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Abstract

The human visual system faces a monumental data processing challenge: using

about a pound of slow, inexact biological processors, it must analyze the barrage of

constantly-shifting light patterns hitting the eye and quickly extract a stable, high-

level model of the environment around us. Almost every piece of this process is

mysterious: exactly what information is being gleaned from the visual signal, how

this information is represented, and how this processing is implemented in neural

circuits. Despite the superiority of silicon computers for most big-data processing,

our emulations of the human visual system are still rudimentary, and can capture

only basic information from visual images such as which objects are present. In this

work, I describe a number of projects toward understanding higher-level processing

of visual scenes. The first examines the neural basis of understanding human-object

interactions, showing how an emergent property of a scene (created by the interac-

tion of two scene parts) can activate representations in social cognition regions. The

second investigates how scenes are categorized, arguing that one of the fundamental

features encoded about a scene is the type of actions which could be performed in

that environment. Finally, I present a large body of work on how scene processing in-

teracts with long-term memory systems. These chapters describe several novel types

of mathematical models for measuring connections between brain regions, and end

with a new organizing proposal for scene perception regions.
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4.4 Histogram comparing the precision of V1 maps generated

from VP voxels. The X-axis indicates the difference between the re-

ceptive field locations of VP voxels and the weighted average of the re-

ceptive fields in corresponding V1 connectivity maps. Since the actual
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and FFA (D). Error bars indicate standard error, ∗p < 0.05, ∗∗ p < 0.01. 68
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4.9 V1-VP connectivity results, for a representative subject (a-b) and all

subjects (c). (a) We identify correspondences between voxels in V1

and VP, shown on a cortical flatmap (F: foveal region, P: peripheral

regions, top 50 voxels from each solution shown in distinct colors).

The two solutions in this subject identify the correspondence between

subregions of VP and subregions of upper-visual-field V1 in the same

hemisphere. (b) The average receptive field positions of the V1 and

VP connectivity maps are very similar for each solution, indicating that

these maps are consistent with retinotopic organization. (c) Learning

maps without regularization (NR) yields only a small improvement over

the baseline (lower is better), but our method significantly improves

the match between average V1 and VP receptive fields when the spatial

regularization term is included (R). * p < 0.05, ** p < 0.01, one-tailed

paired t-test (n=13). (Best viewed in color) . . . . . . . . . . . . . . 80
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larization term (middle). Adding regularization (bottom) produces a

separate posterior and anterior correspondence between hemispheres.

(b) For each subject, we measure the correlation between the left and

right hemisphere maps along the posterior-anterior dimension (larger

is better). We see a strong correspondence between the left and right

maps when using our proposed method with the spatial regularization

term included (R), but not when the regularization term is removed

(NR) or when we use the correlation clustering method. ** p < 0.01,
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5.1 Sample stimuli used in our experiments. (a) Scene and object

stimuli from the localizer experiment, which also included faces and

scrambled objects. (b) Isolated object and object-in-scene stimuli from

the object-in-scene experiment. (c) Beach and mountain stimuli from

the scene category experiment, which also included cities and highways. 94

5.2 A comparison of the learned PPA weightmaps and the overall

connectivity strength, for our four ROIs. (a) The timecourses

of all four seed ROIs are better explained by a regularized voxel-level

connectivity map in PPA, rather than a single connectivity weight for

all of left and right PPA. Activity in LOC, TOS, and RSC is most

closely related to PPA activity, while only a smaller amount of the

cIPL timecourse is related to PPA activity. (b) To obtain a simple

characterization of the learned maps, we compute the correlation be-

tween the connectivity weights and the anterior-posterior axis. This

measure shows consistent differences between the four regions’ connec-

tivity maps. LOC and TOS are preferentially connected to posterior

PPA (since their corresponding PPA weightmaps increase along the

anterior to posterior axis) while RSC and cIPL are preferentially con-

nected to anterior PPA. Error bars represent s.e.m. across subjects,

* p < 0.05, ** p < 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . 100
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5.3 Searchlight connectivity results. (a) Rendering of the group con-

nectivity bias map on the left hemisphere of the Talairach 452 brain.

Colored voxels are those that showed highly significant (FDR <0.01,

cluster size >300 mm3) bias in anterior-posterior connectivity to PPA,

computed as the correlation between the learned PPA connectivity

map and the anterior-posterior axis. Bilateral areas RSC and cIPL, as

well as ventral PFC and lateral anterior temporal regions, exhibited

connectivity with anterior PPA (blue voxels), while occipital visual ar-

eas (including LOC and TOS) exhibited connectivity with posterior

PPA (orange-yellow voxels). The borders of the group ROIs are shown

for reference (outlining the location where at least 3 subjects’ ROIs

overlap). (b-d) The same connectivity map on an inflated surface and

cortical flatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Three slices of the group connectivity bias map. Seed voxels for

which the PPA connectivity map has a strong anterior-posterior gradi-

ent (FDR <0.01, cluster size >300 mm3) are shown in blue (preferential

connectivity to anterior PPA) and yellow (preferential connectivity to

posterior PPA). (a) In this coronal slice (y=-73mm), we identify bi-

lateral cIPL regions that show a different connectivity pattern from

adjacent area TOS. (b) At z=10mm, we observe anterior PPA connec-

tivity in RSC, as well as posterior PPA connectivity in TOS and early

visual visual areas. (c) At z=-5mm, ventral occipital areas including

LOC show connectivity to posterior PPA. Additionally, anterior PPA

connectivity can be seen in the frontal and anterior temporal lobes. . 103

xxiv



5.5 Functional gradients across PPA. The proportion of voxels re-

sponsive to scene and object stimuli, and the average t-statistic for

the response to scene and object stimuli, were calculated in 10 bins

along the anterior-posterior axis in each subject. The dotted line indi-

cates the average t-statistic value corresponding to FDR=0.05 (across

all subjects, for both stimulus categories). Scene sensitivity decreased

from posterior to anterior PPA, but nearly all voxels across PPA re-

sponded significantly to scene stimuli. Object sensitivity substantially

decreased from posterior to anterior PPA, with the majority of ante-

rior PPA voxels failing to respond significantly to object stimuli. Error

bars represent s.e.m. across subjects. . . . . . . . . . . . . . . . . . . 104

5.6 Regions throughout cortex showing connectivity differences

similar to anterior and posterior PPA. In this sagittal slice (x=-

26), colored voxels are those showing significantly (FDR <0.05, cluster

size >1000 mm3) different connectivity to LOC and TOS versus RSC

and cIPL. The connectivity pattern in anterior PPA extends anteriorly

along the parahippocampal gyrus and into the hippocampus. The con-

nectivity patterns over the entire surface are shown in Supplementary

Fig. D6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Parcellating connectivity in spatial maps. Given a set of elements

arranged on a spatial map (such as points within the human cortex)

as well as the connectivity between each pair of elements, our method

finds the best parcellation of the spatial map into connected clusters

of elements that all have similar connectivity properties. Brain image

by Patrick J. Lynch, licensed under CC BY 2.5. . . . . . . . . . . . . 116
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6.2 Results on synthetic data. (a) In three different synthetic datasets,

our method is consistently better at recovering the ground-truth par-

cellation than alternative methods. This advantage is most pronounced

when the parcels are arranged nonuniformly with unequal sizes, and

the noise level is relatively high. Results are averaged across 20 random

datasets for each noise level, and the gray region shows the standard

deviation around random clusterings. (b) Our model can correctly in-

fer the number of underlying clusters in the dataset for moderate levels

of noise, and becomes more conserative about splitting elements into

clusters as the noise level grows. (c) Example clusterings under the

next-best clustering method and our model on the stripes dataset, for

σ = 6. Although greedy clustering achieves a reasonable result, it is

far noisier than the output of our method, which perfectly recovers the

ground truth except for incorrectly merging the two smallest clusters. 127

6.3 Results on functional brain connectivity. (a) Our model con-

sistently provides a better fit to the data than greedy clustering, ex-

plaining the same amount of variance with 30 fewer clusters (different

points were generated from different values of the hyperparameter σ2
0).

(b) When using our group-learned clustering to explain variance in 20

individual subjects, we consistently generalize better than the greedy

clusters for cluster sizes less than 200 (* p < 0.05, ** p < 0.01). (c)

A sample 172-cluster parcellation from our method. (d) Comparison

between our parcels and retinotopic maps, showing a transition from

eccentricity-based divisions to field map divisions. . . . . . . . . . . 128
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6.4 Results on structural brain connectivity. (a) A 190-cluster par-

cellation of the brain based on structural tractography patterns. (b)

This parcellation fits the data substantially better than greedy cluster-

ing, which would require an additional 55 clusters to explain the same

amount of variance. The blue path shows how our model fit improves

over the course of Gibbs sampling when initialized with the greedy so-

lution. (c) An example of 35,000 tracks (from one subject) connected

to a parcel in the lateral occipital sulcus, marked with an asterisk in

(a). These include portions of major fascicles such as the inferior longi-

tudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFO), and

corpus callosum (CC). . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Results on migration dataset. (a) Our parcellation identified 83

contiguous regions within the continental US, such that migration be-

tween these regions summarizes the migration between all 2594 coun-

ties. (b) This parcellation was better aligned with state borders than

an 83-cluster random parcellation (95% confidence interval shown) or

an 83-cluster greedy Ward parcellation. (c) The top 10 clusters (by

population) are shown, with arrows indicating above-chance flows be-

tween the clusters. The 20 most populous US cities are indicated with

black dots for reference. (d) A portion of the migration matrix, show-

ing the 1051 counties covered by the top 10 clusters. . . . . . . . . . 133

7.1 Relationship between resting-state parcels, retinotipic maps,

and scene localizers. Group-level visual field maps and functional

localizers are overlaid on parcels derived from resting-state connectivity

patterns (black borders). RSC and TOS largely fall within a single

parcel, with TOS corresponding roughly to V3B. Ventrally, PHC1 and

PHC2 are well divided into two separate parcels, with PPA extending
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7.2 Parcel scene decoding weights. Linear SVMs were trained to clas-

sify unfamiliar scenes vs other images (faces, tools, bodies) based on

mean activity in each resting-state parcel. Colored regions are those

having significant positive weights across subjects (p<0.05). High ac-

tivity in the parcels identified using field maps and scene localizers

(Figure 1) predict that subjects are viewing scenes, and these positive

weights extend from TOS partially onto the angular gyrus. . . . . . . 149

7.3 Meta-analysis of cIPL involvement in place memory. Although

not typically identified as a scene-sensitive region, the posterior parietal

lobe is consistently activated in studies involving familiar places. Per-

ceiving images of familiar scenes, learning navigational routes, or imag-

ining events in familiar places produces activation clustered around

cIPL2-3. This same region also appears in memory studies of non-

scene stimuli associated with a strong context. . . . . . . . . . . . . . 150
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two networks: a visual network (blue) which includes TOS and PHC1/2,
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7.5 Connectivity changes across the network border. (a) Rather

than performing a hard clustering assignment as in Figure 7.4, we

can perform classical MDS on the parcel connectivity network and set

regions RGB values based on their positions in a three-dimensional

embedding space. This shows a similar result to hierarchical cluster-

ing, with abrupt connectivity changes across scene networks. (b) In

MDS space, moving dorsally from TOS to cIPL3 produces the curves

shown in blue, while moving ventrally from PHC1 to aPPA produces

the curves shown in red. These curves move in parallel out of the

retinotopic cluster toward the default mode cluster. (c) Plotting these

curves for 20 individual subjects shows a similar pattern in each sub-

ject, with curves moving in parallel toward RSC (purple dots). (d)

The connectivity between scene parcels and RSC increases dramati-

cally as we move dorsally from TOS to cIPL3. (e) Connectivity with

cIPL changes more subtly but significantly when moving ventrally from

PHC1 to aPPA. *,** p<0.05, p<0.01 . . . . . . . . . . . . . . . . . . 153

7.6 Structural connectivity profiles of scene parcels. (a) The con-

nectivity between voxels in each parcel and the rest of the brain is

plotted as a function of Euclidean distance (averaged between hemi-

spheres, shaded regions show standard error of the mean). The cIPL
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and an emphasis on long-range connectivity. As shown in the inset,
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Chapter 1

Introduction

Our eyes are our window on the world. Seeing is such a primary part of our sensory

and conscious experience that we tend to describe most cognitive processes in terms

of visual metaphors; to avoid being “in the dark” and “blind” to the truth, we want

facts to “come into focus” so that we can “see” what’s happening. The pattern of

light entering our eyes is incredibly complicated, in constant flux due to motion in

the world or eye motion, and spans a massive range of intensities. Processing this

rich stream of information requires a large amount of real estate in the brain, with

about 20% of the cortex dedicated almost exclusively to visual processing [303] and

many other areas that are driven by visual input [108].

Given the complexity of the visual stimulus on the retina, a key question is to

determine the correct level of abstraction for studying a given region of the brain.

What properties of the image do particular neural circuits respond to? Early work,

both in physiological experiments [139] and mathematical modeling [189], focused

on the representation of oriented edges. For certain regions of the nervous system,

including the retina and its primary cortical output at the back of the brain (V1), the

edges present in an image predict a large portion of the neural response, abstracting

away some of the details of the visual input and focusing on local, structured contrast

differences. This representation, however, is still rather unsatisfying, since it has

very little contact with semantically meaningful parts of the world; one would never

describe the Mona Lisa in terms of a map of oriented edges.

1
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A higher level of abstraction that currently a primary focus in neuroscience and

computer vision is that of object recognition. Patterns of brain activity in certain re-

gions, especially along the ventral stream extending forward from V1, show increasing

abstraction from the particular edges present in an image and instead have responses

predicted by the identities of the object(s) present in the image [249]. This level of

analysis is an exciting and challenging one, since it connects visual input with seman-

tic concepts, such as those used in human language. Building invariance to object

pose, position, and lighting is a highly nontrivial task, though great progress has

been made over the last several years in building computer models that can achieve

near-human performance in some situations [247].

There are, however, even more complex descriptions of natural images, which go

beyond listing objects and depend on larger structures of entire visual scenes. These

include features like overall geometry, interactions between objects, or more abstract

global properties such as aesthetic beauty or memorability of a scene. The brain has

a number of regions that are related to these higher-order properties beyond object

recognition, which show a larger response to full scenes than to isolated objects [170].

The field of scene perception is concerned with understanding these higher-order

representations, discovering the neural mechanisms by which they are constructed,

and describing their relationship with behaviors such as navigation, categorization,

or memorization.

In this work I describe several projects looking at mental representations beyond

object recognition. Chapter 2 investigates how adding an interaction between two

parts of a scene (here a human and an object) changes neural activity patterns,

producing an emergent representation that is more than the sum of its parts. Chapter

3 examines an even higher-level property, proposing that scene meaning is largely

driven by the actions that it affords.

The remainder of the chapters examine neural responses that go beyond even the

image itself. The processing in certain brain regions combines visual properties with

past memories, such as contextual and navigational information, allowing for very

long-term interactions between visual input over the course of a human lifetime. We

characterize the properties of these regions largely in terms of their connections, using
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brain imaging data from a variety of sources. Chapter 4 describes our novel approach

for identifying connectivity differences between nearby brain regions, which we apply

in Chapter 5 to discover specialized areas for visual and memory processing within

a primary scene-processing region. We then extend this analysis to the whole brain,

describing a new whole-brain connectivity clustering method in Chapter 6, and then

use this approach in Chaper 7 to propose a large-scale framework for understanding

how visual information is incorporated with past memories. The key results from

each of these projects are summarized in Chapter 8.



Chapter 2

Human-object interactions are

more than the sum of their parts

Understanding human-object interactions is critical for extracting meaning from ev-

eryday visual scenes, and requires integrating complex relationships between human

pose and object identity into a new percept. To understand how the brain builds

these representations, we compared conducted two fMRI experiments in which sub-

jects viewed humans interacting with objects, non-interacting human-object pairs,

and isolated humans and objects. A number of lateral visual regions are involved in

processing human-object interactions, including the lateral occipital complex (LOC)

and the extrastriate body area (EBA). The representations in these regions, however,

are at least partially driven by object identity (for LOC) and/or human pose (for

EBA), and not specifically the interaction between the two. However, a region ante-

rior to EBA, in the posterior superior temporal sulcus (pSTS), represents interactions

in a way that is not simply a linear combination of object and pose information, in-

dicating that this region encodes human-object interactions as more than the sum

of their parts. These results reveal the distributed networks underlying the repre-

sentation of emergent visual concepts, such as the social perception of human-object

interactions. This chapter is joint work with Diane M. Beck and Fei-Fei Li.
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2.1 Introduction

Our visual experience consists not of a jumble of isolated objects but of coherent

scenes, in which objects are arranged in meaningful relationships. Neuroscientists

have long studied isolated object recognition, and we have at least a qualitative un-

derstanding of where and how the brain constructs invariant object representations

[78]. A largely separate body of research has studied the perception of complex scene

images containing diverse collections of objects, and has identified brain regions sup-

porting the recognition of broad scene categories [302]. The connection between these

two domains, however, has gone largely unstudied: how do objects come together to

compose complex scenes with emergent semantic properties?

One scene category in which semantic meaning is critically driven by the relation-

ship between scene components is that of human-object interactions. Understanding

the differences between images of people riding horses, petting horses, leading horses,

and feeding horses, for example, cannot be accomplished by simply recognizing the

person and horse in isolation. Moreover, although observing human-object interac-

tions is essential for both developmental learning about object manipulation [305] as

well as everyday social cooperation, we know surprisingly little about how they are

encoded in the brain. Information about object identity and the relative positions of

body parts must be combined to produce a high-level percept of the human’s actions

and goals, requiring an integrated neural representation that is “more than the sum

of its parts.”

Human-object interactions can vary along two dimensions: the identity of the ob-

ject, and the way in which the human is interacting with the object. We hypothesize,

however, that extracting meaning from human-object interactions will require areas

sensitive not just to object or pose, but also to higher-order emergent features of the

interaction. Using multi-voxel pattern analysis (MVPA), we compared the represen-

tation of human-object interaction categories with linear combinations of responses

evoked by isolated humans and objects. Although some multi-object scenes can be

modeled by a linear pattern average of the responses to each object individually [13,

150, 182, 324], we find that human-object interactions break this linear assumption in
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regions such as the posterior superior temporal sulcus (pSTS), evoking novel category

representations distinct from pattern averages. In particular, this analysis revealed

nonlinear representations across multiple components of the social cognition network

[256].

We conclude that understanding human-object interactions involves distributed

occipitotemporal networks, which support the creation of emergent representations in

social cognition regions. These results demonstrate the critical impact of interactions

between scene components on scene representation, providing a new bridge between

isolated object perception and full scene recognition.

2.2 Materials and Methods

2.2.1 Stimuli

For Experiment 1, we created 128 person-riding-horse and 128 person-playing-guitar

images by manually segmenting images from the Stanford 40 Actions database [318].

Each image was scaled to contain the same number of pixels, such that every image fit

with a 450x450 square. We created 128 horse images (using images and masks from

the Weizmann horse database [29]) and 128 guitar images (using images from the

Caltech Guitar dataset, and manually segmenting them from the background [284]).

We also created 128 person images using images and masks from INRIA Annotations

for Graz-0 [193, 217] in additional to manually segmented people from the Stanford

40 Actions database. Each of the isolated images was scaled to contain half as many

pixels as the interacting images. Half of the horses were horizontally mirrored (since

all of the Weizmann horses face to the left) and the guitars were rotated so that

the distribution of the neck angles exactly matched that of the person-playing-guitar

images.

To create the non-interacting images, we overlaid an isolated person and isolated

object, with the person and object chosen so as to avoid pairings that appeared to be

interacting. The person and object images were each centered on a point drawn from a

Gaussian distribution around the fixation point, with standard deviation set equal to
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the standard deviation of objects and people relative to the image centers in the action

images (0.62 degrees of visual angle). To make the images as qualitatively similar to

the action images as possible, the person images were placed on top of (occluding)

the horse images, but were placed behind the guitar images. The distribution of the

relative sizes of the person and object was exactly matched to that of the action

images, and the composite images were scaled to have the same number of pixels as

the interacting images. The total number of stimuli in Experiment 1 was (3 isolated

+ 2 interacting + 2 non-interacting)*(128 images) = 896 images.

For Experiment 2, 40 images were collected from Google Images and Flickr for

each of 4 action categories: pushing shopping carts, pulling luggage, using a computer,

and using a typewriter. All of the 160 images were manually segmented to remove the

person and object from the background, and scaled to have the same number of pixels

such that every image fit within a 900x900 square. We manually separated the person

and object, giving isolated object images, isolated human images, and human-object

interaction images. Any overlap between the person and object was covered with a

black rectangle, which was applied to all three versions of the image. All images were

superimposed on a background containing 1/f noise in each color channel, in both

their original orientation and mirrored left-to-right, for a total of (2 orientations)*(4

categories)*(3 conditions)*(40 images) = 960 stimuli.

2.2.2 Experimental Design

Each subject viewed blocks of images from different categories, with a 12s gap between

blocks. Each block started with a 500ms fixation cross, and then 8 images each

presented for 160ms with a 590ms blank inter-trial interval. Subjects were instructed

to maintain fixation at the center of the screen, and perform a task using a button-box.

In Experiment 1, subjects participated in 8 runs, each of which contained two blocks

of each of the seven stimulus categories (isolated humans, guitars, and horses; non-

interacting human-guitar and human-horse pairs; humans riding horses and humans

playing guitars), for a total of 14 blocks (126 TRs) per run. Subjects performed a

1-back task, detecting consecutive repetitions of the same image, which occurred 0,
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1, or 2 times per block. In the Experiment 2, subjects performed 14 runs, which were

grouped by consecutive pairs into 7 pseudo-runs. Within each of the first 5 pseudo-

runs, each run contained 8 blocks, one from every isolated (person/object) category,

for a total of 79 TRs per run. The last 2 pseudo-runs each contained 20 blocks each

(10 per run), with 5 blocks drawn from each interaction category, for a total of 97

TRs per run. Subjects performed a 1-back task, detecting consecutive images that

were mirror images of each other, which occurred 0 or 1 times per block (with the

same frequency for all categories and conditions). Regions of Interest

The locations of the category-selective ROIs for each subject’s brain were obtained

using standard localizer runs conducted in a separate fMRI experiment. Subjects

performed 2 runs, each with 12 blocks drawn equally from six categories - child

faces, adult faces, indoor scenes, outdoor scenes, objects (abstract sculptures with

no semantic meaning), and scrambled objects - and an additional run with 12 blocks

drawn from two categories (body parts and objects). Blocks were separated by 12 s

fixation cross periods, and consisted of 12 image presentations, each of which consisted

of a 900 ms image followed by a 100 ms fixation cross. Each image was presented

exactly once, with the exception of two images during each block that were repeated

twice in a row. Subjects were asked to maintain fixation at the center of the screen,

and respond via button-press whenever an image was repeated. The ROIs were

defined such that each subject had approximately the same total volume of clustered

voxels: LOC, approx. 4800 mm3 for Objects >Scrambled contrast in lateral occipital

cortex; EBA, peak clusters of approx. 2900 mm3 for Body Parts >Objects contrast

in occipital cortex; parahippocampal place area, peak clusters of approx. 2900 mm3

for Scenes >Objects contrast near the parahippocampal gyrus. The volume of each

ROI in mm3 was chosen conservatively, based on previous results [104].

