
omy was registered by hand to the Talaraich coordinate system.
Images were presented using a back-projection system (Optoma
Corporation) operating at a resolution of 1024 × 768 pixels at
75 Hz, such that images covered approximately 14° of visual angle.

For Experiment 2, imaging datawere acquiredwith a different
3 T G.E. Healthcare scanner. A gradient echo, echo-planar se-
quence was used to obtain functional images [volume repetition
time (TR), 2 s; echo time (TE), 30 ms; flip angle, 77°; matrix, 80 × 80
voxels; FOV, 23.2 cm; 42 oblique 2.9 mm slices; in-plane reso-
lution, 2.9 × 2.9 mm]. The first 6 volumes of each run were dis-
carded, and the functional data were then motion-corrected and
converted to percent signal change, using the AFNI software pack-
age (Cox 1996). We collected a high-resolution (0.9 × 0.9 × 0.9 mm
voxels) structural scan (BRAVO; TR, 7.24 ms; TE, 2.78 ms; flip
angle, 12°) in each scanning session. No other preprocessing was
performed. For computing whole-brain results at the group level,
each subject’s anatomy was registered automatically to the MNI
coordinate system. Images were presented using an LCD display
(Resonance Technology) operating at a resolution of 640 × 480 at
240 Hz, visible fromamirrorwithin theheadcoil, such that images
covered approximately 12° of visual angle.

Mean Signal Analysis

To compare the mean signal response to noninteracting and in-
teracting stimuli in each ROI in Experiment 1, we used a standard

regression model. The stimulus regressors were modeled as step
functions equal to 1 during a stimulus block and 0 elsewhere,
convolved with the standard AFNI hemodynamic response func-
tion (Cox 1996). In addition, 30 nuisance regressors were added to
the model: 3 for each of the 8 runs (constant offset, linear trend,
quadratic trend), and 6 motion correction estimates (3 rotation
and 3 translation). The estimated β weights for the noninteract-
ing and interacting regressors were then recorded in units of
percent signal change relative to the mean of the run.

ROI Decoding

For all MVPA decoding analyses in both Experiments, each fMRI
time point was first assigned a stimulus label; all time points
that occurred during a stimulus block (shifted by 6 seconds to ac-
count for hemodynamic lag) were assigned to the corresponding
stimulus label, while all other time points were labeled as inter-
block time points. Classificationwas performed using linear sup-
port vector machines, using the MATLAB LIBSVM library (Chang
and Lin 2011). In Experiment 1, we selected 6 runs for training,
used 1 validation run to tune the soft-margin hyperparameter
c, and tested on the remaining run. Results were averaged over
all possible choices of testing and validation runs. In Experiment
2, 9 blocks of each stimulus category were selected for training,
and the classifier was then tested on the remaining blocks,
with fixed c = 0.1. Results were averaged over all choices of testing
block. For cross-decoding, the classifier was also tested on all
blocks corresponding to the untrained stimulus conditions.

When applying this method to the predefined ROIs, we first
excluded voxels that were not sensitive to visual stimulation, to
improve decoding accuracy. All voxels were ranked based on
the absolute value of their z-score for within-block time points
(i.e., visual stimulation) versus interblock time points (i.e.,
blank screen with fixation point). The top 40% of the voxels
were used in decoding (the number of voxels retained was set
to 40% of the group mean size for each region, so all subjects
retained the same number of voxels in a given region), but
our results are not sensitive to the number of voxels used (see
Supplementary Fig. 1). Note that this type of voxel selection
does not introduce a circularity bias (as described by Vul et al.
2009) since 1) we are selecting only for visual sensitivity, not for
between-condition effects, and 2) the selection is based only on
training data.

In Experiment 1, 2 separate classifierswere trained: one to dis-
criminate between noninteracting stimulus categories (humans
with horses vs. humanswith guitars) and one to discriminate be-
tween interacting stimulus categories (humans riding horses vs.
humans playing guitars). In the first analysis, the performance of
these classifiers was measured on the noninteracting and inter-
acting testing time points, respectively. For the cross-decoding
analysis aimed at identifying nonlinear interactions of human
and object, we created pattern-average testing time points, by
averaging the mean response to isolated humans in the testing
run with all isolated object time points in the testing run. The
noninteracting and interacting decoders were then used to clas-
sify the category of these pattern average time points (human +
horse vs. human + guitar) as well as the category of isolated ob-
ject time points (horse vs. guitar). Because the noninteracting de-
coder could not have learned an emergent interaction we would
expect it to transfer well (i.e., above chance cross-decoding) to
both the pattern averages as well as the isolated objects. Similar-
ly, above-chance accuracy for the interacting decoder in this
cross-decoding analysis would indicate that the category re-
presentation of a human–object interaction is at least partially
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predicted by the object alone, or from a linear average of the per-
son and object representations. A reduction in accuracy relative
to the noninteracting decoder, however, would suggest that the
interacting decoder learned something beyond the component
objects.