We also defined a pSTS ROI for Experiment 2, based on the voxel showing the

peak response in Experiment 1 (see Figure 2.4). This was defined in MNI space as all

voxels within 10mm of the peak pSTS voxel, and then transformed into each subjects

native space. Additionally, we defined retinotopic regions PHC1/2 using a group-level

field map atlas [304].
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2.2.3 Scanning parameters

For Experiment 1 and the ROI localizers, imaging data were acquired with a 3 Tesla

G.E. Healthcare scanner. A gradient echo, echo-planar sequence was used to obtain

functional images [volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip

angle, 80; matrix, 128x128 voxels; FOV, 20 cm; 29 oblique 3 mm slices with 1 mm

gap; in-plane resolution, 1.56x1.56mm]. The first four volumes of each run were

discarded, and the functional data were then motion-corrected and each voxel’s mean

value was scaled to equal 100, using the AFNI software package [69]. We collected

a high-resolution (1x1x1mm voxels) structural scan (SPGR; TR, 5.9 ms; TE, 2.0

ms; flip angle, 11) in each scanning session. For computing whole-brain results at

the group level, each subject’s anatomy was registered by hand to the Talaraich

coordinate system. Images were presented using a back-projection system (Optoma

Corporation) operating at a resolution of 1024 x 768 pixels at 75 Hz, such that images

covered approximately 14 degrees of visual angle.

For Experiment 2, imaging data were acquired with a different 3 Tesla G.E. Health-

care scanner. A gradient echo, echo-planar sequence was used to obtain functional

images [volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip angle, 77;

matrix, 80x80 voxels; FOV, 23.2 cm; 42 oblique 2.9 mm slices; in-plane resolution,

2.9x2.9mm]. The first six volumes of each run were discarded, and the functional data

were then motion-corrected and each voxel’s mean value was scaled to equal 100, us-

ing the AFNI software package [69]. We collected a high-resolution (0.9x0.9x0.9mm

voxels) structural scan (BRAVO; TR, 7.24 ms; TE, 2.78 ms; flip angle, 12) in each

scanning session. For computing whole-brain results at the group level, each subject’s

anatomy was registered automatically to the Talaraich coordinate system. Images

were presented using an LCD display (Resonance Technology) operating at a resolu-

tion of 640x480 at 240Hz, visible from a mirror within the head-coil, such that images

covered approximately 12 degrees of visual angle.
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2.2.4 Subjects

We collected data from 10 subjects (2 female, ages 22-28, including one of the authors)

in Experiment 1, and 12 subjects (5 female, ages 20-32, including one of the authors,

five subjects overlapping with first experiment). Subjects were in good health with no

past history of psychiatric or neurological diseases, and with normal or corrected-to-

normal vision. The experimental protocol was approved by the Institutional Review

Board of Stanford University, and all subjects gave their written informed consent.

2.2.5 Mean Signal Analysis

In order to compare the mean signal response to noninteracting and interacting stimuli

in each ROI in Experiment 1, we used a standard regression model. The stimulus

regressors were modeled as step functions equal to 1 during a stimulus block and 0

elsewhere, convolved with the standard AFNI hemodynamic response function [69].

In addition, 30 nuisance regressors were added to the model: 3 for each of the 8 runs

(constant offset, linear trend, quadratic trend), and 6 motion correction estimates (3

rotation and 3 translation). The estimated beta weights for the non-interacting and

interacting regressors were then recorded in units of percent signal change.

2.2.6 ROI Decoding

For all MVPA decoding analyses in both Experiments, each fMRI timepoint was first

assigned a stimulus label; all timepoints that occurred while a stimulus block was

being presented (shifted by 6 seconds to account for hemodynamic lag) were assigned

to the corresponding stimulus, while all other timepoints were labeled as inter-block

timepoints. Classification was performed using linear support vector machines, using

the MATLAB LIBSVM library [62]. In Experiment 1, we selected six runs for train-

ing, used one validation run to tune the soft-margin hyperparameter c, and tested on

the remaining run (results are averaged over all possible choices of testing and vali-

dation runs). In Experiment 2, nine blocks of each stimulus category were selected

for training, and the classifier was then tested on the remaining blocks, for fixed
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c=0.1 (results are averaged over all choices of testing block). For cross-decoding, the

classifier was also tested on all blocks corresponding to other stimulus conditions.

When applying this method to localizer ROIs LOC and EBA, we first excluded

voxels that were not sensitive to visual stimulation, to improve decoding accuracy.

All voxels were ranked based on the absolute value of their z-score for within-block

timepoints versus inter-block timepoints. The top 40% of the voxels were used in

decoding (the number of voxels retained was set to 40% of the group mean size for

each region, so all subjects retained the same number of voxels in a given region),

but our results are not sensitive to the number of voxels used (see Supplemental

Figure A1). Note that this type of voxel selection does not introduce a circularity

bias (as described in [298]) since (a) we are selecting only for visual sensitivity, not

for between-condition effects, and (b) the selection is based only on training data.

In Experiment 1, two separate classifiers were trained: one to discriminate between

non-interacting stimulus categories (humans with horses vs. humans with guitars) and

one to discriminate between interacting stimulus categories (humans riding horses vs.

humans playing guitars). In the first analysis, the performance of these classifiers

was measured on the non-interacting and interacting testing timepoints, respectively.

For the cross-decoding analysis, we created pattern-average testing timepoints, by

averaging the mean response to humans in the testing run with all isolated object

timepoints in the testing run. The non-interacting and interacting decoders were then

applied to classify the category (human+horse vs. human+guitar) of these pattern-

average timepoints.

In Experiment 2, three classifiers were trained: one to discriminate between iso-

lated objects drawn from different action images, one to discriminate between isolated

humans drawn from different action images, and one to discriminate between images

of full human-object action images. This last classifier was also applied in a cross-

decoding analysis, to decode isolated object timepoints, isolated human timepoints,

and pattern-average timepoints (created by averaging the four timepoints correspond-

ing to an isolated object category in a given run with the four timepoints correspond-

ing to the isolated human from the same category in the same run, yielding a new

set of four pattern-average timepoints).
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2.2.7 MVPA Searchlight Analyses

We also ran these analyses in a whole-brain searchlight. Spheres with 7mm radius

were centered on a grid with 8mm spacing. For each sphere, all voxels whose centers

fell within its radius were used as a region of interest, and decoding analyses were

performed as for the ROIs (without any voxel selection, and with soft-margin hyper-

parameter set to the average of its value during the ROI experiments). Note that

each sphere intersected with all 26 neighboring spheres, since the maximum distance

between a sphere and its neighbors (38) is less than twice the radius (27). To produce

a decoding accuracy map for each subject, the accuracy for each voxel was calculated

as the mean accuracy of all searchlights that included that voxel. To determine which

voxels showed significant differences between conditions, a Monte-Carlo permutation

test was used. The analysis used on the real data was run 1000 times on data for

which the timepoint labels were randomly shuffled between categories being used for

training or testing. For example, when decoding riding-horse vs. playing-guitar, the

labels of all riding-horse and playing-guitar timepoints were randomly shuffled. A

threshold value was then fixed such that less than 5% of the sampled maps contained

any above-threshold clusters larger than 100 voxels, and this same threshold was

applied to the real data (see Supplemental Figure A2).

2.3 Results

2.3.1 Experiment 1

We constructed a stimulus set with three types of images (see Figure 2.1): isolated

humans, guitars, and horses; non-interacting human-horse and human-guitar pairs, in

which humans and objects were simply pasted together without an interaction; and

interacting humans riding horses and humans playing guitars. These actions were

chosen since both involve humans that are roughly vertical and centered, so that

the non-interacting and interacting images had similar construction. As described in

Experimental Procedures, the non-interacting images were constructed to match the

statistics of the interacting images as closely as possible, so that the only difference
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from the interacting images is that the human body is not correctly positioned to

interact with the object.

Not surprisingly, given the subtle differences in the stimuli, a univariate analysis

comparing interacting and non-interacting stimuli yielded no differences in occipi-

totemporal regions (LOC: t9=-0.47, p=0.65; EBA: t9=-0.78, p=0.46; FFA: t9=-0.35,

p=0.74; two-tailed t-test), and performing a whole-brain regression analysis contrast-

ing interacting ¿ non-interacting failed to find any voxels meeting the threshold of

FDR<0.05. Thus, we used MVPA decoding, which is more sensitive to fine-grained

differences among stimuli, to find regions that showed a greater pattern difference

between the interacting human-guitar and human-horse categories, compared to the

non-interacting human-guitar and human-horse categories. Such a result would in-

dicate that a region better distinguishes between the two human-object categories

when an interaction is present, implying that this region contains specialized process-

ing for human-object interactions. We found that the category (horse vs. guitar)

could be decoded for both non-interacting and interacting stimuli in all three areas

(Non-interacting: LOC: t9=4.19, p <0.01; EBA: t9=3.24, p <0.01; FFA: t9=2.51,

p=0.02. Interacting: LOC: t9=3.50; EBA: t9=5.41; FFA: t9=3.47; all p <0.01; one-

tailed t-test). LOC showed nearly identical decoding rates for both stimulus types

(t9=-0.13, p=0.90; two-tailed t-test), but EBA showed a consistent difference in the

decoding rates for non-interacting and interacting stimuli, with significantly better

category decoding for interacting stimuli (EBA: t9=2.82, p=0.02; two-tailed t-test).

These results are shown in Fig. 2.2 (solid bars, NN and II). A searchlight analysis

for areas showing this same preference for interacting stimuli (Fig. 2.3) produced

areas consistent with our ROI results; we found voxels in right EBA that gave better

decoding for interacting stimuli. Additionally, this contrast revealed a more anterior

patch of cortex around the right pSTS showing the same preference for interacting

stimuli.

As discussed above, perceiving human-object interactions requires a representation

which is more than the sum of its parts. As shown in previous work, some regions

response to a pair of simultaneously-presented stimuli is simply the average of the
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responses to the individual stimuli [13, 150, 182, 324]. If a region is sensitive to human-

object interactions, however, we would expect the regions response to an interacting

human and object to not be simply the sum of its parts, but to be qualitatively

different from a simple average of human and object. We hypothesize that regions

specifically sensitive to human-object interactions should have specialized (non-linear)

representations for categories of interacting human-object pairs, but not for non-

interacting categories.

We can find regions showing this behavior by using a cross-decoding approach.

After training two classifiers, as before, to decode non-interacting human-horses vs.

human-guitars, and to decode interacting human-horses vs. human-guitars, we can

then attempt to use these classifiers to decode the pattern average of humans and

horses vs. the pattern average of humans and guitars. If the features used to represent

categories of human-object pairs are simply linear averages of the features of isolated

humans and objects, then these classifiers trained on pairs should generalize well to

the individual response averages. The ROI results in Fig. 2.2 show a compelling

difference between cross-decoding in the non-interacting and interacting cases. When

trained on non-interacting responses, classifiers for all three regions were able to de-

code the pattern-averaged stimuli above chance (NA bars; LOC: t9=6.03, p <0.01;

EBA: t9=5.27, p <0.01; FFA: t9=2.05, p=0.04; one-tailed t-test), with only a small

drop in performance compared to decoding non-interacting stimuli (LOC: t9=0.02,

p=0.49; EBA: t9=0.55, p=0.29; FFA: t9=0.26, p=0.40; one-tailed t-test). This in-

dicates that the features used to represent non-interacting stimulus categories can

be effectively used to classify the average of the human and object patterns, demon-

strating that none of these regions represent non-interacting human-object pairs in a

specialized, non-linear way.

Cross-decoding results showed a different pattern, however, when the classifier was

trained on interacting stimuli (IPA bars). In LOC, pattern-average responses could

still be decoded above chance by the interacting-stimulus classifier (t9=2.44, p=0.02;

one-tailed t-test), and decoding performance showed only a small, nonsignificant drop

compared to decoding interacting stimuli (t9=0.91, n.s.; one-tailed t-test). In EBA,

the classifiers trained on interacting stimuli showed a significant drop in performance
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when used to decode pattern-averages (EBA: t9=3.09, p <0.01), and were unable to

decode the pattern-averaged stimuli above chance (EBA: t9=1.49, n.s.). This drop

was significantly larger than that in LOC (t9=1.91, p=0.04; one-tailed t-test).

We can look outside our ROIs and search for all regions with this pattern of

results for human-object interaction categories by performing a searchlight analysis,

identifying searchlights with a greater nonlinearity (drop in performance when cross-

decoding) for interacting stimuli than non-interacting stimuli (Fig. 2.4). In addition

to EBA, this contrast reveals regions around the pSTS (peak voxel at MNI [54, -

43, 12]) and temporoparietal junction (TPJ) in both hemispheres, right dorsal PCC,

and the right angular gyrus in the inferior parietal lobule (IPL). As discussed below,

these areas largely map onto the network of regions involved in social cognition and

understanding action intent, consistent with interactions between the human and

object being an important component of the semantic meaning of a social scene.

These results indicate that the representation of human-object interaction categories

in these body-related regions is not simply driven by a linear combination of isolated

object identity and a person activity pattern.

2.3.2 Experiment 2

The results of Experiment 1 demonstrate that body-related regions do not represent

person riding horse as a linear combination of person and horse, but it is possible that

some of this effect is due to differences in pose; although pose is in a sense a configural

property of the human, pose representations do not incorporate both human and

object information into a single emergent unit. We tested this possibility using a new

experiment, with a new set of stimuli (Figure 2.5). Subjects viewed four new action

categories, but also viewed the objects and humans from these interaction images in

isolation. This design ensured that objects and poses were exactly matched between

the isolated and interacting images, so that a failure to generalize decoding from

interacting to pattern averaged responses would necessarily indicate a nonlinearity in

category representation of interaction.

We performed MVPA decoding using the same approach as in Experiment 1,
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Figure 2.1: Example stimuli from Experiment 1. Subjects were shown 128 im-
ages in each of seven categories: isolated guitars, horses, and people; non-interacting
human-guitar pairs and human-horse pairs; and interacting humans playing guitars
and humans riding horses.
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Figure 2.2: MVPA decoding and cross-decoding for Experiment 1. The
stimulus category (person and horse vs. person and guitar) can be decoded in all
three regions, whether an interaction is present (I) or not (N). However, EBA shows
a significant increase in decoding accuracy for interacting stimuli (II) compared to
non-interacting (NN), indicating that the image category is better represented in this
region when an interaction is present. LOC, however, shows nearly identical decoding
accuracies for the two conditions. Classifiers trained on responses to non-interacting
stimuli in all three areas generalize well to pattern-averages of individual humans
and objects (NPA), but the interacting classifier only generalizes to pattern-averaged
responses in LOC (IPA). This indicates that EBA has a representation for human-
object interaction categories which is not similar to the average of responses to isolated
humans and objects. These results are consistent regardless of the number of voxels
selected per region (see Figure S1). Error bars denote s.e.m., *p<0.05, **p<0.01.
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LOC

EBA

pSTS

Figure 2.3: MVPA decoding difference searchlight for Experiment 1. Search-
ing all of cortex for regions having higher decoding accuracy for interacting (II) than
non-interacting (NN) stimuli yields a result consistent with the ROI-based analy-
sis. Searchlights showing this preference for interacting stimuli consistently included
voxels in the anterior EBA and posterior STS in the right hemisphere. p<0.05 cluster-
level corrected.

LOC

EBA

pSTS

LOC

EBA

pSTS

Figure 2.4: MVPA cross-decoding searchlight for Experiment 1. Colored
voxels are those showing a larger nonlinearity in the interacting condition (II minus
IPA) compared to the nonlinearity in the non-interacting condition (NN minus NPA).
In addition to EBA, this measure identifies regions around the posterior STS (peak
effect marked with a dot) and TPJ in both hemispheres, the right dorsal PCC, and
the right angular gyrus, p<0.05 cluster-corrected.
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looking now at 4-way action classification for objects alone, people alone, and person-

object interactions. As before, we measured whether the representation of human-

object interactions was similar to the representation of its components using cross-

decoding; we applied the classifier trained on full interactions to classify objects alone,

people alone, and pattern averages of objects and people. In addition to the ROIs

used in Experiment 1 (LOC and EBA), we also defined a pSTS ROI with a 10mm

radius around the voxel that showed the strongest effect in Experiment 1 (Figure 2.4).

The decoding results are displayed in Figure 2.6. Both LOC and EBA show

above-chance decoding for objects, poses, and interactions (Objects: LOC t11=6.12,

p <0.01; EBA t11=2.09, p <0.05; Poses: LOC t11=4.84, p <0.01; EBA t11=2.30, p

<0.05; Interactions: LOC t11=4.32, p <0.01; EBA t11=2.93, p <0.01; one-tailed t-

test). When applying the interaction decoder to classify objects alone (such that the

only information about stimulus category comes from objects, as in Experiment 1), we

largely replicate our previous results LOC still shows above-chance decoding, while

EBA does not (LOC t11=2.48, p <0.05; EBA t11=1.61, n.s.). We do see a significant

performance drop in both ROIs (LOC t11=2.54, p <0.05; EBA t11=2.35, p <0.05),

while the LOC cross-decoding drop did not reach significance in Experiment 1. A more

substantial difference can be seen in the interaction to pose cross-decoding, in which

the interaction decoder was used to classify isolated people posed for a particular

action. Here LOC did not perform above chance, while EBA did (LOC t11=0.52,

n.s., EBA t11=2.81, p <0.01). When trying to classify pattern averages of isolated

objects and people (from a particular action class), both LOC and EBA perform

above chance (LOC t11=3.34, p <0.01; EBA t11=3.22, p <0.01). The drop between

interaction decoding and the mean of all cross-decoding conditions is significant in

LOC, and marginally significant in EBA (LOC t11=3.18, p <0.01; EBA t11=1.73,

p=0.056).

A different pattern of results was seen in the pSTS, just anterior to EBA. Here

object and pose decoding was not significant (Object: t11=-0.93, n.s.; Pose: t11=1.57,

n.s.), but full interactions could be decoded above chance (t11=2.32, p <0.05). The

interaction decoder did not generalize to isolated objects or poses, or the average of

the two (Object: t11=0.64, n.s.; Pose: t11=0.45, n.s; Pattern Average: t11=0.69, n.s),
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and there was a significant overall drop between interaction decoding and the mean

of all cross-decoding conditions (t11=1.80, p <0.05). The classification accuracy on

pattern averages is also significantly lower than the mean of LOC and EBA (t11=1.93,

p <0.05).

To further analyze the posterior-to-anterior decoding differences in lateral tempo-

ral cortex, we performed a searchlight analysis to measure both interaction classifica-

tion and generalization to pattern averages. As shown in Figure 2.7, the results were

largely consistent with the ROI analyses; classifying interactions was above chance in

the majority of voxels within LOC and EBA, and each contained subregions (superior

LOC and posterior EBA) where this classifier also generalized to decode pattern aver-

ages. In the anterior portion of EBA and pSTS, however, interaction cross-decoding

fails on pattern averages; this posterior-anterior difference can be seen on an axial

slice through lateral cortex (Figure 2.7b), showing that cross-decoding accuracy drops

rapidly around pSTS while interaction decoding remains relatively high. Interestingly,

the searchlight also revealed significant cross-decoding in the parahippocampal place

area (PPA), restricted primarily to the retinotopic maps within this area (PHC1/2)

[9] (interaction decoding was also above-chance in this region, but failed to meet the

significance threshold).

2.4 Discussion

Using carefully constructed images of humans and objects, along with three different

types of MVPA searchlight analysis, we identified regions in occipitotemporal cortex

responsible for representing human pose and object identity, and for binding humans

and objects together into a coherent interaction. Previous work has studied humans

and objects in isolation (e.g. [81, 168]), but we have characterized for the first time

how categories of pose and object identity are encoded in the context of human-object

interactions. Decoding results in LOC revealed robust representations about action

categories, which were at least partially driven by object identity information (Exper-

iments 1 and 2) but seemingly unrelated to pose information (Experiment 2). EBA

also showed consistent interaction decoding, but was not driven by object identity
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Figure 2.5: Example stimuli from Experiment 2. Subjects viewed images of
human-object interactions from four different action categories (pushing carts, using
computers, pulling luggage, and typing on typewriters), and also viewed the objects
and people from these images in isolation.
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Figure 2.6: MVPA decoding and cross-decoding for Experiment 2. Both LOC
and EBA show significant decoding of action category from isolated objects, isolated
humans, or full actions. As in experiment 1, the classifier trained on full interactions
performs above-chance on objects only in LOC, though the cross-decoding accuracy
drop here is significant in both LOC and EBA. EBAs interaction classifier does,
however, generalize well to human poses (while LOCs does not). Therefore both
LOC and EBA classifiers show generalization to pattern averages, driven by object
information in LOC and by pose information in EBA. The pSTS, on the other hand,
localized based on results in Experiment 1, shows above-chance decoding only for
human-object interactions, and does not generalize to pattern averages. Error bars
denote s.e.m., *p<0.05, **p<0.01.
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Figure 2.7: MVPA cross-decoding searchlight for Experiment 2. As in Fig-
ure 2.6, we identified voxels that could decode the action category of human-object
interactions, and/or generalize this decoder to pattern averages. (a) A large swath of
right lateral occipital and temporal regions (including LOC and EBA) can classify in-
teraction timepoints, but in only some portions of LOC and EBA (superior LOC and
posterior EBA) does this classifier generalize to pattern averages. (b) A z=10 slice of
lateral cortex shows a clear difference between LOC/EBA and pSTS, with general-
ization to pattern averages much lower in pSTS. Error bars denote s.e.m. (c) We also
found significant generalization to pattern averages within the retinotopic (PHC1/2)
regions of PPA, indicating that this posterior subregion is somewhat insensitive to
interactions.
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information (Experiments 1 and 2) and showed a similarity to pattern-averaged re-

sponses only when pose was carefully controlled (Experiment 2). The most interesting

decoding trends were observed in pSTS, which constructed representations of action

categories that appear unrelated to object or pose information in isolation (Experi-

ments 1 and 2). Overall, these results suggest that social cognition regions such as

pSTS (possibly along with PCC, and IPL) represent human-object interaction cate-

gories using specialized features that are not present in the linear averages of human

and object patterns, creating representations of human-object interactions that are

more than the sum of their parts.