In Experiment 2, 3 classifierswere trained: one to discriminate
between isolated objects segmented from our action images, one
to discriminate between isolated humans segmented from our
action images, and one to discriminate between the full
human–object action images. This last classifier was also applied
in a cross-decoding analysis, to decode isolated object time
points, isolated human time points, and pattern-average time
points (created by averaging the 4 time points corresponding to
an isolated object category in a given run with the 4 time points
corresponding to the isolated human from the same category in
the same run, yielding a new set of 4 pattern-average time
points). As in Experiment 1, above-chance accuracy for the full-
interaction decoder on these isolated objects, humans and pat-
tern-average time points would suggest that the representation
for interactions shares similarities to isolated object category re-
presentations, isolated human pose category representations, or
the average of the 2, respectively. A failure of the full-interaction
decoder to transfer to either the isolated stimuli or pattern
averages would suggest that the full-interaction decoder learned
something beyond the components.

MVPA Searchlight Analyses

As exploratory analyses, we also ran these analyses in a whole-
brain searchlight. Spheres with 7 mm radius were centered on a
gridwith 8 mmspacing. For each sphere, all voxelswhose centers
fell within its radius were used as a region of interest, and decod-
ing analyses were performed as for the ROIs (without any voxel
selection, andwith a soft-margin hyperparameter set to the aver-
age of its value during the ROI experiments). Note that each
sphere intersected with all 26 neighboring spheres, since the
maximum distance between a sphere and its neighbors (square
root of 3 times 8) is less than twice the radius (2 times 7). To pro-
duce a decoding accuracy map for each subject, the accuracy for
each voxel was calculated as the mean accuracy of all search-
lights that included that voxel.

To determine significance thresholds, a Monte-Carlo permu-
tation test was used (Stelzer et al. 2013). The analysis used on the
real data was run 1000 times on data for which the time point
labels were randomly shuffled between categories being used
for training or testing. For example, when decoding riding horse
versus playing guitar, the labels of all riding-horse and playing-
guitar time points were randomly shuffled. A threshold value
was then fixed such that <5% of the sampled maps contained
any above-threshold clusters larger than 100 voxels, and this
same threshold was applied to the real data (see Supplementary
Fig. 2). This nonparametric correction procedure has been
shown to be much more conservative than parametric statistical
methods, which can highly inflate family-wise error rates
(Eklund et al. 2015).

Results
Experiment 1

We constructed a stimulus set with 3 types of images (see Fig. 1):
isolated humans, guitars, and horses; “noninteracting” human–
horse and human–guitar pairs, in which humans and objects
were simply pasted together without an interaction; and

“interacting” humans riding horses and humans playing guitars.
These actions were chosen since both involve humans that are
roughly vertical and centered, so that the noninteracting and in-
teracting images had similar construction. As described in Ex-
perimental Procedures, the noninteracting images were
constructed to match the statistics of the interacting images as
closely as possible, so that the only difference from the interact-
ing images is that the human body is not correctly positioned to
interact with the object.

Category Decoding for Noninteracting and Interacting
Stimuli

Not surprisingly, given the subtle differences in the stimuli, a
univariate analysis comparing interacting and noninteracting
stimuli yielded no differences in occipitotemporal regions LOC
and EBA (LOC: t9 =−0.47, P = 0.65; EBA: t9 =−0.78, P = 0.46; 2-tailed
t-test) and performing a whole-brain regression analysis con-
trasting interacting > noninteracting failed to find any voxels
meeting the threshold of FDR < 0.05. Thus, we usedMVPA decod-
ing to find regions that showed different voxel-wise patterns be-
tween conditions. In particular, to identify regions that may be
sensitive specifically to interactions, we looked for regions
where we were better able to decode between the human–guitar
and human–horse stimuli when theywere interacting thanwhen
they were noninteracting. Such a result would indicate that a re-
gion better distinguishes between the 2 human–object categories
when an interaction is present, implying that this region con-
tains specialized processing for human–object interactions. We
found that the category (horse vs. guitar) could be decoded for
both noninteracting and interacting stimuli in all 3 of our regions
of interest (noninteracting: LOC: t9 = 4.19, P = 0.001; EBA: t9 = 3.24,
P = 0.005; interacting: LOC: t9 = 3.50, P = 0.003; EBA: t9 = 5.41, P <
0.001; 1-tailed t-test). LOC showed nearly identical decoding
rates for both stimulus types (t9 =−0.13, P = 0.90; 2-tailed t-test),
but EBA showed a consistent difference in the decoding rates
for noninteracting and interacting stimuli, with significantly bet-
ter category decoding for interacting stimuli (EBA: t9 = 2.82, P =
0.020; 2-tailed t-test). These results are shown in Figure 2 (solid
bars, N→N and I→ I). A searchlight analysis for areas showing
this same preference for interacting stimuli (Fig. 3) produced
areas consistent with our ROI results; we found voxels in right
EBA that gave better decoding for interacting stimuli. Additional-
ly, this contrast revealed a more anterior patch of cortex around
the right pSTS showing the same preference for interacting stim-
uli. EBA and pSTS therefore exhibit sharper (more tightly clus-
tered) responses to action categories when an interaction is
present between the human and object.

Cross-Decoding to Isolated Objects and Pattern Averages

As discussed above, perceiving human–object interactions re-
quires a representation that is more than the sum of its parts.
As shown in previous work, some regions’ response to a pair of
simultaneously presented stimuli is simply the average of the re-
sponses to the individual stimuli (Zoccolan, Cox, and DiCarlo,
2005; MacEvoy and Epstein 2009; Baeck et al. 2013; Kaiser et al.
2014; Kubilius et al. 2015). If a region is sensitive to human–object
interactions, however, we would expect the region’s response to
an interacting human and object to not be simply the sum of its
parts, but to be qualitatively different from a simple average of
human and object. We hypothesize that regions specifically sen-
sitive to human–object interactions should have specialized
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(nonlinear) representations for categories of interacting human–
object pairs, but not for noninteracting categories.

We can find regions showing this behavior by using a cross-
decoding approach. After training 2 classifiers, as before, to de-
code noninteracting human–horses versus human–guitars, and
to decode interacting human–horses versus human–guitars, we
can then attempt to use these classifiers to decode isolated
horses versus guitars as well as the pattern average of isolated
humans and horses versus the pattern average of isolated hu-
mans and guitars. If the features used to represent categories of
human–object pairs are driven simply by object information, or
are simply linear averages of the features of isolated humans
and objects, then both noninteracting and interacting classifiers
trained on pairs should generalize well when cross-decoding. If,
however, the classifier trained on interacting stimuli is decoding
a representation that is more than the sum of its parts, then this
classifier should bemarkedly worse at decoding patterns derived
from responses to isolated stimuli than from responses to actual
interacting stimuli.

The ROI results in Figure 2 show a compelling difference be-
tween cross-decoding in the noninteracting and interacting
cases. When trained on noninteracting responses, classifiers for
both regions were able to decode isolated object stimuli (N→O
bars; LOC: t9 = 6.03, P < 0.001; EBA: t9 = 5.27, P < 0.001; 1-tailed

t-test) and pattern-averaged stimuli (N→PA bars; LOC: t9 = 4.48,
P < 0.001; EBA: t9 = 4.72, P < 0.001; 1-tailed t-test), with only a
small drop in performance comparedwith decoding noninteract-
ing stimuli (N→N >N→O: LOC: t9 = 0.02, P = 0.49; EBA: t9 = 0.55,
P = 0.29; N→N >N→PA: LOC: t9 = 0.40, P = 0.34; EBA: t9 = 0.94,
P = 0.19; 1-tailed t-test). This indicates that the features used to
represent noninteracting stimulus categories are largely driven
by object category information and can be effectively used to
classify the average of the human and object patterns. Neither
of these regions appears to represent noninteracting human–
object pairs in a specialized, nonlinear way.

Cross-decoding results showed a different pattern, however,
when the classifier was trained on interacting stimuli. In LOC,
the interacting-stimulus classifier still showed some generaliza-
tion to isolated objects (t9 = 2.44, P = 0.019; 1-tailed t-test) and
marginal performance on pattern-average responses (t9 = 1.78,
P = 0.054; 1-tailed t-test), with a nonsignificant drop compared
with decoding interacting stimuli (objects: t9 = 0.91, P = 0.19; pat-
tern averages: t9 = 1.33, P = 0.11; 1-tailed t-test). Thus, despite
being trained on interacting stimuli, in LOC the classifier was
still largely driven by the identity of the objects alone. In EBA,
however, the classifiers trained on interacting stimuli showed a
significant drop in performance when used to decode isolated
objects (t9 = 3.09, P = 0.006; 1-tailed t-test) or pattern averages

Figure 1. Example stimuli from Experiment 1. Subjects were shown 128 images in each of 7 categories: isolated guitars, horses, and people; noninteracting human–guitar

pairs and human–horse pairs; and interacting humans playing guitars and humans riding horses.
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(t9 = 3.31, P = 0.005; 1-tailed t-test) and were unable to decode the
object or pattern-averaged stimuli above chance (objects: t9 =
1.49, P = 0.085; pattern averages: t9 = 1.23, P = 0.12; 1-tailed t-test).
This drop was significantly larger than that in early visual areas
(t9 = 2.85, P = 0.019; 2-tailed t-test; see Supplementary Fig. 3), sug-
gesting that it is being driven bymore than simple visual dissimi-
larity between the isolated and interacting stimuli. In EBA, then,
wehave evidence that the classifier trained on interacting stimuli

learnt a distinction that did not depend simply on the presence of
the human and the object, suggesting that it was sensitive to ei-
ther the interaction itself or the specific pose of the human in the
interaction. We found a pattern in FFA similar to that in EBA,
while we did not observe any significant decoding in PPA for
these stimuli (see Supplementary Fig. 3).