2.4.1 The role of EBA and pSTS

These results extend our current understanding of the role of EBA in action percep-

tion. It is well established that EBA represents body pose (reviewed in [81]). EBA,

including the middle temporal gyrus (the most anterior portion of EBA, see [308]),

has been implicated in action categorization through adaptation studies [148, 311],

lesion studies [151] and a meta-analysis of object-related actions [56]. Exactly what

type of information is represented in EBA has been more controversial, with proposals

ranging from a cognitively unelaborated pose description [81] focused on “observable

mechanics” [269] to an amodal hub for pairing gestures with semantic meaning [316].

The fact that noninteracting stimuli can be decoded above chance in Experiment 1

shows that EBA can discriminate based on object identity when the positioning of the

human body is uninformative about the stimulus category, but the response to typ-

ical interactions appears to be primarily driven by body pose (Experiment 2). This

fact that both object and pose information can be used by EBA raises the possibility

that the representation in this region does represent more than simply body pose,

though further work will be required to identify precisely how visual vs. semantic

this representation is.

The pSTS (and adjacent TPJ) regions anterior to EBA have been associated with

more abstract types of action perception, such as understanding unusual or deceptive

human action [31, 117], recognizing whether an object is being grasped in a typical
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way [322], and many other tasks involving perception of agency, theory of mind,

and Gestalt integration [75, 129, 140, 223, 253, 254]. Interestingly, although pSTS

shows little sensitivity to object identify or pose (Experiment 2), we found specialized

representations for interacting stimuli here in both Experiments. Therefore pSTS

appears to be much less related to visual features than EBA, and likely encodes

more abstract semantic information about human actions and intentions. The PCC,

another region identified in Experiment 2, may also be responsible for abstract action

reasoning, as suggested by [269].

2.4.2 The neural basis of action recognition

There has been extensive prior work on the neural correlates of action perception,

which is typically studied using video clips rather than controlled images (reviewed

in [56, 74]). One controversy over the mechanism of action recognition is whether

action recognition is carried out primarily in motor regions or in social reasoning

areas. Under the simulation hypothesis, human actions are understood by mentally

simulating the observed motor actions of the target and then inferring what the goals

of the target must have been, a process presumed to be carried out in mirror neurons

[35–37, 46, 47, 65, 240]. Under the teleological hypothesis, actions are understood by

a more abstract social reasoning system, which does not depend on any mechanical

“resonance” between the observer and target [31, 72, 126, 135]. Proponents of this

view argue the activity seen in motor regions during action observation is involved

in action prediction rather than action understanding [72, 177] and that the type of

errors made by action observers is inconsistent with mirror simulation theories [255].

The social network proposed by [256] includes EBA, pSTS/TPJ, and PCC (in ad-

dition to medial frontal regions). Since our searchlight experiments show interaction

effects almost exclusively in these regions (and show no effects in motor or premotor

cortex), our results provide strong support for the view that action representations

are built in social cognition regions, not in motor regions [309]. Additionally, our

data reveal that social cognition regions process action stimuli even in the absence
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of any social task, since our subjects were only performing one-back repetition de-

tection. The only region outside the social network identified by our study is the

right IPL, which has been previously linked with action perception but whose precise

function is unclear. Some work has argued that this region contains mirror neurons

due to its cross-adaptation properties [65] but the stimuli that activate this region

do not activate macaque mirror neurons [135] and lesion studies suggest that IPL

is involved in the spatial coding of object-related actions, but not actual semantic

action understanding [151].

2.4.3 Comparison to object-object interaction studies

Previous work has attempted to link the perceptual grouping of interacting objects

[112, 237, 241] with activity LOC, but the results have been controversial. Two stud-

ies have shown increased BOLD activity in LOC when objects are interacting [156]

or positioned for interaction [242], while MVPA analyses have shown that the LOC

response pattern for coherent scenes can be at least partially predicted as the average

of responses to signature objects [183] and that the LOC response to pairs of action-

oriented objects is similar to a linear combination of the two object responses [13].

One possibility is that a change in overall BOLD activity may not reflect a change in

representation; for instance, BOLD differences could reflect the greater effort required

to segment the objects when the objects overlap (as in [156]), or reduced competitive

interaction among objects positioned to interact (as in [242]). Another proposal is

that LOC is sensitive to lower-level nonaccidental visual relationships between objects

or object parts, but not higher-level semantic interactions; notably, the observed dif-

ference in BOLD activity occurs regardless of whether the interaction is semantically

meaningful, in both studies, suggesting that the interactions were based on low-level

visual affordances of the objects (e.g. a wrench pointed toward a nut).

Our results suggest that both camps are correct. LOC did not show a decod-

ing preference for interaction versus noninteracting categorization (Experiment 1)

has interaction representations which are at least partially related to isolated object

identity (Experiments 1 and 2), and does not incorporate human pose information
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(Experiment 2), but does appear to encode some interaction information beyond ob-

ject identity (Experiment 2), at least in the more inferior portion of LOC. Therefore it

is possible that the representation in LOC is modulated in some way by interactions,

while still being primarily driven by linear combinations of isolated object identity

information.

Our finding of significant cross-decoding in PPA is surprising, in light of previous

work showing that PPA generates scene representations that are not predictable from

the constituent objects of the scene [183]. There are several possible ways of recon-

ciling these results. One possibility is that PPAs global scene representation applies

to full photographic images, but not two-element interactions, indicating that more

complex stimuli are required to activate global processing in PPA (with more inter-

actions, or more explicit 3D geometry). Alternatively, global representations may be

generated only in the anterior portion of PPA, while the posterior PHC1/2 subregion

of PPA accumulates local visual features in a way that is more similar to LOC [15].

2.4.4 Identifying configural processing

Our approach for identifying regions sensitive to a relationship between stimulus

features is a general tool that could be used to investigate other types of configural

processing. For example, placing walls and a floor together to form a 3D room likely

evokes a novel representation in regions sensitive to scene layout and navigation. Our

analysis suggests that these regions would exhibit a large cross-decoding penalty when

training on rooms and testing on the average response to walls and floors. The regions

responsible for processing relational or contextual interactions between objects [26]

could be detected in a similar way, thereby avoiding the ambiguity of changes in

mean BOLD activity. This approach for detecting configural representations gives

neuroscientists a new way to locate the areas critical for creating our rich, complex

experience of the visual world.
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Chapter 3

Visual Scenes are Categorized by

Function

How do we know that a kitchen is a kitchen by looking? Traditional models posit that

scene categorization is achieved through recognizing features and objects, yet these

models cannot account for mounting evidence that observers are relatively insensitive

to the local image details. Although theoretical work has implicated scene function

as a potential organizing principle, we have lacked the data to operationalize this

idea. Using a large-scale experiment, we show that the activities afforded by a scene

provide a fundamental categorization principle. Functions provided a good fit for

human categorization patterns, outperforming alternative models based on objects or

visual features. Moreover, nearly half of the explained variance was captured only by

functions, implying that the predictive power of alternative models was due to their

shared variance with the function-based model. These results challenge existing mod-

els of visual perception, providing immediately testable hypotheses for the functional

organization of the visual system. This chapter is joint work with Michelle R. Greene,

Andre Esteva, Diane M. Beck, and Fei-Fei Li, and an earlier version appeared as an

arXiv preprint (1411.5340).
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3.1 Introduction

“The question ‘What makes things seem alike or different?’ is one so fundamental to

psychology that very few psychologists have been nave enough to ask it” [11].

Although more than half a century has passed since Attneave issued this chal-

lenge, we still have little understanding of how we categorize and conceptualize visual

content. Traditionally, it has been assumed that scenes are categorized according to

their component features and objects [25, 40, 190, 238, 270]. Mounting behavioral

evidence, however, indicates that human observers have high sensitivity to the global

meaning of an image [99, 114, 115, 226], and very little sensitivity to the local objects

and features that are outside the focus of attention [236]. Consider the image of the

kitchen in Figure 3.1. If scene categories are determined by objects, then we would

expect the kitchen supply store (left) to be conceptually equivalent to the kitchen. Al-

ternatively, if scenes are categorized from the similarity of spatial layout and surfaces

[19, 216, 286], then observers might place the laundry room (center) into the same

category as the kitchen. However, most of us share the intuition that the medieval

kitchen (right) is in the same category, despite sharing few objects and features with

the top image. Why is the image on the right a better category match to the modern

kitchen than the other two?

Here we put forth the hypothesis that the conceptual structure of environments is

driven primarily by the functions, or the actions that one could perform in the scene.

We assert that representing a scene in terms of its high-level functions provides a

better match to patterns human scene categorization than state-of-the-art models

representing a scenes visual features or objects.

Figure 3.2 illustrates our approach. We constructed a large-scale scene category

distance matrix by querying over 2,000 observers on over 63,000 images from 1055

scene categories (Figure 3.2A). We compared this human response pattern with an

function-based similarity pattern created by asking hundreds of observers to indicate

which of several hundred actions could take place in each scene (Figure 3.2B). We

found a striking resemblance between function-based scene similarity and the human
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Figure 3.1: Which of the bottom images is in the same category as the kitchen image
shown on top? Many influential models of visual perception would assume that scenes
containing similar objects, such as the kitchen supply store (left), or similar layout,
such as the laundry room (middle) would be placed into the same category by human
observers. However, human observers tend to pick the medieval kitchen as the other
category member despite having very different objects and features from the top
kitchen.
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similarity pattern. The function model not only explained more variance in the hu-

man category pattern than leading models of visual features and objects, but also

contributed the most uniquely explained variance of any model, These results sug-

gest that a scenes functions provide a fundamental coding scheme for human scene

categorization.

3.2 Methods

3.2.1 Creating Human Scene Distance Matrix

Our aim was to amass a comprehensive collection of scene categories that have high

human participant agreement about category membership. We started with 1,055

scene categories identified from the SUN and ImageNet databases [77, 315] and from

literature review. These databases used the WordNet [196] hierarchy to identify po-

tential scene concepts. We only included categories with at least 20 image exemplars,

for a grand total of 63,988 images.

Human scene category distance was assessed using a large-scale online study using

Amazons Mechanical Turk. Potential participants were recruited from a pool of

trusted observers with at least 2,000 previously approved trials with at least 98%

approval. Additionally, participants were required to pass a brief scene vocabulary

test before participating.

We aimed to obtain at least 10 observations per pair of scene categories. In each

trial, two images were presented side by side. Half of the image pairs came from the

same putative scene category, while the other half were from two different categories

that were randomly selected. Image exemplars were randomly selected within a cate-

gory on each trial. Participants were instructed to indicate whether they would place

the two images into the same category, and to type in the category name they would

use for the left image (not analyzed, but used to assess understanding of the task).

Workers were compensated $0.02 for each trial. We obtained 10 independent observa-

tions for each cell in the 1055 by 1055 scene matrix, for a total of over 5 million trials.

Individual participants completed a median of 5 hits of this task (range: 1-36,497).
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Figure 3.2: (A) We used a large-scale online experiment to generate a similarity ma-
trix of scene categories. Over 2,000 individuals viewed more than 5 million trials
in which participants viewed two images and indicated whether they would place
the images into the same category. (B) Using the LabelMe tool [248] we examined
the extent to which scene category similarity was related to scenes having similar
objects. Our perceptual model used the output features of a state-of-the-art convo-
lutional neural network [260] to examine the extent to which low-level visual features
contribute to scene category. To generate the functional model, we took 227 actions
from the American Time Use Survey. Using crowdsourcing, participants indicated
which actions could be performed in which scene categories.
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There was a median of 1,116 trials in each of the diagonal entries of the matrix, and

a median of 11 trials in each cell of the off-diagonal entries.

From these data, we created a distance matrix in which each the distance between

two scene categories was defined as the proportion of participants who indicated

that the two categories were “different.” From the 1,055 by 1,055 category distance

matrix, we identified 311 categories with the strongest within-category cohesion (at

least 70% of observers agreed that images were from the same category). Thus, the

final dataset included 311 scene categories from 885,968 total trials, and from 2,296

individual workers.

3.2.2 Creating the Scene Function Space

In order to determine whether scene categories are governed by functional similarity,

we needed a broad space of possible actions that could take place in our comprehensive

set of scene categories. We gathered these actions from the lexicon of the American

Time Use Survey (ATUS), a project sponsored by the US Bureau of Labor Statistics

that uses U.S. census data to determine how people distribute their time across a

number of activities. The lexicon used in this study was pilot tested over the course of

three years [262], and therefore represents a complete set of goal-directed actions that

people can engage in. The ATUS lexicon includes 428 specific activities organized into

17 major activity categories and 105 mid-level categories. The 227 actions included

in our study included the most specific category levels with the following exceptions:

1. The superordinate category Caring for and Helping Non-household members

was dropped as these actions would be visually identical to those in the Caring

for and Helping Household members category.

2. In the ATUS lexicon, the superordinate-level category Work contained only

two specific categories (primary and secondary jobs). Because different types

of work can look very visually different, we expanded this category by adding

22 categories representing the major labor sectors from the Bureau of Labor

Statistics.
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3. The superordinate-level category Telephone calls was collapsed into one action

because we reasoned that all telephone calls would look visually similar.

4. The superordinate-level category Traveling was similarly collapsed into one cat-

egory because being in transit to go to school (for example) should be visually

indistinguishable from being in transit to go to the doctor.

5. All instances of Security procedures have been unified under one category for

similar reasons.

6. All instances of Waiting have been unified under one category.

7. All Not otherwise specified categories have been removed.

The final list of actions can be found in the Supplemental Materials.

3.2.3 Norming the Function Space

Using a separate large-scale online experiment, 484 workers indicated which of the

227 actions could take place in each of the 311 scene categories. Participants were

screened using the same criterion described above. In each trial, a participant saw a

randomly selected exemplar image of one scene category along with a random selection

of 17 or 18 of the 227 actions. Each action was hyperlinked to its description in the

ATUS lexicon. Participants were instructed to use check boxes to indicate which of

the actions would typically be done in the type of scene shown.

Each individual participant did a median of 9 trials (range: 1-4,868). Each scene

category action pair was rated by a median of 16 participants (range: 4-86), for a

total of 1.4 million trials.

We created a 311-category by 227-matrix in which each cell represents the propor-

tion of participants indicating that the action could take place in the scene category.

Since scene categories varied widely in the number of actions they afford, we obtained

a distance matrix by computing the cosine distance between categories. This mea-

sures the overlap between actions while being invariant to the absolute magnitude of

the action vector.
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3.2.4 Function Space MDS Analysis

To better understand the scene function space, we performed a classical multidimen-

sional scaling (MDS) decomposition of the action distance matrix. This yielded an

embedding of the scene categories such that inner products in this embedding space

approximate the (double-centered) distances between scene categories, with the em-

bedding dimensions ranked in order of importance [39]. In order to associate actions

with each of these dimensions, we computed the correlation coefficient between each

action (across scene categories) with the category coordinates for a given dimension.

3.2.5 Alternative Models

To put the performance of the function-based model in perspective, we compared it

to eight alternative models. Five of the models represented visual features, and one

model examined the objects that were present in the scenes. These models yielded

scene category by feature matrices, and were converted to distance matrices using

cosine distance. Additionally, two models measured distances directly, based either

on the lexical distance between scene category names, or simply by whether scenes

belonged to the same superordinate level category (indoor, urban or natural). We

will detail each of the models below.

3.2.5.1 Perceptual Models

Convolutional Neural Network

We generated a perceptual feature vector using the publicly distributed OverFeat

convolutional neural network (CNN) [260], which was trained on the ImageNet 2012

training set [77]. This 7-layer CNN takes an image of size 231x231 as input, and

produces a vector of 4096 image features that are optimized for 1000-way object

classification. This network achieves top-5 object recognition on ImageNet 2012 with

approximately 16% error, meaning that the correct object is one of the models first

five guesses in 84% of trials. Using the top layer of features, we averaged the features

for all images in each scene category to create a 311-category by 4096-feature matrix.
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Gist

We used the Gist descriptor features of [216]. This popular model for scene recognition

provides a summary statistic representation of the dominant orientations and spatial

frequencies at multiple scales coarsely localized on the image plane. We used spatial

bins at 4 cycles per image and 8 orientations at each of 4 spatial scales for a total

of 3,072 filter outputs per image. We averaged the gist descriptors for each image in

each of the 311 categories to come up with a single 3,072-dimensional descriptor per

category.

Color histograms

We represented color using LAB color space. For each image, we created a two-

dimensional histogram of the a* and b* channels using 50 bins per channel. We

then averaged these histograms over each exemplar in each category, such that each

category was represented as a 2500 length vector representing the averaged colors for

images in that category. The number of bins was chosen to be similar to those used

in previous scene perception literature [215].

Tiny Images

Torralba and colleagues [286] demonstrated that human scene perception is robust

to aggressive image downsampling, and that an image descriptor representing pixel

values from such downsampled images could yield good results in scene classification.

Here, we downsampled each image to 32 by 32 pixels (grayscale). We created our

311-category by 1024 feature matrix by averaging the downsampled exemplars of each

category together.

Wavelets

We represented each image in this database as the output of a bank of multi-scale

Gabor filters. This type of representation has been used to successfully model the

representation in early visual areas [153]. Each image was converted to grayscale,

down sampled to 128 by 128 pixels, and represented with a bank of Gabor filters

at three spatial scales (3, 6 and 11 cycles per image with a luminance-only wavelet
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that covers the entire image), four orientations (0, 45, 90 and 135 degrees) and two

quadrature phases (0 and 90 degrees). An isotropic Gaussian mask was used for

each wavelet, with its size relative to spatial frequency such that each wavelet has a

spatial frequency bandwidth of 1 octave and an orientation bandwidth of 41 degrees.

Wavelets were truncated to lie within the borders of the image. Thus, each image

is represented by 3*3*2*4+6*6*2*4+11*11*2*4 = 1328 total Gabor wavelets. We

created the feature matrix by averaging the Gabor weights over each exemplar in

each category.

3.2.5.2 Object-based Model

In order to model the similarity of objects within scene categories, we employed the

LabelMe tool [248] that allows users to outline and annotate each object in each

image by hand. 7,710 scenes from our categories were already labeled in the SUN

2012 release [315], and we augmented this set by labeling an additional 223 images.

There were a total of 3,563 unique objects in this set. Our feature matrix consisted

of the proportion of scene images in each category containing a particular object. For

example, if 10 out of 100 kitchen scenes contained a blender, the entry for kitchen-

blender would be 0.10. In order to estimate how many labeled images we would need

to robustly represent a scene category, we performed a bootstrap analysis in which

we resampled the images in each category with replacement (giving the same number

of images per category as in the original analysis), and then measured the variance in

distance between categories. With the addition of our extra images, we ensured that

all image categories either had at least 10 fully labeled images or had mean standard

deviation in distance to all other categories of less than 0.05 (e.g. less than 5% of the

maximal distance value of 1).

3.2.5.3 Semantic Models

We examined semantic similarity by examining the shortest path between category

names in the WordNet tree using the Wordnet::Similarity implementation of [222].

The similarity matrix was normalized and converted into distance. We examined each
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of the metrics of semantic relatedness implemented in Wordnet::Similarity and found

that this path measure was the best correlated with human performance.

3.2.5.4 Superordinate-Category Model

As a baseline model, we examined how well a model that groups scenes only according

to superordinate-level category would predict human scene similarity assessment. We

assigned each of the 311 scene categories to one of three groups (natural outdoors,

urban outdoors or indoor scenes). Then, each pair of scene categories in the same

group was given a distance of 0 while pairs of categories in different groups were given

a distance of 1.

3.2.6 Noise Ceiling

The variability of human categorization responses puts a limit on the maximum cor-

relation expected by any of the tested models. In order to get an estimate of this

maximum correlation, we used a bootstrap analysis in which we sampled with replace-

ment observations from our scene categorization dataset to create two new datasets

of the same size as our original dataset. We the correlated these two datasets to one

another, and repeated this process 1000 times.

3.2.7 Hierarchical Regression Analysis

In order to understand the unique variance contributed by each of our feature spaces,

we used hierarchical linear regression analysis, using each of the feature spaces both

alone and in combination to predict the human similarity response pattern. In total,

eight regression models were used: (1) all nine feature spaces used together; (2) the

top 3 performing features together (functions, objects and the perceptual CNN); (3-

5) each of the top three features alone; (6-8) each pair of the top three features. By

comparing the r2 values of a feature space used alone to the r2 values of that space in

conjunction with another feature space, we can infer the amount of variance that is

independently explained by that feature space. In order to visualize this information

in an Euler diagram, we used EulerAPE software [195].
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3.3 Results

3.3.1 Human Scene Category Distance

To assess the conceptual structure of scene environments, we asked over 2,000 human

observers to categorize images belonging to 311 scene categories in a large-scale online

experiment. The resulting 311 by 311 category distance matrix is shown in Figure

3.3. In order to better visualize the category structure, we have ordered the scenes

using the optimal leaf ordering for hierarchical clustering [21] allowing us to see what

data-driven clusters emerge.

Several category clusters are visible. Some clusters appear to group several

subordinate-level categories into a single entry-level concept, such as bamboo for-

est, woodland and rainforest being examples of forests. Other clusters seem to reflect

broad classes of activities (such as sports) which are visually heterogeneous and cross

other previously defined scene boundaries, such as indoor-outdoor [99, 132, 277, 287]

or the size of the space [114, 216, 219]. Such activity-oriented clusters hint that

the actions that one can perform in a scene (the scenes functions) could provide a

fundamental grouping principle for scene category structure.