Using a the same logic,we can lookoutside ourROIs and search
for all regions with this pattern of results for human–object inter-
action categories by performing a searchlight analysis, identifying
searchlights with a greater nonlinearity (drop in performance
when cross-decoding) for interacting stimuli than noninteracting
stimuli (Fig. 4). In addition to EBA, this contrast revealed regions
around the pSTS (peak voxel at MNI [54, −43, 12]) and temporopar-
ietal junction (TPJ) in both hemispheres, right dorsal PCC, and the
right angular gyrus in the inferior parietal lobule (IPL) as decoding
more than the sum of the parts. These areas largely map onto the
networkof regions involved in social cognition andunderstanding
action intent (Saxe2006), consistentwith interactions between the
human and object being an important component of the semantic
meaning of a social scene. These results indicate that the re-
presentation of human–object interaction categories in these
body-related regions is not simply driven by a linear combination
of isolated object identity and a (nonpose specific) human activity
pattern.

Experiment 2

The results of Experiment 1 demonstrate that body-related re-
gions do not represent “person riding horse” as a linear combin-
ation of “person” and “horse,” but it is possible that some of this
effect is due to differences in pose; although pose is in a sense a
configural property of the human, pose representations do not
incorporate both human and object information into a single
emergent unit. In other words, wemay not be decoding the inter-
action per se, but the fact that the interactions result in a particu-
lar pose. We tested this possibility using a new experiment that
focused specifically on cross-decoding for interacting images,
with a new larger set of stimuli (Fig. 5). Subjects viewed 4 new ac-
tion categories, but also viewed in isolation the identical objects
and humans extracted from these interaction images. This de-
sign ensured that objects and human poses were exactly
matched between the isolated and interacting images, so that a
failure to generalize decoding from interacting to pattern aver-
aged responses would necessarily indicate a nonlinearity in cat-
egory representation of interaction. In addition, we added a noise
background behind each stimulus, to remove low-level object
contour information and better simulate natural perception in
a full visual scene.

We performed MVPA decoding using the same approach as
in Experiment 1, looking now at 4-way action classification for
objects alone, people alone, and person–object interactions. As
before, we measured whether the representation of human–
object interactions was similar to the representation of its com-
ponents using cross-decoding; we applied the classifier trained
on full interactions to classify objects alone, people alone, and
pattern averages of objects and people. In addition to the ROIs
used in Experiment 1 (LOC and EBA), we also defined a pSTS
ROI with a 10 mm radius around the voxel that showed the
strongest effect in Experiment 1 (Fig. 4).

The decoding results are displayed in Figure 6. Both LOC and
EBA show above-chance decoding for objects, human poses,
and interactions (objects: LOC t11 = 6.12, P < 0.001; EBA t11 = 2.09,
P = 0.030; humans: LOC t11 = 4.84, P < 0.001; EBA t11 = 2.30, P = 0.021;
interactions: LOC t11 = 4.32, P < 0.001; EBA t11 = 2.93, P = 0.007;

Figure 2. MVPA decoding and cross-decoding for Experiment 1. The stimulus

category for images of human–object pairs (person and horse vs. person and

guitar) can be decoded in both LOC and EBA, whether an interaction is present

(I) or not (N). However, only EBA shows a significant increase in decoding

accuracy for interacting stimuli (I→I) compared with noninteracting (N→N),

indicating that the image category is better represented in this region when an

interaction is present. Classifiers trained on responses to noninteracting stimuli

in all 3 areas generalize well to isolated object responses (N→O) or pattern

averages of individual humans and objects (N→PA), in both regions, indicating

that category representations of noninteracting human–object pairs are linearly

related to isolated human and object responses. The classifier trained on

interacting humans and objects however, only generalizes marginally objects

(I→O) to pattern averages (I→PA) in LOC and is near chance in EBA. This

indicates that representation for human–object interaction categories,

especially in EBA, cannot be captured by the average of responses to isolated

humans (with uncontrolled poses) and objects. These results are consistent

regardless of the number of voxels selected per region (see Supplementary Fig.

1). Error bars denote S.E.M., †P = 0.054, *P < 0.05, **P < 0.01.

Figure 3.MVPA decoding difference searchlight for Experiment 1. Searching all of

cortex for regions having higher decoding accuracy for interacting (I→I) than

noninteracting (N→N) stimuli yields a result consistent with the ROI-based

analysis. Searchlights showing this preference for interacting stimuli

consistently included voxels in the anterior EBA and posterior STS in the right

hemisphere. P < 0.05 cluster-level corrected.
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Figure 4. MVPA cross-decoding searchlight for Experiment 1. Colored voxels are those showing a larger nonlinearity in the interacting condition (I→I minus I→PA)

compared with the nonlinearity in the noninteracting condition (N→N minus N→PA). In addition to EBA, this measure identifies regions around the posterior STS

(peak effect marked with a dot) and TPJ in both hemispheres, the right dorsal PCC, and the right angular gyrus, P < 0.05 cluster-corrected.

Figure 5. Example stimuli from Experiment 2. Subjects viewed images of human–object interactions from 4 different action categories (pushing carts, using computers,

pulling luggage, and typing on typewriters) and also viewed the objects and people from these images in isolation.
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1-tailed t-test). We can gain insight into what features are being
used by the interacting classifier through cross-decoding. We
first investigate whether information about the objects alone or
human pose alone is being used for classification by testing
whether the interacting classifier generalizes to decode the
category of isolated objects or humans.