3.3.2 Function-based Similarity Best Correlates with Human

Category Structure

For each of our nine feature spaces, we created a distance vector representing the

distance between each pair of scene categories. We then correlated this distance

vector with the human distance vector from the previously described experiment.

In order to quantify the performance of each of our models, we defined a noise

ceiling based on the inter-observer reliability in the human scene distance matrix.

This provides an estimate of the explainable variance in the scene categorization

data, and thus provides an upper bound on the performance of any of our models.

Using bootstrap sampling (see Methods), we found an inter-observer correlation of

r=0.76. In other words, we cannot expect a correlation with any model to exceed this

value.
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Figure 3.3: The human category distance matrix from our large-scale online exper-
iment was found to be sparse. Over 2,000 individual observers categorized images
in 311 scene categories. We visualized the structure of this data using optimal leaf
ordering for hierarchical clustering, and show representative images from categories
in each cluster.
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Function-based similarity had the highest resemblance to the human similarity

pattern (r=0.50). This represents about 2/3 of the maximum observable correlation

obtained from the noise ceiling. As shown in Figure 3.4, this correlation is substan-

tially higher than any of the alternative models we tested.

Of course, being able to perform similar actions often means manipulating similar

objects, and scenes with similar objects are likely to share visual features. Therefore,

we compared function-based categorization patterns to alternative models based on

perceptual features, object-based similarity, and the semantic similarity of category

names.

We tested five different models based on purely visual features. The most sophis-

ticated used the top-level features of a state-of-the-art convolutional neural network

model (CNN) [260] trained on the ImageNet database [77]. These features, computed

by iteratively applying learned nonlinear filters to the image, have been shown to be

a powerful image representation for a wide variety of visual tasks [234]. Category dis-

tances in CNN space produced a correlation with human distance of r=0.39. Simpler

visual features, however, such as gist [216], color histograms [215], Tiny Images [286],

and wavelets [153] had low correlations with human scene distance.

Category structure could also be predicted to some extent based on the similarity

between the objects present in scene images (r=0.33, using human-labeled objects

from the LabelMe database [248]), or the semantic distance between category names

in the WordNet tree (r=0.27) [141, 196, 222]. Surprisingly, a model that merely groups

scenes by superordinate-level categories (indoor, urban or natural environments) also

had a substantial correlation (r=0.25) with human distance patterns.

Although each of these feature spaces had differing dimensionalities, this pattern

of results also holds if the number of dimensions is equalized through dimensionality

reduction (see Methods and Supplementary Figure B2).

3.3.3 Independent Contributions from Alternative Models

To what extent does function-based similarity uniquely explain the patterns of human

scene categorization? Although function-based similarity was the best explanation
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Figure 3.4: (A) Correlation of all models with human scene categorization pattern.
Function-based similarity (dark blue, left) showed the highest resemblance to human
behavior, achieving 2/3 of the maximum explainable similarity (black dotted line). Of
the models based on visual features (yellow, right), only the model using the top-level
features of the convolutional neural network (CNN) showed substantial resemblance
to human data. Object-based similarity, semantic similarity and superordinate-level
similarity all showed moderate correlations. (B) Euler diagram showing the distri-
bution of explained variance for the three top-performing models. Function-based
similarity independently explained 13.2% of the variance in the human similarity
pattern (45% of total variance explained by all models). By contrast, perceptual
similarity independently accounted for only 2% of the variance (7% of explained vari-
ance) and object-based similarity only accounted for 0.11% of the variance (0.4% of
the explained variance).
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of the human categorization pattern of the models we tested, perceptual and object-

based similarities also had sizeable correlations with human behavior. To what extent

do these models make the same predictions?

In order to assess the independent contributions made by each of the models, we

used a hierarchical linear regression analysis in which each of the three top-performing

models was used either separately or in combination to predict the human similarity

pattern. By comparing the r2 values from the individual models to the r2 values for

the combined model, we can assess the unique variance explained by each descriptor.

A combined model with all nine features explained 29.8% of the variance in the

human similarity pattern (r=0.55). This model is driven almost entirely by the top

three feature spaces (functions, perceptual CNN, and object labels), which explained

a combined 29.1% of the variance (r=0.54). Note that affordances explained 85.6%

of this explained variance, indicating that the object and perceptual features only

added a small amount of independent information (14.4% of the combined variance).

Although there was a sizable overlap between the portions of the variance ex-

plained by each of the models (see Figure 3.4B), nearly half of the total variance

explained can be attributed only to functions (13.2% of total variance, or 45.3% of

the explained variance), and was not shared by the other two models. In contrast, the

independent variance explained by perceptual similarity and object-based similarity

accounted for only 2% (7% of explained variance) and 0.11% (0.4% of explained vari-

ance) of the total variance respectively. Therefore, the contributions of perceptual

and object-based similarities are largely shared with function-based similarity, further

highlighting the utility of affordances for explaining human scene similarity patterns.

3.3.4 Examining Scene Function Space

In order to better understand the function space, we performed classical multi-

dimensional scaling on the function distance matrix, allowing us to identify how

patterns of functions contribute to the overall similarity pattern. We found that

at least 10 MDS dimensions were necessary to explain 95% of the variance in the

function distance matrix, suggesting that the efficacy of the function-based model
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was driven by a number of distinct function dimensions. We examined the projec-

tion of categories onto the first three MDS dimensions. As shown in Figure 3.5, the

first dimension appears to separate indoor locations that have a high potential for

social interactions (such as socializing and attending meetings for personal interest)

from outdoor spaces that afford more solitary activities, such as hiking and science

work. The second dimension separates work from leisure. Later dimensions appear

to separate environments related to transportation and industrial workspaces from

restaurants, farming, and other food-related environments (see Supplementary Figure

B1).

3.4 Discussion

We have shown that human scene categorization is better explained by the action

possibilities, or functions, of a scene than by the scenes visual features or objects.

Furthermore, function-based similarity explained far more independent variance than

did alternative models, as these models were correlated with human category patterns

only insofar as they were also correlated with the scenes functions. This suggests that

a scenes functions contain essential information for categorization that is not captured

by the scenes objects or low-level visual features.

The current results cannot be explained by the smaller dimensionality of the

function-based features, as further analysis revealed that function-based features out-

performed other similarity spaces using equivalent numbers of dimensions. Further-

more, this pattern was observed over a wide range of dimensions, suggesting that

each function feature contained more information about scene categories than each

perceptual or object-based feature.

The idea that the function of vision is for action has permeated the literature of

visual perception, but it has been difficult to fully operationalize this idea for testing.

Psychologists have long theorized that rapid and accurate environmental perception

could be achieved by the explicit coding of an environments affordances, most notably

in J.J. Gibsons influential theory of ecological perception [102]. This work is most

often associated with the direct perception of affordances that reflect relatively simple
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Indoor
Urban
Natural

"social indoor" "solitary outdoor"

Work
Leisure
Other

conf. center motel room hedge maze pig farm bayou

drill rig food court orchard discotheque velodrome

chicken farm chaparral rock arch car interior railway yard

Indoor
Urban
Natural

"business" "leisure"

"pastoral" "transportation"

Figure 3.5: (Top): Distribution of superordinate-level scene categories along the first
MDS dimension of the function distance matrix, which separates indoor scenes from
natural scenes. Actions that were positively correlated with this component tend
to be outdoor-related activities such as hiking while negatively correlated actions
tend to reflect social activities such as eating and drinking. (Middle) The second
dimension seems to distinguish environments for work from environments for leisure.
Actions such as playing games are positively correlated while actions such as construc-
tion and extraction work are negatively correlated (Bottom). The third dimension
distinguishes environments related to farming and food production (pastoral) from
industrial scenes specifically related to transportation. Actions such as travel and ve-
hicle repair are highly correlated with this dimension, while actions such as farming
and food preparation are most negatively correlated.
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motor patterns such as sitting or throwing. As the functions used in the current work

often reflect higher-level, goal-directed actions, and because we are making no specific

claims about the direct perception of these functions, we have opted not to use the

term affordances here. Nonetheless, ideas from Gibsons ecological perception theory

have inspired this work, and thus we consider our functions as conceptual extensions

of Gibsons idea.

Previous small-scale studies have found that environmental functions such as nav-

igability are reflected in patterns of human categorization [113, 114] and are perceived

very rapidly from images [115].Our current results provide the first comprehensive,

data-driven test of this hypothesis, using data from hundreds of scene categories

and affordances. By leveraging the power of crowdsourcing, we were able to obtain

both a large-scale similarity structure for visual scenes, but also normative ratings

of functions for these scenes. Using hundreds of categories, thousands of observers

and millions of observations, crowdsourcing allowed a scale of research previously

unattainable. Previous research on scene function has also suffered from the lack

of a comprehensive list of functions, relying instead on the free responses of human

observers describing the actions that could be taken in scenes [114, 221]. By using an

already comprehensive set of actions from the American Time Use Survey, we were

able to see the full power of functions for predicting human categorization patterns.

Given the relatively large proportion of variance independently explained by

function-based similarity, we are left with the question of why this model outper-

forms the more classic models. By examining patterns of variance in the function

by category matrix, we found that functions can be used to separate scenes along

previously defined dimensions of scene variance, such as superordinate-level category

[147, 181, 287], and between work and leisure activities [83]. Although the variance

explained by function-based similarity does not come directly from visual features or

the scenes objects, human observers must be able to apprehend these functions from

the image somehow. It is therefore a question open for future work to understand the

extent to which human observers bring non-visual knowledge to bear on this problem.

Some recent work has examined large-scale neural selectivity based on semantic

similarity [141] or object-based similarity [270], finding that both types of conceptual



CHAPTER 3. VISUAL SCENES ARE CATEGORIZED BY FUNCTION 48

structures can be found in the large-scale organization of human cortex. Our current

work indeed shows sizeable correlations between these types of similarity structures

and human behavioral similarity. However, we find that function-based similarity is

a better predictor of behavior and may provide an even stronger grouping principle

in the brain.

These results challenge many existing models of visual categorization that consider

categories to be purely a function of shared visual features or objects. Just as the

Aristotelian theory of concepts assumed that categories could be defined in terms

of necessary and sufficient features, classical models of visual categorization have

assumed that a scene category can be explained by necessary and sufficient objects

[25, 270] or diagnostic visual features [235, 297]. However, just as the classical theory

of concepts cannot account for important cognitive phenomena, the classical theory of

scene categories cannot account for the fact that two scenes can share a category even

when they do not share many features or objects. By contrast, the current results

demonstrate that the possibility for action creates categories of environmental scenes.

In other words, a kitchen is a kitchen because it is a space that affords cooking, not

because it shares objects or other visual features with other kitchens.
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Chapter 4

Spatially-regularized voxel-level

connectivity

Discovering functional connectivity between and within brain regions is a key concern

in neuroscience. Due to the noise inherent in fMRI data, it is challenging to charac-

terize the properties of individual voxels, and current methods are unable to flexibly

analyze voxel-level connectivity differences. We propose a new functional connec-

tivity method which incorporates a spatial smoothness constraint using regularized

optimization, enabling the discovery of voxel-level interactions between brain regions

from the small datasets characteristic of fMRI experiments. We validate our method

in two separate experiments, demonstrating that we can learn coherent connectiv-

ity maps that are consistent with known results. First, we examine the functional

connectivity between early visual areas V1 and VP, confirming that this connectivity

structure preserves retinotopic mapping. Then, we show that two category-selective

regions in ventral cortex - the Parahippocampal Place Area (PPA) and the Fusiform

Face Area (FFA) - exhibit an expected peripheral versus foveal bias in their con-

nectivity with visual area hV4. These results show that our approach is powerful,

widely applicable, and capable of uncovering complex connectivity patterns with only

a small amount of input data.

We then present a method for identifying fine-grained functional connectivity be-

tween any two brain regions by simultaneously learning voxel-level connectivity maps

49
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over both regions. We show how to formulate this problem as a constrained least-

squares optimization, which can be solved using a trust region approach. Our method

can automatically discover multiple correspondences between distinct voxel clusters

in the two regions, even when these clusters have correlated timecourses. We validate

our method by identifying a known division in the lateral occipital complex using

only functional connectivity.

This chapter is joint work with Marius Cătălin Iordan, Diane M. Beck, and Fei-

Fei Li, and portions have previously appeared in print in NeuroImage [18] and in

the conference proceedings of the 2nd NIPS Workshop on Machine Learning and

Interpretation in Neuroimaging [17].

4.1 Introduction

Functional Magnetic Resonance Imaging (fMRI) has been widely adopted by the neu-

roscience community primarily because it allows researchers to unobtrusively sample

activity patterns from populations of neurons across the entire human brain, at a fine

spatial scale (typically a few millimeters). However, many methods for identifying dis-

tributed functional networks underutilize the spatial resolution of fMRI, considering

only the aggregate properties of groups of voxels. For example, when computing func-

tional connectivity between brain regions, activity is often spatially averaged within

each Region of Interest (ROI) and simple statistical relationships (e.g. correlation)

between these mean timecourses are used as measures of connectivity between the

regions (reviewed in [243]).

ROIs are generally defined by a contrast between two types of stimuli, constrained

by rough anatomical location. However, there is no reason to assume that all voxels

within an ROI have identical functional properties. Indeed, recent work has achieved

some success in dividing existing ROIs into functional subregions. For example, lateral

occipital complex (LOC, defined in [184]) has been shown to contain two functionally

distinct subregions [118], and the extrastriate body area (EBA, defined in [80]) has

been split into three separate limb-sensitive areas [308].
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Recent work has begun to investigate intra-ROI structure using measures of func-

tional connectivity. These methods have provided evidence of subdivisions within

regions such as the thalamus [323], medial frontal cortex [157], the amygdala [244],

anterior cingulate cortex [186], and the precuneus [187], and have been used to un-

cover the functional connectivity structure of early visual cortex [130].

However, these methods are unable to jointly model the functional connectivity

properties of individual voxels for typical fMRI dataset sizes. Almost all current

methods avoid simultaneously learning the connectivity properties for all voxels, by

spatially downsampling to a small number of subregions [186, 244], only learning pa-

rameters for one voxel or subregion at a time [61, 66, 157, 323], or both [187]. Each

of these approaches has some disadvantages. Downsampling requires prior knowledge

of the anatomical subdivisions in a region [244] or of the relevant spatial scale of

connectivity differences [186], making it ill-suited for exploratory studies. Learning

voxel parameters separately can make comparisons between voxels difficult; for ex-

ample, if two voxels are assigned different levels of connectivity with a seed region,

there is generally no way to tell whether these two voxels predict different parts of the

seed timecourse, or if one voxel is simply a noisy copy of the other. Jointly learning

connectivity weights allows us to pinpoint those voxels that contribute unique infor-

mation about the seed region, by simultaneously considering the timecourses of all

voxels.

Support vector regression (SVR) can learn joint voxel-level connectivity maps, but

requires a significant amount of data; for example, [130] uses more than 40 minutes of

training data (1,600 timepoints) to learn connectivity structures in early visual areas.

Scarcity of training data is a common obstacle for characterizing individual voxels

in fMRI experiments. Typical fMRI datasets record activity from tens of thousands

of voxels in the human brain, but with only about a thousand timepoints per voxel.

Several methods have been successfully implemented to boost the number of recorded

timepoints (e.g. rapidly scanning only a select portion of the brain, [30, 258]), but all

fMRI studies must contend with a severe data shortage for individual subjects caused

by this limitation. A recent survey of MVPA techniques [197] has demonstrated em-

pirically that low-complexity models tend to perform better at decoding information
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from patterns of activity than high-complexity models, which is theoretically plausible

given the limited number of timepoints available for model training.

Therefore, there is still a need for a method that can estimate voxel-level connec-

tivity structure with data set sizes more typical of fMRI experiments. For example,

when investigating stimulus-category-dependent changes in connectivity patterns, the

amount of data for each category can be on the order of only a hundred timepoints.

To address this issue, we propose a spatially regularized method for examining con-

nectivity differences within ROIs, which is specifically tailored to small training sets

typical in the fMRI setting. Our regularization approach simply imposes the con-

straint that connectivity properties should vary smoothly across voxels, a highly

plausible assumption given the nature of fMRI data. Much prior work has been

dedicated to incorporating spatial regularization into MRI and fMRI analysis, with

goals such as functional classification and regression [119, 212], classification of gray

matter concentration maps [73], and inter-subject alignment [67]. However, none of

these regularized models are specifically searching for evidence of voxel-level structure

within an individual ROI.

In this paper, we present a spatially regularized method for uncovering connectiv-

ity differences within ROIs, and demonstrate that it is possible to discover consistent

structures using only a small amount of training data. We validate our approach

using two different experiments, for which the ground truth connectivity is already

known. In the first experiment, we show that we can recover retinotopic connec-

tivity patterns between early visual areas V1 and VP. In the second, we replicate

the known eccentricity biases in the connectivity between visual area hV4 and both

the Parahippocampal Place Area (PPA) and the Fusiform Face Area (FFA), without

using a specialized experimental design.
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4.2 Materials and Methods

4.2.1 Traditional Connectivity Analysis

The simplest way to characterize functional connectivity between two ROIs is to

extract mean timecourses by spatially averaging over all the voxels in each ROI,

then computing the Pearson product-moment correlation coefficient (r value) between

the two mean timecourses. A high r2 value indicates strong functional connectivity

between the pair of ROIs.

We can reformulate this analysis as a linear regression problem in which we use

voxel activation values from the first timecourse to predict the second timecourse.

Specifically, we choose a slope a and an offset b minimizing

||(a ·meanv(A
1) + b · 1)−meanv(A

2)||22 (4.1)

where A1 and A2 are the (# voxels x # timepoints) data matrices from two ROIs,

and meanv denotes an average across voxels. The r2 value is then equivalent to the

fraction of variance explained (the increase in prediction accuracy from using a and

b, as opposed to just predicting the mean of the second timecourse, [272]):

r2 = Fraction of Variance Explained

= 1− ||(a ·meanv(A
1) + b · 1)−meanv(A

2)||22
||(meant(meanv(A

2))−meanv(A
2)||22

where meant denotes an average across time.

We can interpret a ·meanv1(A
1) as a weighted sum, in which every voxel shares

the same weight c = a/(# of voxels in A1). This allows us to rewrite the traditional

correlation method as an optimization problem in a more general form:

minimize
a,c,b

||(aT ·A1 + b)−meanv(A
2)||22 (4.2)

subject to a = c · 1

where a is a vector with length equal to the number of voxels in A1.
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This is a convex optimization problem, and can be solved using a standard op-

timization package (all optimization problems in our paper are solved using CVX, a

package for specifying and solving convex programs, [111]).

4.2.2 Regularized Connectivity Method

Although the basic connectivity method described in Section 4.2.1 provides valuable

insight into the functional organization of the human brain, it lacks a principled way to

take into account voxel-level spatial information present in the fMRI signal. However,

simply removing the constraint that all voxels must have the same weight leads to

severe overfitting on typical fMRI dataset, as will be demonstrated in sections 4.3.1

and 4.3.2. Rather than revealing interesting, generalizable connectivity patterns, the

learned maps are driven mainly by noise in the training data and fail to replicate

across runs. In order to obtain meaningful weight maps, we must place a constraint

on the voxel weights which is less restrictive than that of the traditional method

(all weights equal), but more restrictive than the unconstrained method (all weights

independent).

One plausible assumption is that voxel connectivity properties are likely to be

spatially correlated, with nearby voxels typically having more similar connectivity

properties than spatially distant voxels. This reflects a common view of cortical

organization, and is especially applicable to blood-oxygen-level dependent (BOLD)

signals such as fMRI, since the hemodynamic response is spatially smooth.

To incorporate this assumption, we developed a new method of assessing func-

tional connectivity patterns within ROIs (Fig. 4.1). We define an extension of the

original optimization problem (Eq. 4.2), replacing the constraint that weights for all

voxels must be equal with a spatial regularization term in the minimization objective:

minimize
a,b

||(aT ·A1 + b · 1)−meanv(A
2)||22 + λ||D · a||22 (4.3)

D is the voxel connectivity matrix, which we design to penalize the mean squared

difference between the weight ai of voxel i, and the weights of voxel i’s neighbors.

Each row of D represents a directed edge from a voxel i to an adjacent voxel j: all
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(a) (b)

Figure 4.1: Comparison of connectivity maps learned from traditional (a)
and regularized (b) methods. (a) In traditional functional connectivity analysis,
connectivity with a seed region (blue) is assumed to be identical for all voxels in an
ROI (red). (b) Our method can learn a map of weights in an ROI that describes the
voxel-level connectivity between each voxel and the seed region. It is possible to learn
these maps using a small amount of training data by imposing a spatial smoothness
constraint.

entries in a row are zero, except for the jth element (equal to 1/
√
di) and the kth

element (equal to −1/
√
di), where di is the number of neighbors of voxel i. Thus the

regularization term is ||D · a||22 =
∑N

i=1
1
di

∑
j∈ni

(ai − aj)2 where N is the number of

voxels in A1 and ni is the set of i’s neighbors. The hyperparameter λ controls the

strength of the regularization, trading off between an a that gives a good prediction

of the seed timecourse A2 and an a that is spatially smooth. λ can take on any

positive value, with λ → 0 producing completely unregularized maps, and λ → ∞
producing completely smooth (constant) maps.

In this paper, we define the voxel neighborhoods ni to enforce smoothness along

the cortical surface. After mapping an ROI onto a cortical flat map, we define the

neighborhood of each voxel to be its k-nearest neighbors. This approach is suitable

for ROIs that are known to have retinotopic structure on the cortical surface, such

as early visual areas. Alternatively, a more general approach could simply define

ni to be all spatially adjacent voxels (touching voxel i at least on a corner in the

three-dimensional representation of the particular subject’s brain).