Cross-Decoding to Isolated Objects in LOC and EBA

When decoding isolated object identity using the interacting
decoder, LOC performs above-chance while EBA does not (LOC
t11 = 2.48, P = 0.015; EBA t11 = 0.068, 1-tailed t-test), suggesting
that LOC is using object identity information to classify interact-
ing images whereas EBA is not. However, classification in LOC is
not only relying on object identity for interaction classification
since, like EBA, it shows a significant performance drop (LOC
t11 = 2.54, P = 0.014; EBA t11 = 2.35, P = 0.019; 1-tailed t-test) when
tested on isolated objects compared with the interacting
human and object. One possibility for this pattern of results is
that in LOC the interacting classifier can use pose to augment dis-
crimination among categories, increasing its chances of success-
ful classification relative to the object alone; indeed, the fact that
both isolated poses and objects were successfully decoded in LOC
is consistent with this idea. However, the fact that we see a
similar drop in performance for the pattern average in LOC (see
“Cross-decoding to pattern averages in LOC and EBA”) suggests
instead that LOC’s representation of interactions is affected in a
nonlinear way by the presence of the human as another object;
adding the pose back in does not improve performance.

Cross-Decoding to Isolated Human Poses in LOC and EBA

When cross-decoding isolated human poses using the interact-
ing classifier, we find significant decoding only in EBA (LOC
t11 = 0.52, P = 0.31, EBA t11 = 2.81, P = 0.008), indicating that pose
information plays a substantial role in EBA’s representation of
interactions but not LOC’s. Although the interacting decoder in

both LOC and EBA shows a numeric drop in accuracywhen tested
on isolated poses, this did not reach significance in EBA (LOC
t11 = 4.22, P < 0.001; EBA t11 = 1.35, P = 0.10; 1-tailed t-test), again
consistent with pose information playing substantial role in
EBA’s representation of interactions.

Running a repeated-measures ANOVA with ROI (LOC, EBA)
and testing set (objects, human poses) as factors yielded a signifi-
cant interaction (F1,11 = 16.87, P = 0.002), indicating that the ab-
sence of the preferred category (objects in LOC and human pose
in EBA) is more detrimental to cross-decoding performance than
the absence of the nonpreferred category. Together, these results
suggest that, in keeping with known category preferences, repre-
sentations of human–objects are driven primarily by object iden-
tity in LOC (with humans being 1 class of objects) and primarily
by pose information in EBA.

In summary, although the interaction decoders in LOC and
EBA show little relationship to action category information in
the nonpreferred stimulus, they still show a drop in accuracy
when tested on their preferred stimulus in isolation relative to
their performance on the full interaction. This suggests that, in
both regions, category information from the preferred stimulus
is modified in some nonlinear way when the stimulus appears
in context with the nonpreferred stimulus.

Cross-Decoding to Pattern Averages in LOC and EBA

We looked explicitly for this type of nonlinear interaction by test-
ing the interacting decoder on a linear pattern average of the re-
sponses to the 2 isolated stimuli. This resulted in above chance
classification in both LOC and EBA (LOC t11 = 3.34, P = 0.003; EBA
t11 = 3.22, P = 0.004; 1-tailed t-test), confirming that both LOC and
EBA encode interacting categories based at least partially on the
individual components (object identity and human pose). Im-
portantly, however, in LOC we see a significant drop in accuracy
for the pattern averages relative to the full interacting images
(t11 = 2.72, P = 0.010; 1-tailed t-test). Despite containing both com-
ponents of the interaction, the pattern average is not sufficient to

Figure 6. MVPA decoding and cross-decoding for Experiment 2. Both LOC and EBA show significant decoding of action category from isolated objects (green), isolated

humans (yellow), or full actions (pink). As in Experiment 1, the classifier trained on full interactions performs above-chance on objects only in LOC, though the cross-

decoding (striped bars) accuracy drop here is significant in both LOC and EBA. EBA’s interaction classifier does, however, generalize well to human poses (while LOC’s

does not). When tested on pattern averages that now include class-specific pose information (unlike Experiment 1), both LOC and EBA classifiers show above-chance

generalization, driven by object information in LOC and by pose information in EBA. The pSTS, on the other hand, localized based on results in Experiment 1, shows

above-chance decoding only for human–object interactions and does not generalize to pattern averages. Error bars denote S.E.M., *P < 0.05, **P < 0.01.
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decode at the level of a full interaction, presumably because it
lacks the emergent features present in the original action
image.Moreover, the addition of an appropriately positioned per-
son without the emergent interaction provided no benefit rela-
tive to the isolated objects alone (objects vs. pattern averages
t11 = 0.01, P = 0.99; 2-tailed t-test). Together, these results suggest
that the interacting decoder is sensitive to something beyond a
linear sum of a particular object and pose in LOC. In EBA, an
analogous pattern is observed, but the drop in accuracy from
the interacting classifier (I→I) to the pattern averages (I→PA) did
not reach significance (t11 = 1.23, P = 0.12). The searchlight ana-
lysis (described in “Searchlight analyses”) may explain why this
drop failed to reach significance.