As in the traditional method, this optimization problem is convex and therefore

has a global optimum that can be found efficiently. It is in fact possible to compute
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the solution in closed form. If we assume that the timecourses have been normal-

ized to have zero mean (such that the optimal b = 0 and can be disregarded), the

minimization objective is

(aT ·A1 −meanv(A
2))(aT ·A1 −meanv(A

2))T + λ(D · a)(D · a)T =

aT (A1A1T + λDDT )a− aA1meanv(A
2)

(4.4)

The quadratic term is positive definite for λ > 0, so this has the unique solution

a = (A1A1T + λDDT )−1A1meanv(A
2) (4.5)

4.2.3 Datasets

4.2.3.1 Human subjects

We tested our functional connectivity method on two separate datasets. Both exper-

iments were approved by the Institutional Review Board of Stanford University, and

all subjects gave their written informed consent. Subjects were in good health with no

past history of psychiatric or neurological diseases, and had normal or corrected-to-

normal vision. 13 subjects (1 female; age: 22-26 years; including one of the authors)

participated in the first experiment, and 8 subjects (2 female; age: 23-26; including

one of the authors) participated in the second experiment.

4.2.3.2 Scanning parameters

For both experiments, imaging data were acquired with a 3 Tesla G.E. Healthcare

scanner. A gradient echo, echo-planar sequence was used to obtain functional images

[volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip angle, 80◦; matrix,

128x128 voxels; FOV, 20 cm; 29 oblique 3 mm slices with 1 mm gap; in-plane reso-

lution, 1.56x1.56mm]. The functional data were motion-corrected, each voxel’s mean

value was scaled to equal 100, and linear trends were removed from each run, using

the AFNI software package [69]. No other preprocessing (e.g. spatial smoothing, slice

timing correction, temporal smoothing) was applied. We collected a high-resolution
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(1x1x1mm voxels) structural scan (SPGR; TR, 5.9 ms; TE, 2.0 ms; flip angle, 11◦)

in each scanning session. Images were presented using a back-projection system (Op-

toma Corporation) operating at a resolution of 1024 x 768 pixels at 75 Hz.

4.2.3.3 Visual stimuli and experimental design

For our first experiment, we collected early visual cortex responses from 13 subjects.

We used a typical retinotopic mapping protocol, in which a checkerboard pattern

undergoing contrast reversals at 5Hz moved through the visual field in discrete in-

crements [257]. First, a wedge subtending an angle of 45 degrees from fixation was

presented at 16 different polar angles for 2.4 seconds each. Next, an annulus subtend-

ing 3 degrees of visual angle was presented at 15 different radii for 2.4 seconds each.

Each subject passively observed two runs of 6 cycles in each condition, yielding 512

timepoints per subject (see Fig. 4.2a).

Our second dataset consists of PPA, FFA, and hV4 responses from 8 subjects. We

presented two types of stimuli, as shown in Fig. 4.2b: (1) boats and cars on a blank

white background (isolated objects); and (2) boats and cars with a street or water

scene background (objects in context). Images (450 x 450 pixels; subtending 24 x 24

degrees of visual angle) were presented 100 pixels (5 degrees) away from fixation in

randomly determined directions. Subjects were informed that each image contained

either a boat or a car, and were asked to indicate as quickly as possible whether

the object was on the left half of the image or the right half of the image (using a

button box). Subjects performed 4 runs, with 16 blocks per run (with a 14 s gap

between blocks) and 9 images per block. The first 8 blocks of each run showed a

boat or car placed in a photographic scene; for each block, the object could violate

a semantic relationship (appearing in the wrong type of scene, e.g. a boat on a city

street) and/or a geometric relationship (appearing in the wrong position in the scene,

e.g. a car above a tree rather than on the street). Each presentation consisted of a

500 ms fixation cross, an image flashed for 100 ms, a 300 ms mask, and then a 1300

ms response period (blank gray screen). The last 8 blocks of each run showed a boat

or car on a white background; these images were identical to those presented in the

first eight blocks, with the backgrounds removed (and presented in a different random
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order). Each presentation consisted of a 500 ms fixation cross, an image flashed for

350 ms, and then a 1300 ms response period (blank gray screen). The total number

of timepoints for each of the 8 subjects was 1,224 (306 per run).

4.2.3.4 ROIs

In order to measure the eccentricity biases of PPA and FFA in the second experiment,

we defined these regions using standard localizer runs conducted in a separate fMRI

experiment. Subjects performed 2 runs, each with 12 blocks drawn equally from six

categories: child faces, adult faces, indoor scenes, outdoor scenes, objects (abstract

sculptures with no semantic meaning), and scrambled objects. Blocks were separated

by 12 s fixation cross periods, and consisted of 12 image presentations, each of which

consisted of a 900 ms image followed by a 100 ms fixation cross. Each image was

presented exactly once, with the exception of two images during each block that were

repeated twice in a row. Subjects were asked to maintain fixation at the center of

the screen, and respond via button-press whenever an image was repeated. PPA was

defined as the top 300 voxels near parahippocampal gyrus for the Scenes > Objects

contrast, and FFA was defined as the top 100 voxels near fusiform gyrus for the Faces

> Objects contrast. The volume of each ROI in mm3 was chosen conservatively, based

on previous results [104]. The locations of early visual areas V1, VP, and hV4 were

delineated on a flattened cortical surface for each subject, using a horizontal meridian

vs. vertical meridian general linear test from the retinotopic mapping data to give

the boundaries between retinotopic maps.

4.3 Results

4.3.1 VP-V1 Connectivity

We know that voxels in early visual cortex exhibit strongly retinotopic population

receptive fields [82]. Recent work has shown that the structure of functional connec-

tivity between early visual areas preserves retinotopic organization. Specifically, the

activity of a voxel in V3 is best predicted by voxels in V1 that correspond to the same
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(a) The first dataset consists of responses to two flickering checkerboard patterns: a 45◦

wedge which rotates clockwise through the visual field, and an annulus subtending 3◦ of
visual angle that expands outward from fixation.

(b) The second dataset consists of cars and boats, presented either in isolation or in a scene
context.

Figure 4.2: Stimuli used in our two datasets.
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retinotopic position in the visual field [130].

In this section, we validate our method by showing how it can be used to discover

such connections between retinotopic areas of the early visual cortex. We apply our

connectivity method to the early visual cortex dataset with V1 as area A1 and a

single voxel in VP (ventral V3, or V3v) as area A2 (Eq. 4.3). For each voxel in VP,

we obtain a separate connectivity map a of voxel weights in V1.

To quantitatively measure the precision of the learned V1 maps, we first assign a

preferred angle and eccentricity to each voxel in V1 and VP. We use the t-statistics

from a standard general linear model (GLM) to quantify the preference of each voxel

to each wedge angle and each annulus radius [136]. Specifically, for each voxel v in the

two areas, we take a weighted average of all stimulus angles, with weights proportional

to that voxel’s t-statistic for that angle θi (ignoring negative t-statistics):

prefθ(v) = tan−1


∑

{i|tvi>0}
tvi · sin(θi)∑

{i|tvi>0}
tvi · cos(θi)


where θi ∈ {0, 22.5, 45, 67.5, ...337.5} and tvi is the marginal t-statistic for angle i at

voxel v.

Similarly, we compute the preferred eccentricity for each voxel v by taking a

weighted average of the stimulus radii Ri:

prefr(v) =

∑
{i|tvi>0}

tvi ·Ri∑
{i|tvi>0}

tvi

where Ri ∈ {0.73, 1.46, 2.92, 4.38, ...18.98, 19.71} and tvi is the marginal t-statistic for

radius i at voxel v.

Finally, we can estimate the position of the population receptive field for v by

converting to cartesian coordinates:

RF(v) = prefr(v) · [cos(prefθ(v)), sin(prefθ(v))]
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Given the population receptive field locations for each V1 and VP voxel, we can

compare the receptive field RF(v) of each voxel v in VP with the receptive fields

of the V1 voxels in v’s connectivity map. If the V1 connectivity map for voxel v

preserves retinotopic organization, then the V1 voxels with high positive weights

should have the same retinotopic position as v. We therefore take a weighted average

of the V1 receptive fields, in which the weight for each V1 voxel corresponds to its

learned connectivity weight (negative weights are set to zero for this computation).

This allows us to compare the receptive field of VP voxel v with that generated by

the connected voxels in V1, as shown in Fig. 4.3. To ensure that the receptive field

estimates are an independent measure of performance, we compute the receptive field

positions using the first run of the wedge and annulus data, and learn connectivity

maps using the second run.

Fig. 4.4 describes the results across all 13 subjects, with λ = 103 and k = 10. We

observe a marked decrease in the magnitude of the receptive field differences between

VP and V1 when adding regularization, with the median difference reduced by an

average of 31% (t(12) = 11.19, p << 0.01, two-tailed paired t-test). With regular-

ization, the V1 maps become much more precise, with the majority of the positive

learned V1 weights falling in a retinotopic location similar to that of the VP voxel

that generated them. This result demonstrates that our regularized method produces

V1 maps that are not only spatially coherent, but also functionally correct. It also

shows that our method can perform well even with very little data; we use only 256

timepoints to estimate connectivity maps over all ∼1000 V1 voxels. The performance

of any connectivity method on this dataset will be limited by the uncertainty in our

VP receptive field position estimates (introduced by the limited number of wedge

and annulus positions used, and the small number of temporal samples); we can ap-

proximate this uncertainty by comparing the RF(v) calculated from a single run to

the RF(v) calculated from both runs. This loose error bound is plotted in Fig. 4.4,

indicating that our method makes significant progress toward the optimal result even

with such a small number of training timepoints. Similar results for regularized maps

are observed over a large range of λ and k values (see Supplementary Fig. C1).
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(a)

(b)

Figure 4.3: Learned connectivity maps and receptive fields for 2 VP voxels,
without regularization (a) and with regularization (b). Two VP voxels are
denoted by purple and green stars, and the top 30 voxels from the learned connec-
tivity maps are shown in respective color in V1 (triangles indicate the location of the
fovea). The inset plots compare the average receptive field of the connected V1 voxels
(heatmap) with the actual population receptive field of each VP voxel (gray circle,
radius given by the average uncertainty in our receptive field estimates). (a) The
unregularized method produces maps with scattered weights, and the receptive fields
of the connected V1 voxels are poor predictors of the VP receptive field. (b) The reg-
ularized connectivity method learns spatially coherent connectivity maps consistent
with retinotopic organization, and the receptive fields of the connected V1 voxels are
similar to that of the VP voxel.
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Figure 4.4: Histogram comparing the precision of V1 maps generated from
VP voxels. The X-axis indicates the difference between the receptive field locations
of VP voxels and the weighted average of the receptive fields in corresponding V1
connectivity maps. Since the actual functional connectivity between V1 and VP is
known to preserve retinotopy, each VP voxel and its learned V1 connectivity map
should have similar receptive field locations. The Y-Axis shows the fraction of VP
voxels in each difference bin spanning 1.2 degrees of visual angle. Red bars (back)
show results for regularized maps (λ = 103, k = 10), which demonstrate significantly
smaller differences than blue bars (front), which show results for non-regularized maps
(λ = 0). The dotted lines compare the median difference of both methods to a loose
lower bound, based on the uncertainty in our receptive field estimates.
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4.3.2 hV4-PPA/FFA Connectivity

Previous work has shown that there is a preferential response in PPA to peripherally-

presented stimuli, and in FFA to foveally-presented stimuli; this effect has been

measured both with discrete stimuli [175] and with traveling wave methods [103].

Experiments using diffusion tensor imaging (DTI) have provided evidence that this

eccentricity bias is also present in the connectivity structure, with projections to early

visual areas terminating at peripheral eccentricities for PPA and foveal eccentricities

for FFA [158]. Our connectivity method provides a simple way of revealing such

differential connectivity patterns, which does not require a specialized experimental

design or a large amount of data. We chose to learn connectivity maps from PPA/FFA

to area hV4 (as described in [299]), since it is the area in visual cortex most closely

connected to ventral regions and is therefore most likely to show strong functional

connectivity patterns.

We first examine the effect of varying λ on this dataset, and describe a prin-

cipled approach for automatically selecting the regularization strength. λ controls

the complexity of the learned connectivity patterns; as λ → ∞, we can learn only

constant-weight maps, while as λ → 0, the weights are allowed to vary completely

independently and maps can be arbitrarily complex.

We now use hV4 as area A1 and either PPA or FFA as area A2 (k = 10); the

goal of our optimization is to find a map of weights for the hV4 voxels that allows

for the best prediction of the mean PPA or FFA timecourse. For each subject, we

train the model parameters on one run and then test on the other three runs (results

are averaged across the choice of training run). The testing accuracies across a wide

range of λ values (spaced logarithmically with step ratio of 100.25) are shown in

Fig. 4.5 (upper plot). At low values of λ, the connectivity maps are highly complex.

These maps severely overfit to the training run, and fail to generalize to testing

runs. At high values of λ, testing performance converges to essentially the same

result as in the traditional connectivity method, in which all voxels have the same

weight (unlike the traditional method, each hemisphere can have a different constant

weight). However, the surprising characteristic of the testing accuracy curve is that it

does not increase monotonically as λ increases. In every subject, the best testing
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performance occurred at an intermediate value of λ, which shows that there exists

a non-constant connectivity structure which is stable between runs; across subjects,

testing performance was significantly increased over the traditional method (λ =∞)

for 10−0.25 < λ < 106.75 for PPA and 101.5 < λ < 106 for FFA (t(7) < −1.89, p < 0.05,

one-tailed paired t-test, uncorrected). This result shows that our method can carefully

balance the trade-off between model complexity and data availability. Note that it is

not possible to find generalizable connectivity maps using only pre-smoothing rather

than spatial regularization (see Supplementary Fig. C2).

We obtain the best generalization performance around λ = 101, where we learn

maps with a smoothness of approximately 9 mm FWHM (see Supplementary Fig. C3).

As shown in the lower plot of Fig. 4.5, the connectivity maps in this regime have

eccentricity biases in opposite directions for the two seed regions, with PPA bi-

ased toward peripheral eccentricities and FFA biased toward foveal eccentricities

(correlation of learned weights with voxel eccentricities is significantly different for

10−1.25 < λ < 103, t(7) > 2.36, p < 0.05, two-tailed paired t-test after z-transform,

uncorrected).

Fig. 4.6 compares the eccentricity biases of the learned maps, with λ for each

subject chosen to maximize generalization accuracy. Using all 306 timepoints from a

run, the hV4 connectivity map with PPA is biased toward larger eccentricities, with

an average correlation between eccentricity and connectivity weight of 0.21 (t(7) =

2.83, p < 0.05, one-tailed t-test after z-transform) while the hV4 connectivity map

with FFA is biased toward smaller eccentricities, with an average correlation of -

0.16 (t(7) = −2.24, p < 0.05, one-tailed t-test after z-transform) (PPA and FFA

eccentricities significantly different, t(7) = 4.19, p < 0.01, two-tailed paired t-test after

z-transform). We can obtain similar results using only the 148 “resting” timepoints

in between stimulus blocks, in which subjects are simply fixating on a blank screen,

suggesting that our method is sensitive to general functional connectivity rather than

a stimulus mediated effect (PPA: t(7) = 3.51, p < 0.01, one-tailed t-test after z-

transform; FFA: t(7) = −2.39, p < 0.05, one-tailed t-test after z-transform; Difference:

t(7) = 4.88, p < 0.01, two-tailed paired t-test after z-transform).

To demonstrate that our method is more powerful than simpler approaches, the
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Figure 4.5: Effects of changing λ on learned hV4 connectivity maps. Connec-
tivity maps over hV4 were learned with different regularization strengths λ, for seed
regions PPA and FFA. An appropriate λ value can be chosen by maximizing the gen-
eralization performance of the learned maps, based on held-out testing runs (upper
plot). At these values of λ, PPA and FFA show connectivity biases toward peripheral
and central eccentricities, respectively (lower plot). Shaded regions indicate standard
error across subjects (controlling for performance in the fully-regularized condition
for the upper plot).



CHAPTER 4. VOXEL-LEVEL CONNECTIVITY 67

hV4 eccentricity biases for connectivity with PPA and FFA are computed in two

additional ways: voxel-wise correlation (C), in which the weight of each hV4 voxel is

set to the correlation between the timecourse of that voxel and PPA or FFA; and an

unregularized version of our method (U) in which λ = 0. There are only two cases in

which these methods give a significant result - the correlation method shows a foveal

bias for FFA when using all TRs (t(7) = −2.27, p < 0.05, one-tailed t-test after z-

transform) and the unregularized method shows a peripheral bias for PPA when using

the resting TRs (t(7) = 5.60, p < 0.01, one-tailed t-test after z-transform). For both

all TRs and the resting TRs, the difference between PPA and FFA eccentricity biases

is significantly greater using our method than using the correlation method (all TRs:

t(7) = 3.63, p < 0.01, resting TRs: t(7) = 3.90, p < 0.01, two-tailed paired t-test

after z-transform) or using the unregularized method (all TRs: t(7) = 4.20, p < 0.01,

resting TRs: t(7) = 4.86, p < 0.01, two-tailed paired t-test after z-transform). Our

approach is therefore significantly more sensitive than either performing independent

correlations between individual voxels and the seed region, or learning maps over all

voxels without using spatial regularization.

A potential concern regarding functional connectivity measures is that they may

be driven by local noise correlations, such that nearby voxels are good predictors of

each other even if the underlying neural signals are unrelated. To ensure that our

results are not being caused by relative positions of the ROIs, we ran a control analysis

in which each hV4 voxel’s connectivity weight was simply inversely proportional to

its distance from the seed region. For bilateral ROIs, we set the weight of voxel v =

1/(dist from v to left ROI)+1/(dist from v to right ROI). Since both PPA and FFA

are closest to the anterior (peripheral) side of hV4, this model erroneously predicts

that PPA and FFA should both show a peripheral eccentricity bias (PPA: t(7) =

5.59, p < 0.01; FFA: t(7) = 3.03, p < 0.05; two-tailed t-test after z-transform). Our

results therefore cannot be explained simply by the physical arrangement of the ROIs.
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Figure 4.6: hV4 eccentricity differences for optimal values of λ. After choosing
an optimal λ value for each subject based on generalization performance (see Fig. 5),
we compute the eccentricity of hV4 connectivity maps for seed regions PPA and FFA,
using our method (O), a voxel correlation method (C), and our method without reg-
ularization (U) (results averaged across four runs for each subject). Whether using
all timepoints from a run (306 TRs) or using only those timepoints during which no
stimulus was presented (approx. 148 TRs), our method finds that connectivity with
PPA increases with increasing eccentricity, while the opposite is true for FFA. The
correlation and unregularized controls are much less sensitive, showing significantly
smaller differences between PPA and FFA eccentricity biases. Additionally, our re-
sults cannot be explained simply by local noise correlations; since both PPA and FFA
are closer to the anterior (peripheral) side of hV4, such a model would predict simi-
lar peripheral eccentricity biases in PPA and FFA (D). Error bars indicate standard
error, ∗p < 0.05, ∗ ∗ p < 0.01.
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4.4 Discussion

We have shown that our method can successfully extract known functional connec-

tivity structures for two sets of regions. By adding spatial regularization to the

traditional functional connectivity measure, our estimate of the connectivity between

V1 and VP was made significantly more accurate, showing a clear retinotopic orga-

nization. We also demonstrated the expected eccentricity biases in the connectivity

between V4 and PPA/FFA; unlike past experiments showing this effect [103, 175],

this was accomplished without using a specialized experimental design, and could

even be estimated from only resting-state data. The success of our method on these

two different datasets demonstrates that this technique is likely to be applicable to

a wide range of datasets and scientific questions. Note that we are able to learn

these connectivity maps using only ∼200 timepoints, in constrast to the ∼2000 time-

points needed for complex models such as SVR [130]. Therefore, this method could

be highly useful for detecting subtle variations in connectivity using small datasets.

For example, it could plausibly be used to detect differences in connectivity across

stimulus conditions, since only a small amount of data is required for learning.

Although these two experiments examined relatively simple characteristics of the

learned weight maps (average retinotopic position or correlation with one of the spa-

tial axes), our method should be applicable to any type of connectivity pattern,

including multi-modal weight maps in which two separate sections of an ROI show

high connectivity. Since the smoothness of the learned maps is controlled by a con-

tinuous parameter λ, our method is highly flexible and can learn arbitarily complex

connectivity maps, given enough training data. For very large datasets, applying

regularization will be less important, and the optimal value of λ (giving the best gen-

eralization accuracy) will decrease towards zero. Our method is therefore adaptive

to the training set size, and will learn maps at finer and finer scales as the amount of

training data increases.

Now that this method has been validated with known connectivity results, there

are many opportunities to discover new connectivity patterns. One possible applica-

tion would be to learn connectivity maps in frontal regions, where functional ROIs
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are difficult to define. By locating the voxels in the frontal lobe that are connected

to known ROIs in sensory regions, we may be able to identify how low-level sensory

information converges in or is modulated by higher-level regions. Also, given any

ROI, we can describe its connectivity with the entire rest of the cortex, by iteratively

scanning a seed searchlight through all of cortex and learning a connectivity map

over the ROI for each seed position. This will allow us to determine whether cer-

tain regions of cortex are connected to specific voxels in our ROI, as in “functional

fingerprint” methods [157].

There are several ways that our method could be extended in future work. One

current limitation is that weights can only be learned over one region at a time; that

is, Eq. 4.3 is not symmetric with respect to A1 and A2. Simply replacing meanv(A
2)

with a weighted average a2
T · A2 will yield the degenerate solution a = a2 = 0,

so (non-convex) constraints must be added to produce reasonable results. Another

possible extension would be to learn weights simultaneously across multiple subjects.

After first obtaining a voxel correspondence between subjects using a functional align-

ment technique (such as [127]), we could learn a global set of weights that is shared by

all subjects. We could also allow the weights to vary between subjects, but introduce

a new regularization term that encourages subjects to have similar weight maps.

4.5 Learning Maps over Both Regions

We can extend this method to identify voxel-level functional connectivity maps be-

tween any two regions, as shown in Fig. 4.7. This method is the first to learn voxel-

level connectivity maps simultaneously in both regions, to automatically identify mul-

tiple functional correspondences between regions, and to utilize spatial regularization

to prevent overfitting on small fMRI datasets. Our formulation makes no assumptions

about the connectivity structure between regions, making it much more widely appli-

cable than previous methods. We first review some related approaches in section 4.6,

none of which can learn voxel-level maps over a pair of regions. We show in section

4.7 how rewriting the traditional correlational method as an optimization problem

leads naturally to our approach, and we discuss how our formulation can be solved
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Figure 4.7: Functional connectivity methods. The standard measurement of func-
tional connectivity between two regions averages together all voxels in each ROI,
ignoring voxel-level connectivity differences. Recent CCRF/FF work produces a sep-
arate map over one region for each voxel in a seed region. Our method can learn
connectivity structures over both ROIs simultaneously, and automatically identifies
multiple connectivities between different sets of voxels.

efficiently using a trust region optimization method. In section 4.8 we validate our

method on two pairs of ROIs, obtaining connectivity maps consistent with previous

studies using only a small amount of training data. Finally, we conclude in section

4.9.

4.6 Related Work

Most fMRI studies measure functional connectivity between regions by simply com-

puting the correlation between their mean timecourses [243], ignoring any connectiv-

ity differences at the subregion level. Methods that investigate subregion connectivity

typically formulate the problem as learning ‘cortico-cortical receptive fields” (CCRFs)

[120, 130] or “functional fingerprints” (FFs) [157]. First, one of the two regions is

chosen as a seed region. For each individual voxel (or cluster of voxels) in the seed

region, these methods identify voxels in the second region that are most strongly

functionally connected to the seed voxel. Seed voxels can then be grouped based

on their connectivity signatures, by visual inspection [187], by a clustering method

[157], or by an edge detection algorithm [66]. Such methods have discovered subre-

gion connectivity patterns in a number of ROIs, including the thalamus [323], medial

frontal cortex [157], and the precuneus [187]. The connectivity weights are generally

computed using linear regression [187, 323] or correlation [157], but have also been
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learned using support vector regression [130] and mutual information mapping [61].

All of these methods require treating the two regions asymmetrically, and cannot

produce continuous-valued maps over both input regions; as shown in section 4.8.3,

this reduces their sensitivity to fine-grained connectivity differences.

A small number of studies have computed connectivity maps by using timecourses

from multiple seed clusters as predictors in a voxelwise linear regression, rather than

learning maps independently for each seed cluster [186, 244]. However, these methods

require downsampling the seed region to a small number of clusters based on prior

anatomical knowledge (3 in [244], 16 in [186]) and manually comparing the connec-

tivity maps for each seed cluster, making them difficult to apply to general ROI pairs.

Canonical correlation analysis can be used to learn voxel-level maps over both regions

[76], but has a number of limitations. Multiple correspondences between subregions

can only be identified if their timecourses are not (positively) correlated (as shown in

section 4.8.3, this assumption is not typically valid) and the number of voxels in each

region must be smaller than the number of timepoints (limiting the datasets to which

this method can be applied). Our method can learn voxel-level maps for regions of

any size, and can identify distinct subregions even if their timecourses are correlated,

making it widely applicable for investigating connectivity between any arbitrary pair

of ROIs.

None of these previous functional connectivity methods apply any spatial regular-

ization to the learned maps. Generally the voxel weights are set independently, which

can require a large amount of training data to avoid overfitting. For example, in [130],

even after training a support vector regression model on 44 minutes of data collection,

a majority of the data points were still used as support vectors (indicating that the

model is not yet saturated with data). Other groups have avoided this problem by

constraining the learned maps to have a very simple shape, such as a Gaussian density

[120]. Our model uses a spatial regularization term to compromise between these two

extremes, allowing efficient estimation of smooth connectivity maps without making

strong prior assumptions about the subregion shape.
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4.7 Functional Connectivity as an Optimization

Problem

4.7.1 Traditional Method

Functional connectivity between two ROIs is often measured by computing the Pear-

son product-moment correlation coefficient (r value) between the mean timecourses

of the two ROIs [243]. Pairs of ROIs with a high r2 value are then said to be strongly

functionally connected. In order to generalize this method, we first recast it as an

equivalent linear regression problem, in which we measure the similarity of the two

mean timecourses, up to a scaling factor w:

minimize
w

||w ·meanv(A
1)−meanv(A

2)||22

where A1 and A2 are the (# voxels x # timepoints) data matrices from two ROIs,

and meanv(·) denotes an average across voxels. We assume that every voxel has been

individually scaled to have zero mean across timepoints (a common fMRI preprocess-

ing step) so the constant offset term in linear regression is not required. The r2 value

is then equivalent to the fraction of variance in meanv(A
2) explained by our predictor

w ·meanv(A
1) [272].

We can therefore rewrite the traditional correlation method as an optimization

problem in a more general form:

minimize
a1,a2,w

||a1TA1 − a2TA2||22 (4.6)

subject to a1 =
w

NA1

· 1, a2 =
1

NA2

· 1

where NAk is the number of voxels in ROI k, and a1 and a2 are vectors with lengths

equal to the number of voxels in ROIs 1 and 2, respectively. We refer to a1 and a2 as

connectivity maps over ROI 1 and ROI 2 (in this case, these maps take on a constant

value for all voxels within an ROI). This is a convex optimization problem, and can

be solved using a standard optimization package (all convex optimization problems in
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our paper are solved using CVX, a package for specifying and solving convex programs

[111]).

4.7.2 Voxel-Level Method

Although the traditional problem (4.6) can describe functional connectivity at the

coarse scale of ROIs, it makes the simplistic assumption that all voxels within each

region have the same functional connectivity properties. This prevents us from using

the traditional method to explore connectivity differences at the voxel level, which

are often of scientific interest [130, 157, 186, 187, 244, 323]. To learn voxel-level

connectivity weights, we would like to relax the constraints on both a1 and a2 and

allow the connectivity maps to be nonconstant. Note that a CCRF/FF method would

relax only one of these constraints, learning a connectivity map over only one of the

regions.

As will be shown in section 4.8, simply allowing each voxel to be chosen indepen-

dently can lead to severe overfitting on the small datasets typical of fMRI experiments.

It is possible to avoid overfitting by imposing a spatial regularization term that pe-

nalizes the average squared difference between every voxel i and its neighbors n(i).

This type of regularization encourages the maps to be spatially smooth, reflecting

a common view of cortical organization, and has been applied in a variety of MRI

and fMRI experiments [67, 73, 119, 212]. The neighborhoods n(i) can be defined in

a number of ways, with neighbors chosen based on physical distance between voxels

or distance along the cortical surface. For the experiments in this paper, we choose

the 10 voxels that are closest to i along the cortical surface (varying the number of

neighbors from 5 to 15 has little effect). Adding these regularization terms to our

objective function, we obtain:

1

T
||a1TA1 − a2TA2||22 + λ

∑
i∈v1

∑
j∈n(i)

1

|n(i)|
(a1
i − a

1
j )

2 +
∑
i∈v2

∑
j∈n(i)

1

|n(i)|
(a2
i − a

2
j )

2


where T is the number of timepoints in our dataset, vk is the set of all voxels in ROI

k, and λ is a hyperparameter that controls the regularization strength. We can write
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this objective compactly as∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


1√
T
A1T − 1√

T
A2T

√
λD1 0

0
√
λD2


[
a1

a2

]∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

2

where Dk is a sparse connectivity matrix; each row represents an edge from a voxel i

to a voxel j, with nonzero entries in column i (1/
√
|n(i)|) and column j (−1/

√
|n(i)|).

Our objective therefore has the form ||Xλ · β||22, where β = [a1 a2]T is the concate-

nation of the connectivity maps in both regions.

Since this is a homogeneous least-squares problem, it is clear that we must impose

some constraint on the voxel weights β to avoid the degenerate solution β = 0

(intuitively, the best timecourse prediction will always occur when the weight maps on

both ROIs are identically zero, since this allows for perfect matching between the two

regions). A standard method for choosing nonzero-weight solutions to homogeneous

least-squares problems is to constrain the norm of β to be a constant. In addition,

we impose the elementwise constraint β � 0; allowing negative connectivity weights

makes the maps hard to interpret, since multiple solutions can be superimposed (with

different signs) and inter-region connectivity can be confounded with intra-region

connectivity (since weights in the same region can have opposite signs).

Our final optimization problem is therefore a constrained least-squares minimiza-

tion:

minimize
β

||Xλ · β||22 (4.7)

subject to ||β||2 = 1, β � 0

4.7.3 Solving the Voxel-Level Optimization Problem

Due to the constraint ||β||2 = 1, optimization problem (4.7) is not convex and may

have multiple local minima. Although this makes the problem more complicated

to analyze, the existence of multiple optima actually matches our intuition about

functional connectivity structure; we know that for some pairs of regions (such as
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in early visual cortex) there are multiple distinct connectivities between different

subregions.

To find a locally optimal β, we use a trust region approach [43, 60, 227]. This

optimization method searches for local extrema by iteratively taking small steps in

the parameter space. On each iteration, we create a convex approximation to the

optimization problem by linearizing the norm constraint around the current set of

parameters, and then find the optimal solution within a local trust region (see Algo-

rithm 1). In our experiments, we use θ = 0.05, ∆ =
√
θ, and ε = ∆/100, but our

results are not sensitive to this choice. We obtain multiple solutions by trying 20

initializations of β0 (below), each of which assigns all the connectivity weight to a

single random voxel (in either region).

Algorithm 1: Iterative Trust Region Optimization

input : Initial β0, Trust region size ∆, Constraint tolerance θ, Convergence
threshold ε

output: Locally optimal solution β

while ||s||2 > ε do

minimize
s

||Xλ · (βi + s)||22
subject to |(||βi||22 − 1) + 2βi

Ts| ≤ θ

||s||2 ≤ ∆, βi + s � 0

βi+1 ⇐ βi + s

4.7.4 Summary of Our Method

We have shown that the traditional correlational approach to functional connectivity

can be rewritten as an equivalent optimization problem, in which all voxels in each

region are constrained to take on a single fixed weight. Replacing this constraint

with a spatial regularization term, we can learn connectivity weight maps by solving

a constrained least-squares problem. A robust solution method for this problem is a

trust region approach, which iteratively adjusts the connectivity maps in both regions
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to find locally optimal solutions. In contrast to CCRF/FF methods, we learn maps in

both regions simultaneously, and can automatically discover connectivities between

different subregions.

4.8 Results

To demonstrate the versatility of our method, we show results for two separate ex-

periments, each of which is performed on a separate dataset. As described in section

4.8.1, the first dataset consists of responses to moving checkerboard patterns, and the

second dataset consists of responses to objects and scenes, with both datasets hav-

ing a relatively small number of timepoints. In the first experiment (section 4.8.2),

we apply our method to V1 and ventral V3 (VP), a pair of ROIs for which the

ground-truth connectivity is known to be retinotopically organized. This allows us

to quantitatively evaluate the quality of our learned maps. In the second experiment

(section 4.8.3), we learn the connectivity pattern between the left and right halves of

the lateral occipital complex (LOC), a region which is known to contain functional

subdivisions along the anterior-posterior axis [118]. In both cases we demonstrate

the importance of the spatial regularization term in our objective, by comparing the

performance of our method without regularization (λ = 0) and with regularization.

(When using regularization, we set λ = 102, but we obtain similar results for any

λ within two orders of magnitude of this value.) In the second experiment, we also

compare our results to those of the CCRF/FF method described in [157].

4.8.1 Experimental Design

For the V1-VP experiment, we use a retinotopic mapping dataset, illustrated in

Fig. 4.8a. We collected early visual cortex responses from 13 subjects while a checker-

board pattern undergoing contrast reversals at 5Hz was moved through the visual field

in discrete increments [257]. A wedge subtending an angle of 45 degrees from fixa-

tion was presented at 16 different polar angles for 2.4 seconds each, and an annulus
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(a) (b)

Figure 4.8: Stimuli used in our two datasets. (a) In the first dataset, a flashing wedge
pattern was presented at 16 different angles from fixation for two runs, and a flashing
annulus was presented at 15 different eccentricities for two runs. (b) In the second
dataset, images of boats and cars were presented both in isolation and in a scene
context.

subtending 3 degrees of visual angle was presented at 15 different radii for 2.4 sec-

onds each. Each subject passively observed two runs of 6 cycles in each condition,

yielding 512 timepoints per subject. The first run of each condition is used to learn

the preferred angle and eccentricity of each voxel: for each voxel, we perform a stan-

dard deconvolution to obtain a t-statistic for each of the 16 angle stimuli and each

of the 15 eccentricity stimuli, and calculate a single preferred angle and eccentricity

by separately averaging the directions and eccentricities weighted by their t-statistic.

The borders of early visual regions were defined based on the horizontal and vertical

meridian reversals. We then use the second run of each condition to train our model

(256 timepoints total). Note that this is a very small number of timepoints compared

to the number required by other approaches for learning connectivity maps (e.g. 1,760

timepoints are used in [130]).

For the LOC experiment, we use an objects-in-context dataset. We presented 10

subjects with two types of stimuli, as shown in Fig. 4.8b: (1) boats and cars on a

blank white background (isolated objects); and (2) boats and cars with a street or

water scene background (objects in context). Subjects performed 4 runs, viewing a

total of 288 images of each type. We train our model on only a single run, consisting

of 306 timepoints. In each subject, LOC was defined in an independent set of localizer

scans as the top 500 voxels responding more to objects than scrambled images.

Imaging data were acquired with a 3 Tesla G.E. Healthcare scanner. A gra-

dient echo, echo-planar sequence was used to obtain functional images (TR=2s,
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1.56x1.56x4 mm3). The functional data were motion-corrected and each voxel’s

timecourse was z-scored to have zero mean and unit variance. We collected a high-

resolution (1x1x1mm3) SPGR structural scan in each scanning session. Stimuli were

presented using a back-projection system (Optoma Corporation).

4.8.2 V1-VP Connectivity

We first apply our approach to the ROIs V1 and ventral V3 (VP), using the retinotopic

mapping dataset. It is known that the functional connectivity between these regions

is retinotopically organized [130], allowing us to objectively measure the quality of

our learned maps. Since VP has receptive fields in the upper visual field, we expect

that (at the coarsest level) VP should be functionally connected to the upper-visual-

field portion of V1. Given a connectivity map over V1 and VP, we can compute the

weighted average receptive field position in each area using the connectivity weights;

if our maps preserve retinotopic correspondence, we should see a close match between

the average receptive field positions in V1 and VP.

The results for a representative subject are shown in Fig. 4.9a. We obtain two

locally optimal solutions to our optimization problem (4.7) in this subject, shown

overlaid in two different colors. The resulting maps correctly identify that left and

right VP are most strongly connected to left and right upper-field V1, respectively;

this within-hemisphere connectivity was not included as a prior assumption, but was

learned by our connectivity method. All subjects had between 2 and 4 solutions, with

the left and right hemisphere correspondences appearing in every subject, and several

subjects showing additional partitions based on eccentricity. Fig. 4.9b compares the

average receptive fields in V1 and VP, for each of the two solutions in this subject.

We find that the highly connected voxels correspond to similar positions in the visual

field, confirming that we have identified a retinotopic correspondence between V1 and

VP.

We then measure this match between the V1 and VP receptive field positions for

all subjects. As a baseline, we measure the difference between the unweighted average

receptive field positions in V1 versus VP; this corresponds to having constant weight
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(a) (b) (c)

Figure 4.9: V1-VP connectivity results, for a representative subject (a-b) and all
subjects (c). (a) We identify correspondences between voxels in V1 and VP, shown
on a cortical flatmap (F: foveal region, P: peripheral regions, top 50 voxels from each
solution shown in distinct colors). The two solutions in this subject identify the
correspondence between subregions of VP and subregions of upper-visual-field V1 in
the same hemisphere. (b) The average receptive field positions of the V1 and VP
connectivity maps are very similar for each solution, indicating that these maps are
consistent with retinotopic organization. (c) Learning maps without regularization
(NR) yields only a small improvement over the baseline (lower is better), but our
method significantly improves the match between average V1 and VP receptive fields
when the spatial regularization term is included (R). * p < 0.05, ** p < 0.01, one-
tailed paired t-test (n=13). (Best viewed in color)

maps in both regions. We compare this baseline to our method, without regularization

(NR) and with spatial regularization (R). Fig. 4.9c shows that we obtain a significant

reduction in error compared to our baseline (t12 = 4.19, p < 0.01, one-tailed paired

t-test), but only when our spatial regularization term is included in the objective

(t12 = 1.88, p < 0.05, one-tailed paired t-test). Without regularization, the maps

severly overfit to our small dataset and give little improvement over the baseline

measurement. Note that we have learned these maps using a very small number of

timepoints, as described in section 4.8.1.
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4.8.3 lLOC - rLOC Connectivity

We then learn the connectivity between left LOC (lLOC) and right LOC (rLOC),

using the objects-in-context dataset. It has been previously shown that LOC consists

of two functionally distinct subregions: a posterior-dorsal subdivision (LO), and an

anterior-ventral subdivision (pFs) [118]. Since these two subregions have different

functional response patterns, we expect distinct functional connections between the

anterior side of lLOC and rLOC and/or between the posterior side of lLOC and rLOC.

For comparison purposes, we also apply a CCRF/FF correlation clustering method,

which can only learn maps over one region at a time, from [157]. For each voxel in

left LOC, the correlation of this voxel with all voxels in right LOC is computed.

This method then applies k-means clustering (with a correlation distance measure)

to partition the voxels in left LOC into two groups, based on the similarity of their

right-LOC correlation maps. Finally, the process is repeated, using right LOC as the

seed region and computing correlation maps over left LOC.

Fig. 4.10a shows the solutions for a representative subject. The top image shows

the result of the CCRF/FF correlation clustering method, when using left LOC as

the seed region. The two colors in left LOC denote the cluster to which each left LOC

voxel was assigned, and the colors in right LOC show the top 40 voxels in the average

correlation map for each cluster. We can see that there is no anterior-posterior spatial

arrangement in either the cluster labels or the correlation maps (a similar result is

obtained when using right LOC as the seed region). Applying our method without

regularization (NR, middle image) also yields connectivity maps that highly overfit

and have no consistent spatial structure. However, after adding the regularization

term (R, bottom image), we obtain a clear posterior-anterior segregation of the two

solutions in this subject. These two clusters partition left and right LOC into two

functional units, corresponding to LO and pFs [118]. Note that our algorithm did not

use any prior knowledge about the number of subregions or their spatial configuration.

Across subjects, the number of solutions in the regularized case ranged from one to

three.

To quantify the correspondence between the left and right connectivity maps, we
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first separate all learned weights into five equally-spaced bins along the posterior-

anterior axis. We then measure the correlation between these posterior-anterior con-

nectivity profiles for the left and right hemisphere, resulting in Fig. 4.10b. Using cor-

relation clustering, we obtain only a slight correlation between the posterior-anterior

profiles (results averaged for the choice lLOC or rLOC as the seed region). This

method is most likely failing for this connectivity task due to the small number of

training timepoints, and the fine spatial scale at which we are attempting to discover

these subregions (past applications of this method have been performed on data that

is spatially downsampled to 5x5x5 mm3 [157]). Note also that this clustering method

cannot learn continuous-valued maps in both regions (since voxels in one of the regions

are clustered into two discrete groups), seriously restricting its ability to represent fine-

grained gradients of connectivity. Without regularization (NR), our method also fails

to learn maps that have consistent anterior-posterior gradients in both hemispheres,

again likely due to overfitting on the small input dataset. When adding regulariza-

tion (R), however, our method produces maps which are highly correlated between

hemispheres (t9 = 3.95, p < 0.01, two-tailed t-test), giving a significant improvement

over both the CCRF/FF method (t9 = 3.98, p < 0.01, two-tailed paired t-test) and

the unregularized method (t9 = 3.82, p < 0.01, two-tailed paired t-test). Note that

the representative timecourses for the anterior and posterior clusters are strongly pos-

itively correlated (r = 0.83 left, 0.81 right, averaged among subjects with exactly two

clusters); the subtle distinction between these clusters therefore could not be identi-

fied by a CCA method [76]. Unlike [118], which used a specialized adaptation design,

we are able to identify this anterior-posterior difference using only a single run from

a dataset that was not tailored for this purpose.

4.8.4 Summary of Results

Using a single method (with a single setting of our hyperparameter λ), we are able

to identify the true functional correspondences between two different pairs of ROIs.

We have shown that we can successfully answer our original question, “which spe-

cific voxels in each of these two regions are most strongly connected?”, without using
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specialized datasets or a large number of training timepoints. By simultaneously

learning weight maps over both regions and by including a spatial smoothness term,

our method is much more sensitive to fine-grained connectivity differences than pre-

vious CCRF/FF methods.

4.9 Conclusions

We have presented two new methods for discovering functional connectivity patterns

between and within ROIs in the human brain. These methods are specifically tailored

to the very small-size datasets typical of fMRI (addressing the known issue of data

scarcity in this setting), and are capable of detecting subtle patterns at the voxel

level. Our approach is fast, can operate efficiently with little input data, gives results

consistent with prior work, and has proven to be a good candidate for investigating

the structure of functional connectivity in the human brain.
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CCRF/FF Correlation Clustering

No Regularization (NR)

Regularized (R)

(a) (b)

Figure 4.10: lLOC-rLOC results. (a) In this representative subject (top 40 voxels
in each area shown in distinct colors), a CCRF/FF correlation clustering approach
(top) fails to find anterior-posterior connectivity maps in left and right LOC, as does
our method without the spatial regularization term (middle). Adding regularization
(bottom) produces a separate posterior and anterior correspondence between hemi-
spheres. (b) For each subject, we measure the correlation between the left and right
hemisphere maps along the posterior-anterior dimension (larger is better). We see
a strong correspondence between the left and right maps when using our proposed
method with the spatial regularization term included (R), but not when the regu-
larization term is removed (NR) or when we use the correlation clustering method.
** p < 0.01, two-tailed paired t-test (n=10). (Best viewed in color)



Chapter 5

Differential Connectivity Within

the Parahippocampal Place Area

The Parahippocampal Place Area (PPA) has traditionally been considered a homo-

geneous region of interest, but recent evidence from both human studies and animal

models has suggested that PPA may be composed of functionally distinct subunits.

To investigate this hypothesis, we utilize a functional connectivity measure for fMRI

that can estimate connectivity differences at the voxel level. Applying this method

to whole-brain data from two experiments, we provide the first direct evidence that

anterior and posterior PPA exhibit distinct connectivity patterns, with anterior PPA

more strongly connected to regions in the default mode network (including the parieto-

medial temporal pathway) and posterior PPA more strongly connected to occipital

visual regions. We show that object sensitivity in PPA also has an anterior-posterior

gradient, with stronger responses to abstract objects in posterior PPA. These findings

cast doubt on the traditional view of PPA as a single coherent region, and suggest

that PPA is composed of one subregion specialized for the processing of low-level

visual features and object shape, and a separate subregion more involved in memory

and scene context. This chapter is joint work with Diane M. Beck and Fei-Fei Li, and

appeared previously in NeuroImage [15].