Decoding and Cross-Decoding in pSTS

Aqualitatively different pattern of results from both LOC and EBA
was seen in the pSTS, just anterior to EBA (as identified in Experi-
ment 1). Here, the only condition that decoded above chancewith
the interacting classifier was the full interactions (I→I; t11 = 2.32,
P = 0.020; 1-tailed t-test); isolated object and pose decoding was
not significant (objects: t11 = −0.93, P = 0.81; humans: t11 = 1.57,
P = 0.072; 1-tailed t-test). The interaction decoder did not general-
ize to isolated objects, human poses, or the pattern average of the

2; none of these conditions were above chance (objects: t11 = 0.64,
P = 0.27; humans: t11 = 0.45, P = 0.33; pattern averages: t11 = 0.69,
P = 0.25; 1-tailed t-test), and the human and pattern average
cross-decoding accuracies showed significant drops from pure
interaction decoding (objects: t11 = 1.23, P = 0.12; humans:
t11 = 2.01, P = 0.035; pattern averages: t11 = 1.88, P = 0.043; 1-tailed
t-test). These results provide a strong confirmation of the conclu-
sions of Experiment 1, implicating pSTS in representing full
human–object interactions as more than the sum of their parts.
See Supplementary Figure 3 for analyses of additional ROIs,
showing that category representations in early visual cortex are
largely explained by a linear pattern average while FFA shows
results more similar to those in pSTS. These results also hold
for weighted pattern averages of objects and human poses,
which do not increase cross-decoding accuracy compared with
an equal weighting (see Supplementary Fig. 4).

Searchlight Analyses

To further investigate the posterior-to-anterior decoding differ-
ences in lateral temporal cortex, we performed an exploratory
searchlight analysis to measure both interaction classification
and generalization to pattern averages. As shown in Figure 7,
the results were largely consistent with the ROI analyses;

Figure 7. MVPA cross-decoding searchlight for Experiment 2. (a) As in Figure 6, we identified voxels that could decode the action category of human–object interactions

and/or generalize this decoder to pattern averages. A large swath of right lateral occipital and temporal regions (including LOC and EBA) can classify interaction time

points, but in only some portions of LOC and EBA (superior LOC and posterior EBA) does this classifier generalize to pattern averages. Regions in red (where the

interacting classifier performs above chance, but fails to generalize to pattern averages) are likely candidates for processing emergent features of interactions. We also

found significant generalization to pattern averages within the retinotopic (PHC1/2) regions of PPA. (b) A z = 10 slice of lateral cortex shows a clear difference between

LOC/EBA and pSTS, with generalization to pattern averages much lower in pSTS. Error bars denote S.E.M. (c) Posterior PPA (PHC1/2) can decode both objects and

interactions, and the interaction classifier generalizes fully to isolated objects (and pattern averages), indicating that this subregion is not highly sensitive to interactions.
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classifying interactions was above chance in themajority of vox-
els within LOC and EBA, and each contained subregions (superior
LOC and posterior EBA) where this classifier also generalized to
decode pattern averages. In the anterior portion of EBA and
pSTS, however, interaction cross-decoding fails on pattern
averages; this posterior–anterior difference can be seen on an
axial slice through lateral cortex (Fig. 7b), showing that cross-
decoding accuracy drops rapidly around pSTS while interaction
decoding remains relatively high. This trend suggests that the
representation of interaction categories become less and less
similar to pattern averages of humans and objects as we move
anteriorly from LOC to EBA to pSTS. This result also explains
why the EBA ROI failed to produce a significant drop in accuracy
to the pattern averages; EBA contains a representation of interac-
tions that is well predicted by a pattern average as well as amore
anterior representation that represents the interaction as more
than the sum of its parts.

PHC1/2 Decoding

Interestingly, the searchlight also revealed significant cross-
decoding in the PPA, restricted primarily to the retinotopic
maps within this area (PHC1/2) (Arcaro 2009). We performed a
post hoc ROI analysis of (independently defined) PHC1/2, which
revealed a pattern of results different from all of the previous
ROIs (Fig. 7c). The PHC maps represent object categories but not
human pose categories (objects: t11 = 3.95, P = 0.001; humans:
t11 = 0.11; 1-tailed t-test). Full interactions can be successfully
decoded (t11 = 3.23, P = 0.004; 1-tailed t-test), and, critically, the
interaction decoder generalizes to decode isolated objects or
pattern averages, but not isolated humans (objects: t11 = 3.45,
P = 0.003; humans: t11 = 0.20, P = 0.42; pattern averages: t11 = 2.35,
P = 0.019; 1-tailed t-test). Unlike the other ROIs, there is no signifi-
cant drop from interaction decoding to cross-decoding on iso-
lated objects or pattern averages, but only for cross-decoding
on isolated humans (objects: t11 = −0.38, P = 0.65; humans:
t11 = 2.36, P = 0.019; pattern averages: t11 = 0.11, P = 0.46; 1-tailed
t-test). The interacting category decoding is therefore largely ex-
plained by the isolated object representations, suggesting that
emergent interaction features do not play a dominant role in
action representations in this region. This indicates that the pos-
terior portion of PPA may be driven primarily by the component
objects of a scene rather than their relationships, at least for
these simple 2-object scenes devoid of a background layout.