85
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5.1 Introduction

Over the past two decades, functional magnetic resonance imaging (fMRI) has iden-

tified a number of category-selective regions involved in visual processing. Most of

these regions have been defined based on differential activation to one category of

stimuli over another, but this hypothesis-driven approach to mapping brain regions

has significant drawbacks. Adjacent areas that have similar response profiles to the

presented stimuli, but different functions, may be mistakenly conflated; for example,

functionally distinct subregions have been identified in both object-sensitive lateral

occipital complex (LOC) [118] and the extrastriate body area [308].

Another visual region that has been proposed as a candidate for subdivision is the

Parahippocampal Place Area (PPA) [92]. This scene-sensitive area has been heavily

implicated in visual scene perception, though the precise nature of the representation

in this area has been controversial. Leading models have argued that PPA represents

local scene geometry [93], spatial expanse [166, 218], space-defining objects [204], or

contextual relationships [19]. All of these models have implicitly assumed that PPA

is a homogeneous unit performing a single functional role, but this view has recently

been called into question. In the last several years, a number of researchers have

suggested that PPA could have multiple functional components. Differences in spa-

tial frequency response [230], varying deficits resulting from PPA lesions [91], PPA’s

overlap with multiple visual field maps [9], and a clustering meta-analysis [261] all

hint at the possibility that PPA may be comprised of at least two functionally dis-

tinct subunits along its posterior-anterior axis. However, studies explicitly searching

for a distinction between posterior and anterior PPA have failed to identify major

differences [51, 90].

Anatomical data from a proposed macaque homologue of PPA presents an inter-

esting possibility for identifying subregions of human PPA. Although the definition of

macque PPA is still a matter of ongoing research [209, 230, 261], a possible candidate

spans cytoarchitectonically defined parahippocampal areas TH, TF, and TFO [167].

The most anterior area, TH, is primarily connected to retrosplenial cortex (RSC)

[167, 274] and is also connected to the caudal inferior parietal lobule (cIPL) through



CHAPTER 5. PARAHIPPOCAMPAL PLACE AREA 87

a parieto-medial temporal pathway [59, 167]. The more posterior TF is connected to

a similar set of regions, but receives stronger input from ventral visual areas V4 and

TEO [274]. The specific connectivity properties of the most posterior area (TFO) are

not yet known, but it has been shown that TFO has a neuronal architecture highly

similar to that of ventral visual regions [251]. In short, these macaque parahippocam-

pal regions exhibit an anterior-posterior gradient, with the anterior side most related

to RSC and cIPL and the posterior side most related to ventral visual areas.

Connectivity results in humans, using both diffusion tensor imaging (DTI) and

fMRI, have shown that the parahippocampal region is connected to occipital visual

cortex [154, 176, 246] as well as RSC and posterior parietal cortex [53, 149, 176,

246, 288], and PPA is known to combine both spatial and object identity information

[121]. However, it is not known whether the posterior and anterior parts of the

PPA connect differentially to these two networks. If human PPA corresponds to

some or all of the macaque areas TH/TF/TFO, it should be possible to identify an

anterior-posterior gradient in the functional connectivity properties of PPA. Such a

finding would not only reinforce the proposed link between PPA and these macaque

parahippocampal regions, but also demonstrate that PPA is actually composed of

at least two regions operating on different types of visual information, shedding new

light on the controversy over its functional properties.

To test whether voxels within PPA have differing connectivity properties, we apply

our recent method for learning voxel-level connectivity maps [18]. Unlike standard

functional connectivity measures that examine each voxel independently, our method

considers all PPA voxels simultaneously to identify subtle differences in connectivity

between voxels. After examining how several predefined ROIs connect to PPA, we

perform a whole-brain searchlight analysis to identify the distinct cortical networks

that connect preferentially to anterior or posterior PPA. We then demonstrate that

these connectivity gradients are paired with gradients in functional selectivity, by

evaluating the response to scenes and objects across PPA. Finally, we show that the

connectivity gradients within PPA extend beyond PPA’s borders, placing PPA in the

context of ventral occipital and parahippocampal regions.
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5.2 Materials and Methods

5.2.1 Regularized Connectivity Method

Investigating our hypothesis requires a method that characterizes functional con-

nectivity patterns within a region of interest (ROI), at the voxel level. A number

of studies have used fMRI functional connectivity measures to investigate structure

within ROIs [61, 66, 157, 186, 187, 244, 323], but most previous approaches either

do not measure connectivity at the voxel level (requiring spatial downsampling to a

small number of subregions) and/or learn connectivity weights separately for each

voxel (decreasing sensitivity and making comparisons between voxels more difficult).

In our datasets, the PPA connectivity effects are too subtle to be detected by learning

weights separately for each voxel (see Supplementary Fig. D1), and require the use

of a method which can learn voxel-level connectivity maps that consider all voxels

simultaneously. Support vector regression can learn these type of voxel-level connec-

tivity maps [130], but does not utilize information about the spatial arrangement of

the voxels and therefore requires a relatively large amount of data. To address this

issue, we developed a method for examining connectivity differences within ROIs that

is specifically tailored to small training sets typical in the fMRI setting. This method

has been shown to recover voxel-level connectivity properties more accurately and

efficiently than previous approaches [18].

The most common type of analysis for computing functional connectivity between

two regions A1 and A2 measures how well the mean of all voxel timecourses in A1

predicts the mean timecourse in A2. We generalize this approach to identify voxel-

level connectivity differences, by learning a weighted mean over the voxel timecourses

in A1 that best predicts the mean timecourse in A2. The learned weights of the voxels

in A1 will then indicate the strength of the functional connection between each voxel

and region A2. Simply allowing each voxel weight to be learned independently leads

to severe overfitting on typical fMRI datasets, but fMRI data naturally satisfies some

regularity assumptions that can constrain our model. In particular, voxel connectivity

properties are likely to be spatially correlated, with nearby voxels typically having

more similar connectivity properties than spatially distant voxels. This reflects a
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common view of cortical organization, and is especially applicable to blood-oxygen-

level dependent (BOLD) signals such as fMRI, since the hemodynamic response is

spatially smooth. To incorporate this assumption, we add a spatial regularization

term to our model, which encourages each voxel in A1 to have a connectivity weight

similar to its spatially adjacent neighbors.

The learned connectivity maps are therefore a compromise between two objectives.

Our first goal is to match the weighted average of the A1 timecourses to the mean A2

timecourse, by adjusting the weights. Our second goal is to make the weights spatially

smooth, to prevent overfitting and allow our weights to generalize to independent data

runs. The relative importance of this second goal is controlled by a hyperparameter λ,

allowing us to trade off between having all weights be learned independently (λ = 0)

and having all weights be identical (λ =∞).

Mathematically, the connectivity weights are learned by minimizing the convex

optimization objective

minimize
a,b

||(aT ·A1 + b)−meanv(A
2)||22 + λ||D · a||22

where a is the connectivity weight map, b is a constant offset, A1 and A2 are the (#

voxels x # timepoints) data matrices from two ROIs, and meanv denotes an average

across voxels. D is the voxel connectivity matrix, which we design to penalize the

mean squared difference between the weight ai of voxel i, and the weights of voxel

i’s neighbors: ||D · a||22 =
∑N

i=1
1
|ni|
∑

j∈ni
(ai − aj)2 where N is the number of voxels

in A1 and ni is the set of i’s neighbors. The optimal a (for a given choice of λ) can

be found efficiently by using a convex optimization package such as CVX [111]. For

further details and validation experiments, see Baldassano et al. [18].

The following sections describe the collection of the datasets used to learn the

connectivity weights a. As will be shown in the Results, PPA’s functional connectivity

properties are not sensitive to the choice of experimental dataset; the specific details

of the stimuli and tasks in these experiments are provided only for reference purposes.
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5.2.2 Localizer and Object-in-Scene Experiments

5.2.2.1 Participants

10 subjects (3 female) with normal or corrected-to-normal vision participated in the

object-in-scene and localizer fMRI experiment. The study protocol was approved

by the Stanford University Institutional Review Board, and all subjects gave their

written informed consent.

5.2.2.2 Scanning Parameters

Imaging data were acquired with a 3 Tesla G.E. Healthcare scanner. A gradient echo,

echo-planar sequence was used to obtain functional images [volume repetition time

(TR), 2 s; echo time (TE), 30 ms; flip angle, 80◦; matrix, 128x128 voxels; FOV, 20

cm; 29 oblique 3 mm slices with 1 mm gap; in-plane resolution, 1.56x1.56mm]. The

functional data was motion-corrected and each voxel’s mean value was scaled to equal

100 (no spatial smoothing was applied). We collected a high-resolution (1x1x1mm

voxels) structural scan (SPGR; TR, 5.9 ms; TE, 2.0 ms, flip angle, 11◦) in each

scanning session. The structural scan was used to calculate a transformation between

each subject’s brain and the Talairach atlas.

5.2.2.3 Localizer Stimuli and Procedure

For the localizer experiment, subjects performed 2 runs, each with 12 blocks drawn

equally from six categories: child faces, adult faces, indoor scenes, outdoor scenes,

objects (abstract sculptures with no semantic meaning), and scrambled objects (these

stimuli have been used in previous studies such as [104]). Images (240 x 240 pixels;

subtending 12.8 x 12.8 degrees of visual angle) were presented at fixation. Examples of

scene and object stimuli are shown in Fig. 5.1a. Blocks were separated by 12s fixation

cross periods, and consisted of 12 image presentations, each of which consisted of a

900 ms image followed by a 100 ms fixation cross. Each image was presented exactly

once, with the exception of two images during each block that were repeated twice

in a row. Subjects were asked to maintain fixation at the center of the screen, and
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respond via button-press whenever an image was repeated. The total number of

timepoints was 300 (150 per run).

5.2.2.4 Object-in-Scene Stimuli and Procedure

For the object-in-scene experiment, we presented two types of stimuli, as shown in

Fig. 5.1b: (1) boats and cars on a blank white background (isolated objects); and (2)

boats and cars with a street or water scene background (objects in context). Images

(450 x 450 pixels; subtending 24 x 24 degrees of visual angle) were presented 100

pixels (5 degrees) away from fixation in randomly determined directions. Subjects

were informed that each image contained either a boat or a car, and were asked to

indicate as quickly as possible whether the object was on the left half of the image

or the right half of the image (using a button box). Subjects performed 4 runs, with

16 blocks per run (with a 14 s gap between blocks) and 9 images per block. The first

8 blocks of each run showed a boat or car placed in a photographic scene; for each

block, the object could violate a semantic relationship (appearing in the wrong type

of scene, e.g. a boat on a city street) and/or a geometric relationship (appearing in

the wrong position in the scene, e.g. a car above a tree rather than on the street).

Each presentation consisted of a 500 ms fixation cross, an image flashed for 100 ms,

a 300 ms mask, and then a 1300 ms response period (blank gray screen). The last 8

blocks of each run showed a boat or car on a white background; these images were

identical to those presented in the first eight blocks, with the backgrounds removed

(and presented in a different random order). Each presentation consisted of a 500 ms

fixation cross, an image flashed for 350 ms, and then a 1300 ms response period (blank

gray screen). The total number of timepoints was 1,224 (306 per run). Timepoints

were classified as “resting” if they occured more than 4 seconds after the end of one

stimulus block and less than 4 seconds after the start of the next stimulus block.

5.2.2.5 Functional Region of Interest Definition

Regressors for faces, scenes, objects, and scrambled objects in the localizer experi-

ment were constructed by using the standard block hemodynamic model in AFNI [69].
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LOC, PPA, RSC, and TOS were defined using the following contrasts: LOC, top 500

voxels for Objects > Scrambled near lateral occipital surface; PPA, top 300 voxels

for Scenes > Objects near parahippocampal gyrus; RSC, top 200 voxels for Scenes

> Objects near retrosplenial cortex; TOS, top 200 voxels for Scenes > Objects near

the transverse occipital sulcus. The volume of each ROI in mm3 was chosen conser-

vatively, based on previous results [104]. Consistent with the meta-analysis by Nasr

et al. [209], PPA in our subjects was found to be centered on the collateral sulcus

adjacent to the parahippocampal gyrus.

5.2.3 Scene Category Experiment

5.2.3.1 Participants

8 subjects (4 female) with normal or corrected-to-normal vision participated in the

scene category fMRI experiment (these subjects did not overlap with those in the

object-in-scene experiment). The study protocol was approved by the University

of Illinois Institutional Review Board, and all subjects gave their written informed

consent.

5.2.3.2 Scanning Parameters

Functional imaging data were acquired with a 3 Tesla Siemens Trio scanner. A gra-

dient echo, echo-planar sequence was used to obtain functional images [volume repe-

tition time (TR), 1.75 s; echo time (TE), 30 ms; flip angle, 90◦; matrix, 64x64 voxels;

FOV, 19 cm; 29 oblique 3 mm slices with 0 mm gap; in-plane resolution, 3.0x3.0mm].

The functional data was motion-corrected and each voxel’s mean value was scaled

to equal 100 (no spatial smoothing was applied). We collected a high-resolution

structural scan for each subject; 4 subjects were scanned in a 3 Tesla Siemens Trio

scanner (MPRAGE; 1x1x1.2mm, TR, 1900 ms; TE, 2.25 ms, flip angle, 9◦) and 4

subjects were scanned in a 3 Tesla Siemens Allegra (MPRAGE; 1.25x1.25x1.25mm,

TR, 2000 ms; TE, 2.22 ms, flip angle, 8◦). The structural scan was used to calculate

a transformation between each subject’s brain and the Talairach atlas.
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5.2.3.3 Stimuli and Procedure

Images (800 x 600 pixels; subtending 24 x 18 degrees of visual angle) were presented

in the center of the display using a back-projection system (Resonance Technologies)

operating at a resolution of 800 x 600 pixels at 60 Hz. For each run, subjects were

instructed to count the number of images belonging to a target category (beaches,

cities, highways or mountains; see example stimuli in Fig. 5.1c). On average, there

were 16 target images per run, ranging from 15-17 targets. Stimuli were presented in

blocks of 8 images with a display time of 1.75 s for each image. Images within a block

were primarily from the same natural scene category; however, in order to increase

the difficulty of the counting task, one or two outgroup images from different scene

categories (intrusions) occasionally appeared within a block. A fixation cross was

presented throughout each block, and subjects were instructed to maintain fixation.

There were 8 blocks in each run (2 blocks for each natural scene category), interleaved

with 12 s fixation periods to allow for the hemodynamic response to return to baseline

levels. A session contained 16 such runs, and the order of categories and intrusion

images were counterbalanced and randomized across blocks. The total number of

timepoints was 2,064 (129 per run). Timepoints were classified as “resting” if they

occured more than 4 seconds after the end of one stimulus block and less than 4

seconds after the start of the next stimulus block.

5.2.3.4 Functional Region of Interest Definition

ROIs were defined using an independent localizer scan, consisting of blocks of face,

object, scrambled object, landscape, and cityscape images. Each block consisted of 20

images presented for 450 ms each with a 330 ms interstimulus interval. Each of the five

types of stimuli was presented four times during a run, with 12 s fixation periods after

two or three blocks. Subjects completed two runs, performing a one-back task during

the localizer by pressing a button every time an image was repeated. Regressors for

faces, scenes, objects, and scrambled objects were constructed by using the standard

block hemodynamic model in AFNI [69], and the following contrasts were used to

define ROIs: LOC, Objects > Scrambled near lateral occipital surface; PPA, Scenes
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a b c

Figure 5.1: Sample stimuli used in our experiments. (a) Scene and object stim-
uli from the localizer experiment, which also included faces and scrambled objects. (b)
Isolated object and object-in-scene stimuli from the object-in-scene experiment. (c)
Beach and mountain stimuli from the scene category experiment, which also included
cities and highways.

> Objects near parahippocampal gyrus; RSC, Scenes > Objects near retrosplenial

cortex; TOS, Scenes > Objects near the transverse occipital sulcus. A threshold

of p < 2 · 10−3 (uncorrected) was applied, and was tightened to break clusters if

necessary.

5.2.4 Caudal IPL Definition

Caudal IPL is a region strongly connected to macaque parahippocampal cortex [167]

for which we do not have a functional localizer. In order to evaluate the match between

the macaque and human connectivity patterns, we sought to anatomically define a

human region equivalent to cIPL. The two caudal-most areas of human IPL (defined

using probabilistic cytoarchitectonic maps) are PGa and PGp, which are thought to

correspond to the caudal-most sections of macaque IPL, PG and Opt [53]. Of these,

PGp exhibits significantly stronger functional and structural connectivity with the

parahippocampal gyrus [288], giving the best match with the proposed parieto-medial

temporal pathway targeting parahippocampal areas from cIPL. We therefore define
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cIPL in all subjects using the Eickhoff-Zilles PGp probabalistic cytoarchitectonic map

[87] (based on [52, 54]). We thresholded the map at p > 0.5, and transformed the

map into each subject’s native space. Since cIPL slightly overlapped TOS in some

subjects, any voxels shared between cIPL and TOS were excluded from both regions

(no other ROIs included overlapping voxels).

5.2.5 PPA Connectivity Analysis: ROIs

We first learned PPA connectivity maps for four pre-defined seed regions: lateral

occipital complex (LOC), transverse occipital sulcus (TOS, also referred to as the

“occipital place area” in [79]), retrosplenial cortex (RSC), and caudal inferior parietal

lobule (cIPL) by setting A1 to be PPA and A2 to be one of the four seed regions. To

avoid functional connectivity idiosyncratic to a specific experiment or task, we used

data from both the object-in-scene experiment and the scene category experiment

(see above).

We first validated that our method could learn meaningful voxel-level connectivity

maps which provide better generalization performance, compared to a connectivity

map which is constant over left PPA and constant over right PPA. For each seed

region and subject, we learned a connectivity map using one training run, and tuned

the smoothness parameter λ to maximize the fraction of variance explained on a

validation set consisting of all but one of the remaining runs. The classifier was then

retrained on both the training run and validation set (using the selected λ value) and

tested on the final held-out testing run. Results were averaged across all choices of

training run, with a random testing run being chosen for each training run. These

results were compared to those from ROI-level connectivity maps, in which all PPA

voxels in each hemisphere were constrained to take on the same value (equivalent to

λ→∞).

We then learned a weightmap over PPA for each subject and for each seed re-

gion using all experimental runs, with λ chosen such that the average fraction of

variance explained, when training on one run and testing on the other runs, was

maximized. We measured the correlation between the connectivity weights and the
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anterior-posterior voxel coordinates, to obtain a simple measure of how the learned

weights in PPA varied along the anterior-posterior axis. The correlation was com-

puted separately for left and right PPA (except where specified, results below are

collapsed across left and right PPA).

5.2.6 PPA Connectivity Analysis: Whole-Brain

To explore the connectivity patterns between PPA and the rest of the brain, we

performed a whole-brain searchlight connectivity analysis in which our seed region

was densely sampled throughout the entire cortex. We fixed A1 to be PPA, and then

placed a 3x3x3 voxel searchlight A2 at each point on a lattice with 2 voxel spacing.

For each searchlight, we used all experimental runs to learn a map of connectivity

weights in PPA, and then measured the correlation between the learned weights

and the anterior-posterior axis. We obtained an anterior PPA vs. posterior PPA

preference for each brain voxel by averaging the correlation value of all searchlights

which included that voxel. In order to speed up computation, we used a single value

of λ = 5.5 for all subjects, equal to the average of the optimal λ values in the ROI

experiment (in log space). Group-level statistics were computed by transforming each

subject’s results into Talairach space.

5.2.7 Scene- and Object-Sensitivity Analysis

After identifying connectivity differences among PPA voxels, we investigated whether

these connectivity gradients corresponded to functional differences in stimulus selec-

tivity. To measure the response properties of individual PPA voxels, we examined

the statistics from the regressors in the localizer experiment. For each voxel, the t-

statistics from the scene and object regressors were recorded, and each voxel was also

given a binary label of “significantly activated” or “not significantly activated” based

on whether its false discovery rate (FDR) for each category was less than or greater

than 0.05. To detect a sensitivity gradient across PPA, the correlation between the

anterior-posterior axis and the t-statistics was computed. For visualization purposes,

each subject’s PPA voxels were binned into 10 bins running anterior-posterior, and
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the mean t-statistic and percentage of activated voxels was calcuated for each bin, to

give a sensitivity profile.

5.2.8 LOC/TOS vs. RSC/cIPL Connectivity

After discovering that LOC/TOS and RSC/cIPL connect preferentially to different

voxels in PPA (see Results), we sought to place these connectivity gradients in the

context of the entire parahippocampal region. For each cortical voxel, we averaged

the coefficients for the voxel’s correlations with LOC and TOS, and compared it

to the average of the coefficients for the voxel’s correlations with RSC and cIPL. We

transformed each subject’s correlation maps into Talairach space, and identified voxels

at the group level that showed a consistent different across subjects to LOC/TOS

functional connectivity vs. RSC/cIPL functional connectivity. In addition to the

parahippocampal region, we searched all of cortex for voxels with this connectivity

pattern.

5.3 Results

Since we are interested in the intrinsic connectivity properties of PPA (rather than

functional correlations idiosyncratic to a specific stimulus set), we localized PPA in

two separate groups of subjects, each of which then performed a different experimental

task with different stimuli. Although both experiments included scenes, in one case

(identifying scene category) the scenes were directly relevant to the task, while in

the other (locating a target object in scenes) scenes were not the primary focus.