Discussion
Using carefully constructed images of humans and objects, along
with MVPA decoding and cross-decoding analyses, we identified
regions in occipitotemporal cortex responsible for representing
human pose and object identity, and for binding humans and
objects together into a coherent interaction. Previous work has
studied humans and objects in isolation (Downing and Peelen
2011; Kravitz et al. 2013), but we have characterized for the first
time how categories of pose and object identity are jointly
encoded in the context of human–object interactions.

Lateral Occipital Complex

Decoding results in LOC revealed robust representations about
action categories (i.e., humans interacting with objects), which
were at least partially driven by object identity information
(Experiments 1 and 2); that is, in both experiments a classifier
trained on the interaction of object and human successfully

generalized to isolated objects. Experiment 2 also suggested
that LOC’s representation of human–object interactions was not
linearly related to the human’s pose, since the interaction classi-
fier was unable to classify isolated human poses above chance.
However, LOC’s responses to human–object interactions were
partially driven by the emergent relationship between the
human and object, since the interaction classifier showed a
drop in performance (compared with full interactions) when
given only isolated object or pattern averages. This failure to
fully generalize to pattern averages was also seen in Experiment
1, but was only marginally significant; we note, however, that
Experiment 1 had less data (fewer subjects and less data per
subject) than Experiment 2, aswell as other differences in stimuli
and image acquisition. Taken together, these experiments show
that LOC primarily represents object information in human–
object interactions, but, at least for some action categories, may
also be sensitive to features of the interaction between the
human and object (especially in inferior LOC; see Fig. 7a).

Extrastriate Body Area

EBA also showed consistent interaction decoding, but was not
driven by object identity information (Experiments 1 and 2) and
showed a similarity to pattern-averaged responses only when
pose was carefully controlled (Experiment 2).

These results extend our current understanding of the role of
EBA in action perception. It is well established that EBA repre-
sents body pose (reviewed in Downing and Peelen 2011). EBA, in-
cluding the middle temporal gyrus (the most anterior portion of
EBA, see Weiner and Grill-Spector 2011), has been implicated in
action categorization through adaptation studies (Kable and
Chatterjee 2006; Wiggett and Downing 2011), lesion studies
(Kalénine et al. 2010), and a meta-analysis of object-related
actions (Caspers et al. 2010). Exactly what type of information is
represented in EBA has been more controversial, with proposals
ranging from a “cognitively unelaborated” pose description
(Downing and Peelen 2011) focused on “observable mechanics”
(Spunt et al. 2010) to an amodal hub for pairing gestures with
semantic meaning (Xu et al. 2009). Our results confirm that the
EBA response to typical interactions is driven primarily by body
pose (Experiment 2). However, the fact that noninteracting
stimuli can be decoded above chance in Experiment 1 shows
that EBA can discriminate based on object identity when the po-
sitioning of the human body is uninformative about the stimulus
category. In addition, the decoder trained on full interactions failed
to predict pattern average responses in anterior EBA, suggesting
that at least portions of EBA could be sensitive to nonlinear rela-
tionships between the human and object. The fact that both object
and pose information can be used by EBA raises the possibility that
the representation in this region does represent more than simply
bodypose, though furtherworkwill be required to identify precise-
ly how visual versus semantic this representation is.

Posterior Superior Temporal Sulcus

Themost interesting decoding trends with respect to the emergent
properties of human–object interactions were observed in pSTS,
which constructed representations of action categories that appear
unrelated to object or pose information in isolation (Experiments 1
and 2). Overall, these results suggest that social cognition regions
such as pSTS represent human–object interaction categories using
specialized features that are not present in the linear averages of
human and object patterns, creating representations of human–ob-
ject interactions that are more than the sum of their parts.

10 | Cerebral Cortex

 at Princeton U
niversity on A

pril 13, 2016
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


The pSTS (and adjacent TPJ) regions anterior to EBA have been
associated with more abstract types of action perception, such as
understanding unusual or deceptive human action (Grézes et al.
2004; Brass et al. 2007) recognizing whether an object is being
grasped in a typical way (Yoon et al. 2012) and many other tasks
involving perception of agency, theory of mind, and Gestalt inte-
gration (Saxe and Kanwisher 2003; Pelphrey et al. 2004; Saxe
et al. 2004; Decety and Lamm 2007; Hein and Knight 2008; Huberle
andKarnath 2012). The pSTS has been proposed as the key hub for
social perception, given its robust selectivity formany kinds of so-
cial content (Lahnakoski et al. 2012). Interestingly, although pSTS
shows little sensitivity toobject identityorpose (Experiment 2),we
found specialized representations for interacting stimuli here in
both Experiments. Therefore, pSTS appears to be less related to in-
dividual human or object representation, and more involved in
understanding the visual or semantic features of full interactions.

The Neural Basis of Action Recognition

There has been extensive prior work on the neural correlates of
action perception, which is typically studied using video clips ra-
ther than controlled images (reviewed in Culham and Valyear
2006; Caspers et al. 2010). One controversy over the mechanism
of action recognition is whether action recognition is carried
out primarily in motor regions or in social reasoning areas.
Under the simulation hypothesis, human actions are understood
by mentally simulating the observed motor actions of the target
and then inferring what the goals of the target must have been, a
process presumed to be carried out in mirror neurons (Buccino
et al. 2001; Buccino, Binkofski et al., 2004; Buccino, Lui et al. 2004;
Calvo-Merino et al. 2004, 2006; Rizzolatti and Craighero 2004;
Chong et al. 2008). Under the teleological hypothesis, actions are
understood by a more abstract social reasoning system, which
does not depend on any mechanical “resonance” between the ob-
serverand target (Brass et al. 2007; Csibra 2007;Hickok2009;Hauser
andWood 2010). Proponents of this view argue the activity seen in
motor regions during action observation is involved in action pre-
diction rather than action understanding (Csibra 2007; Lingnau
et al. 2009) and that the type of errors made by action observers
is inconsistent with mirror simulation theories (Saxe 2005).

Since our searchlight experiments show interaction effects al-
most exclusively in the social network (EBA, pSTS/TPJ, and PCC;
Saxe 2006) and show no effects inmotor or premotor cortex, our re-
sults provide support for the view that action understanding is built
in social cognition regions, not in motor regions (Wheatley et al.
2007). Additionally, our data reveal that social cognition regions pro-
cess action stimuli even in the absence of any social task, since our
subjectswereonlyperforming1-back repetitiondetection.However,
it is possible thatwedonot observemotororpremotor involvement,
because static images are not as effective at evoking a motor simu-
lation. There was 1 region outside the social network identified by
our study, the right IPL (in Experiment 1),whichhas beenpreviously
linkedwith action perception butwhose precise function is unclear.
Somework has argued that this region containsmirror neurons due
to its cross-adaptation properties (Chong et al. 2008), but the stimuli
that activate this region do not activate macaque mirror neurons
(Hickok 2009) and lesion studies suggest that IPL is involved in the
spatial coding of object-related actions, but not actual semantic ac-
tion understanding (Goldenberg 2009; Kalénine et al. 2010).

Comparison to Object–Object Interaction Studies

Previous work has attempted to link the perceptual grouping of
interacting objects (Riddoch et al. 2003; Green and Hummel

2006; Roberts and Humphreys 2011) with activity in LOC, but
the results have been controversial. Two studies have shown in-
creased BOLD activity in LOC when objects are interacting (Kim
and Biederman 2011) or positioned for interaction (Roberts and
Humphreys 2010), while MVPA analyses have shown that the
LOC response pattern for coherent scenes can be at least partially
predicted as the average of responses to signature objects (MacE-
voy and Epstein 2011) and that the LOC response to pairs of ac-
tion-oriented objects is similar to a linear combination of the 2
object responses (Baeck et al. 2013).

Our results suggest that both camps are correct. LOC did not
show a decoding preference for interaction versus noninteracting
categorization (Experiment 1), has interaction representations
that are at least partially related to isolated object identity (Experi-
ments 1 and2), and doesnot incorporatehumanpose information
(Experiment 2). However, it does appear to encode some inter-
action information beyond object identity (Experiment 2), at
least in the more inferior portion of LOC (red region in Fig. 7a). In
other words, it is possible that the representation in LOC ismodu-
lated in some way by interactions, while still being primarily dri-
ven by linear combinations of isolated object identity information.

Our finding of significant cross-decoding in PPA is surprising,
in light of previouswork showing that PPA generates scene repre-
sentations that are not predictable from the constituent objects
of the scene (MacEvoy and Epstein 2011). There are several pos-
sible ways of reconciling these results. One possibility is that
PPA’s global scene representation applies to full photographic
images, but not 2-element interactions, indicating that more
complex stimuli are required to activate global processing in
PPA (withmore interactions ormore explicit 3D geometry). Alter-
natively, global representationsmay be generated only in the an-
terior portion of PPA, while the posterior PHC1/2 subregion of PPA
(Baldassano et al. 2015) accumulates local visual features in away
that is more similar to LOC (Baldassano et al. 2013).

Identifying Configural Processing

Our approach for identifying regions sensitive to a relationship
between stimulus features is a general tool that could be used
to investigate other types of configural processing. For example,
placing walls and a floor together to form a 3D room likely evokes
a novel representation in regions sensitive to scene layout and
navigation. Our analysis suggests that these regions would ex-
hibit a large cross-decoding penalty when training on rooms
and testing on the average response to walls and floors. The re-
gions responsible for processing relational or contextual interac-
tions between objects (Biederman et al. 1982) could be detected in
a similarway, therebyavoiding the ambiguity of changes inmean
BOLD activity. This approach for detecting configural representa-
tions gives researchers a new way to locate the areas critical for
creating our rich, complex experience of the visual world.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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