Given these datasets, do we see connectivity differences in anterior versus posterior

PPA analogous to those in macaque parahippocampal cortex? Note that, since the

connectivity patterns were similar in both datasets (see Supplementary Fig. D4), all

connectivity results below are collapsed across both experiments.
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5.3.1 PPA Connectivity Analysis: ROIs

We began our investigation of PPA’s connectivity structure by learning PPA connec-

tivity maps for four seed regions: two other scene-sensitive regions (TOS and RSC),

an object-sensitive area in ventral occipital cortex (LOC), and a posterior parietal

region known to exhibit parahippocampal connectivity (cIPL). We first confirmed

that, for each individual subject, we could learn weight maps over PPA (describing

its connectivity with each of these regions) that generalize well across runs. As shown

in Fig. 5.2a, spatially smooth voxel-level connectivity maps in PPA predict activity

in LOC, TOS, RSC, or cIPL better than a map which has only a single weight for

left PPA and a single weight for right PPA (LOC: t17 = 4.42; TOS: t17 = 4.63; RSC:

t17 = 7.80; cIPL: t17 = 3.28; all p < 0.01, two-tailed paired t-test). These results

were computed by choosing λ to maximize the fraction of variance explained (on

an independent validation set) but improvement over the traditional constant-weight

connectivity held for a wide range of regularization strengths λ (see Supplementary

Fig. D2). Although all regions showed at least some activity related to PPA’s time-

course, a significantly smaller amount of the cIPL timecourse can be predicted by PPA

(ROI-level: LOC>cIPL: t17 = 7.31; TOS>cIPL: t17 = 10.58; RSC>cIPL: t17 = 10.23;

Voxel-level: LOC>cIPL: t17 = 6.58; TOS>cIPL: t17 = 12.12; RSC>cIPL: t17 = 11.81;

all p < 0.01 two-tailed paired t-test), consistent with its proposed role as a general

processing hub in parietal cortex with connections to many regions besides PPA [53,

55].

Since meaningful voxel-level weight maps can be learned for individual subjects,

we can ask whether these weight maps show any anterior-posterior differences which

are consistent across subjects. If PPA shows the same gradient of connectivity as

TH/TF/TFO, we expect the posterior portion of PPA to be more strongly con-

nected to occipital visual regions LOC and TOS, with the anterior portion of PPA

more strongly connected to RSC and cIPL. As shown in Fig. 5.2b, this is precisely

what we observed; LOC and TOS connectivity weights tend to increase moving an-

terior to posterior, while RSC and cIPL weights increase in the opposite direction

(LOC: t17 = 3.10, p < 0.01; TOS: t17 = 2.72, p = 0.01; RSC: t17 = −3.76, p < 0.01;

cIPL: t17 = −3.24, p < 0.01; two-tailed t-test after z-transform). These results are
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collapsed across left and right PPA; both hemispheres showed similar connectivity

patterns, though effects were somewhat stronger in left PPA, by an average of 0.13

(t17 = 2.20, p = 0.042; two-tailed t-test after z-transform). We did not observe sig-

nificant differences along the inferior-superior axis or medial-lateral axis, except for

preferential connectivity of cIPL to medial PPA (see Supplementary Fig. D3).

5.3.2 PPA Connectivity Analysis: Whole-Brain

Having established a consistent posterior-anterior gradient of connectivity between

our regions of interest and PPA, we then performed a searchlight analysis to search

for other brain regions with posterior-anterior PPA connectivity gradients; rather than

using our fixed ROIs as seed regions, we swept a 3x3x3 voxel searchlight through-

out the entire cortex. As in Fig. 5.2b, we learn a PPA connectivity map for each

seed region and compute the correlation of this map with the anterior-posterior axis;

those seed regions which induce a PPA weight map that is positively correlated with

the anterior-posterior axis are preferentially connected to posterior PPA, while those

inducing a negatively correlated weight map are preferentially connected to anterior

PPA. The traditional (homogeneous) model of PPA predicts that consistent prefer-

ential connectivity should only occur for seed regions directly adjacent to posterior or

anterior PPA (which will be correlated with the nearer part of PPA due to local noise).

If PPA contains subregions similar to those in macaque, however, we would expect a

number of regions throughout cortex to show preferential connectivity patterns which

are both consistently non-zero and in opposite directions.

Our results are shown in Fig. 5.3. As predicted by our subregion hypothesis,

seed regions in occipital visual areas (including LOC and TOS) showed preferential

connectivity to posterior PPA, while RSC and cIPL showed preferential connectivity

to anterior PPA. Note that these results cannot be explained by local noise corre-

lations, since RSC and cIPL are physically closer to the posterior edge of PPA. We

also observed connectivity to anterior PPA in ventral prefrontal cortex (PFC) (pri-

marily on the medial surface) and on the lateral surface of the anterior temporal
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Figure 5.2: A comparison of the learned PPA weightmaps and the overall
connectivity strength, for our four ROIs. (a) The timecourses of all four seed
ROIs are better explained by a regularized voxel-level connectivity map in PPA, rather
than a single connectivity weight for all of left and right PPA. Activity in LOC, TOS,
and RSC is most closely related to PPA activity, while only a smaller amount of the
cIPL timecourse is related to PPA activity. (b) To obtain a simple characterization
of the learned maps, we compute the correlation between the connectivity weights
and the anterior-posterior axis. This measure shows consistent differences between
the four regions’ connectivity maps. LOC and TOS are preferentially connected to
posterior PPA (since their corresponding PPA weightmaps increase along the anterior
to posterior axis) while RSC and cIPL are preferentially connected to anterior PPA.
Error bars represent s.e.m. across subjects, * p < 0.05, ** p < 0.01.
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lobe. Regions immediately anterior to PPA, including the hippocampus and ante-

rior parahippocampal gyus, show preferential correlation with anterior PPA, but it

is unclear if this effect is driven by intrinsic connectivity or local noise correlations.

Coronal and axial slices are shown in Fig. 5.4, demonstrating that these connectivity

patterns are bilaterally symmetric. This result can also be obtained by using only

“resting” timepoints from between stimulus blocks or using a different value for λ,

and is apparent for both the scene and object tasks (see Supplementary Fig. D4),

suggesting that this connectivity pattern is intrinsic rather than task-specific. The

fraction of variance explained for the searchlights is consistent with our ROI analysis,

showing the strongest coupling between PPA and visual regions including LOC, TOS,

and RSC (see Supplementary Fig. D5).

5.3.3 Scene- and Object-Sensitivity Analysis

Do these connectivity differences give rise to differences in functional response to stim-

ulus categories? Although the functional roles of anterior and posterior PPA are likely

complex, a simple functional anterior-posterior distinction can be seen in the scene

and object responses during our localizer experiment. The selectivities of the PPA

voxels to scenes and objects are shown in Fig. 5.5, binned based on position along the

anterior-posterior axis. At the posterior side of PPA, the sensitivity to both scenes

and objects is high, with nearly all voxels responding to scene stimuli and a majority of

voxels responding to object stimuli. Moving posterior to anterior, scene selectivity de-

creases somewhat (average correlation between t-statistic and posterior-anterior axis

of 0.25, t10 = 3.00, p = 0.01 two-tailed t-test after z-transform), although most voxels

respond significantly to scene stimuli across all of PPA. Object sensitivity, however,

substantially decreases (average correlation between t-statistic and posterior-anterior

axis of 0.32, t10 = 3.39, p < 0.01 two-tailed t-test after z-transform), with a majority

of voxels at the anterior edge showing no significant response to object stimuli.
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Figure 5.3: Searchlight connectivity results. (a) Rendering of the group connec-
tivity bias map on the left hemisphere of the Talairach 452 brain. Colored voxels
are those that showed highly significant (FDR <0.01, cluster size >300 mm3) bias
in anterior-posterior connectivity to PPA, computed as the correlation between the
learned PPA connectivity map and the anterior-posterior axis. Bilateral areas RSC
and cIPL, as well as ventral PFC and lateral anterior temporal regions, exhibited
connectivity with anterior PPA (blue voxels), while occipital visual areas (including
LOC and TOS) exhibited connectivity with posterior PPA (orange-yellow voxels).
The borders of the group ROIs are shown for reference (outlining the location where
at least 3 subjects’ ROIs overlap). (b-d) The same connectivity map on an inflated
surface and cortical flatmap .
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Figure 5.4: Three slices of the group connectivity bias map. Seed voxels for
which the PPA connectivity map has a strong anterior-posterior gradient (FDR<0.01,
cluster size >300 mm3) are shown in blue (preferential connectivity to anterior PPA)
and yellow (preferential connectivity to posterior PPA). (a) In this coronal slice (y=-
73mm), we identify bilateral cIPL regions that show a different connectivity pattern
from adjacent area TOS. (b) At z=10mm, we observe anterior PPA connectivity in
RSC, as well as posterior PPA connectivity in TOS and early visual visual areas.
(c) At z=-5mm, ventral occipital areas including LOC show connectivity to posterior
PPA. Additionally, anterior PPA connectivity can be seen in the frontal and anterior
temporal lobes.
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Figure 5.5: Functional gradients across PPA. The proportion of voxels respon-
sive to scene and object stimuli, and the average t-statistic for the response to scene
and object stimuli, were calculated in 10 bins along the anterior-posterior axis in
each subject. The dotted line indicates the average t-statistic value corresponding to
FDR=0.05 (across all subjects, for both stimulus categories). Scene sensitivity de-
creased from posterior to anterior PPA, but nearly all voxels across PPA responded
significantly to scene stimuli. Object sensitivity substantially decreased from pos-
terior to anterior PPA, with the majority of anterior PPA voxels failing to respond
significantly to object stimuli. Error bars represent s.e.m. across subjects.
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5.3.4 LOC/TOS vs. RSC/cIPL Connectivity

A number of studies have examined functional and connectivity gradients along the

entire parahippocampal gyrus, which includes (in addition to PPA) a portion of

parahippocampal cortex anterior to PPA, and the perirhinal cortex [5, 20, 176, 179,

271]. In order to examine how our gradients within PPA fit into the connectivity pat-

terns of the broader medial temporal lobe, we searched for voxels which showed the

same connectivity differences we observed within PPA. As shown in Fig. 5.6, the pat-

tern of connectivity observed in anterior PPA (RSC and cIPL greater than LOC and

TOS) extends anteriorly along the parahippocampal gyrus and into the hippocampus.

The most anterior portion of the parahippocampal gyrus (around perirhinal cortex)

did not show a connectivity pattern matching either anterior or posterior PPA, con-

sistent with previous work on the connectivity properties of perirhinal cortex [176].

In general, the regions showing connectivity similar to anterior PPA overlap very well

with the Default Mode Network [100] (see Supplementary Fig. D6).

5.4 Discussion

Our results demonstrate that human PPA exhibits a gradient in connectivity along

the anterior-posterior axis analogous to the gradient in connectivity along macaque

TH/TF/TFO. This connectivity gradient was also paired with a functional gradient

of sensitivity to scene and abstract object stimuli. These results present a challenge to

current models of PPA function which assume that PPA is functionally homogeneous,

and demonstrate that anterior and posterior PPA connect differentially to two distinct

cortical networks.

Note that, although our data suggest that PPA might contain identifiable subre-

gions, these subregions should not be considered as completely independent modules.

Both subregions activate selectively to scenes, and the parahippocampal region (at

least in macaques) is densely self-connected [274], implying that these subregions

cooperate to build a complete representation of a scene. Their distinct connectivity

properties, however, do suggest that each may be involved in specific aspects of visual
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Figure 5.6: Regions throughout cortex showing connectivity differences sim-
ilar to anterior and posterior PPA. In this sagittal slice (x=-26), colored voxels
are those showing significantly (FDR <0.05, cluster size >1000 mm3) different con-
nectivity to LOC and TOS versus RSC and cIPL. The connectivity pattern in anterior
PPA extends anteriorly along the parahippocampal gyrus and into the hippocampus.
The connectivity patterns over the entire surface are shown in Supplementary Fig. D6.
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and cognitive processing involved in the overarching goal of scene understanding. We

discuss some possibilities for the functional roles of the subregions below.

5.4.1 Posterior PPA

Posterior PPA shows a stronger response to abstract objects than anterior PPA, and

is more strongly connected to all of occipital visual cortex, including LOC and TOS.

These regions have well-defined retinotopic maps [9, 209], and are associated with the

perception of low-level visual features and object shape. Previous work has hinted

that posterior PPA is more responsive to both simple visual textures and objects;

Arcaro et al. [9] found that a posterior portion of PPA responded about four times

as strongly to a flickering checkerboard stimulus compared to an anterior portion,

and that the response to objects was greater than the response to scrambled images

only in the posterior portion. In other words, posterior PPA may be more visually

responsive than anterior PPA.

Posterior PPA may be specifically tuned to visual features in the high spatial

frequency band; PPA has been shown to respond preferentially to higher spatial

frequencies, and this effect tended to be strongest at the posterior end of PPA [230].

High-frequency edges could be the most important visual features for understanding

the structure of a scene and navigating through it [230, 301]. Alternatively, this

high-frequency preference could be related to the perception of large, landmark-like

objects. A comparison of the Fourier spectra of 400 objects with either large or

small real-world size (but matched visual size) found that larger objects tend to

have more power at high spatial frequencies, especially along horizontal and vertical

orientations; intuitively, larger objects are “boxier” while smaller objects are rounder

[161]. A region of cortex selective for large objects has been shown to overlap with

about half of PPA near the collateral sulcus, possibly corresponding to posterior PPA

[162].

It is also possible that posterior PPA performs texture and ensemble processing,

since these tasks tend to activate cortical regions around the collateral sulcus, over-

lapping with posterior PPA [49–51]). Although Cant and Xu [51] failed to find an
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anterior-posterior difference within PPA for ensemble or texture processing by split-

ting PPA along the center of activation, a more sensitive voxel-level measure could

potentially reveal such a gradient.

Our description of posterior PPA is in fact similar to the original proposal of

Aguirre et al. for a “lingual landmark area” (LLA), slightly posterior to PPA, which

was “specialized for the perception of visual stimuli with orienting value” [2] and

carried out bottom-up perceptual analysis to recognize locations or landmarks [49,

89]. Although the LLA is no longer identified as an independent region from PPA

in current studies, it is possible that the posterior portion of PPA corresponds to

the properties of the proposed LLA, offering an explanation for why this region was

localized more posteriorly than the full PPA.

5.4.2 Anterior PPA

Anterior PPA is specifically connected to RSC, cIPL, medial PFC, and the lateral

surface of the anterior temporal lobe. In addition, this portion of PPA is less visually

responsive to both scenes and objects, with notably low sensitivity to abstract object

stimuli.

The set of regions connected more strongly to anterior PPA is strikingly similar

to the Default Mode Network (DMN) [38, 100, 229], which is known to include the

parahippocampal region. The only portions of the DMN that do not show differential

connectivity to anterior PPA in our data are the rostral portion of the posterior

cingulate cortex (PCC) and the superior frontal cortex. It is likely that PPA does

not have direct connections to these regions; a DTI study showed that the medial

temporal lobe directly connects only to RSC, rather than more rostral PCC [116], and

a functional connectivity analysis showed that the hippocampal formation (including

the parahippocampal region) is connected only to the more ventral portion of the

prefrontal cortex, not the dorsal portion [38]. We confirmed that RSC and cIPL

showed connectivity with the entire DMN (see Supplementary Fig. D6), suggesting

that anterior PPA does have indirect connections to PCC and superior frontal cortex.

Although the DMN has been implicated in a large number of internally-focused
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tasks, one of its key roles involves autobiographical memory [38]. Models of recogni-

tion memory have previously identified parahippocampal cortex as primarily encoding

spatial context information [84], and data from Aminoff et al. [5] has suggested that

an anterior portion of PPA may be involved in recall based on spatial context. Our

results are consistent with anterior PPA playing a more central role in memory than

posterior PPA, given anterior PPA’s connectivity with the DMN.

PPA is known to represent global scene properties such as spatial expanse [166,

218] and to construct global scene representations which are not predictable from

responses to signature objects [183]. Anterior PPA’s connectivity to cIPL and RSC,

along with its lower sensitivity to abstract objects, suggest that it may be more con-

cerned with these types of spatial and non-object-based scene properties than poste-

rior PPA. Future research contrasting global and object-based properties of scenes,

however, would be necessary to test such a hypothesis.

The fact that anterior PPA had a lower sensitivity to our abstract object stimuli

does not necessarily imply that this region does not use object information. Previous

work has shown that PPA responds to objects that have spatial associations [5], are

space-defining [204], and are navigationally-relevant [142]. These types of responses

require spatial memory and cannot be based purely on visual features like object

shape. If anterior PPA is involved in processing spatial context, then space-defining

or navigationally-relevant objects could activate anterior PPA more strongly than

our abstract objects, which were unfamiliar and provided no sense of context or

orientation. Further experiments will be required to determine whether what type of

object-related information is used in this region.

5.4.3 Homology with TH/TF/TFO

Given the close match between the connectivity gradients in macaque parahippocam-

pal cortex and those in PPA, can we identify a precise correspondence between

macaque regions TH/TF/TFO and our PPA subregions? Since the connectivity gra-

dients extend anteriorly beyond PPA (which terminates in the most posterior part of

the parahippocampal gyrus), a possible homology could identify posterior PPA with
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TFO, anterior PPA with TF, and the anterior portion of parahippocampal cortex

with TH. This labeling would be consistent with previous work showing that TFO is

more visually responsive than TF and may have a coarse retinotopy [251], matching

the properties of posterior PPA. This correspondence will only be definitively con-

firmed, however, if future electrophysiological measurements show that TH does not

respond to scene stimuli (placing it anterior to anterior PPA) while TF and TFO do.

5.4.4 Implications for Future Work on PPA

Unraveling the functions of the PPA has proven to be a challenging problem, given

the region’s involvement in a variety of scene perception and navigation tasks [91].

Our results imply that a complete model of PPA’s functional properties must account

for the differences in connectivity and function between anterior and posterior PPA.

Although the precise roles of PPA’s subregions are yet to be determined, our results

and previous work suggest that posterior PPA is concerned primarily with perception

of low-level visual features and object shape, while anterior PPA is involved in memory

and global contextual processing. Given the relatively small size of each of these

subregions, voxel-level approaches (such as our connectivity method) as well as high-

resolution fMRI imaging may be required to identify the representations evoked within

the parts of PPA, and understand how these regions cooperate to build a coherent

scene representation.

5.5 Conclusions

Our connectivity findings call into question the traditional view of PPA as a homo-

geneous region performing a single functional role, and provide a starting point for

future experimental and modeling work investigating how different types of cortical

networks interact for scene understanding and recognition. This discovery was made

possible by our voxel-level functional connectivity approach, which may prove fruitful

for uncovering subregions in other cortical systems.
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Chapter 6

Parcellating connectivity in spatial

maps

A common goal in biological sciences is to model a complex web of connections using

a small number of interacting units. We present a general approach for dividing up

elements in a spatial map based on their connectivity properties, allowing for the

discovery of local regions underlying large-scale connectivity matrices. Our method

is specifically designed to respect spatial layout and identify locally-connected clus-

ters, corresponding to plausible coherent units such as strings of adjacent DNA base

pairs, subregions of the brain, animal communities, or geographic ecosystems. Instead

of using approximate greedy clustering, our nonparametric Bayesian model infers a

precise parcellation using collapsed Gibbs sampling. We utilize an infinite clustering

prior that intrinsically incorporates spatial constraints, allowing the model to search

directly in the space of spatially-coherent parcellations. After showing results on syn-

thetic datasets, we apply our method to both functional and structural connectivity

data from the human brain. We find that our parcellation is substantially more ef-

fective than previous approaches at summarizing the brain’s connectivity structure

using a small number of clusters, produces better generalization to individual sub-

ject data, and reveals functional parcels related to known retinotopic maps in visual

cortex. Additionally, we demonstrate the generality of our method by applying the

same model to human migration data within the United States. This analysis reveals

112
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that migration behavior is generally influenced by state borders, but also identifies

regional communities which cut across state lines. Our parcellation approach has a

wide range of potential applications in understanding the spatial structure of complex

biological networks. This chapter is joint work with Diane M. Beck and Fei-Fei Li,

and appeared previously in PeerJ [16].

6.1 Introduction

When studying biological systems at any scale, scientists are often interested not only

in the properties of individual molecules, cells, or organisms, but also in the web of

connections between these units. The rise of massive biological datasets has enabled

us to measure these second-order interactions more accurately, in domains ranging

from protein-protein interactions, to neural networks, to ecosystem food webs. We

can often gain insight into the overall structure of a connectivity graph by grouping

elements into clusters based on their connectivity properties. Many types of biological

networks have been modeled in terms of interactions between a relatively small set of

“modules” [22, 122], including protein-protein interactions [239], metabolic networks

[232], bacterial co-occurrence [101], pollination networks [214], and food webs [165].

In fact, it has been proposed that modularity may be a necessary property for any

network that must adapt and evolve over time, since it allows for reconfiguration [4,

122]. There are a large number of methods for clustering connectivity data, such as

k-means [106, 157, 172], Gaussian mixture modeling [105], hierarchical clustering [68,

109, 205], normalized cut [133], infinite relational modeling [203], force-directed graph

layout [71], weighted stochastic block modeling [3], and self-organized mapping [199,

312].

The vast majority of these methods, however, ignore the fact that biological net-

works almost always have some underlying spatial structure. As described by Leg-

endre and Fortin: “In nature, living beings are distributed neither uniformly nor at

random. Rather, they are aggregated in patches, or they form gradients or other kinds

of spatial structures. . . the spatio-temporal structuring of the physical environment

induces a similar organization of living beings and of biological processes, spatially as
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well as temporally” [173]. In many biological datasets, we therefore wish to constrain

possible clustering solutions to consist of spatially-contiguous parcels. For example,

when dividing a DNA sequence into protein-coding genes, we should enforce that the

genes are contiguous sequences of base pairs. Similarly, if we want to identify brain

regions that could correspond to local cortical modules, we need each discovered clus-

ter to be a spatially-contiguous region. Without spatial information, the discovered

clusters may be difficult to interpret; for example, clustering functional brain con-

nectivity data without spatial information yields spatially-distributed clusters that

confound local modularity and long-distance interactions [172].

The problem is thus to a parcellate a spatial map into local, contiguous modules

such that all elements in a module have the same connectivity properties (Fig. 6.1).

In this paper we present the first general solution to this problem, using a generative

probabilistic model to parcellate a spatial map into local regions with connectivity

properties that are as uniform as possible. Scientific insights can be gained from both

the clusterings themselves (which identify the local spatial sources of the interaction

matrix) as well as the connections between the parcels, which summarize the original

complex connectivity matrix. Our method yields better results than other approaches

such as greedy clustering, and can help to determine the correct number of parcels in

a data-driven way.

One of the most challenging spatial parcellation problems is in the domain of

neuroscience. Modern human neuroimaging methods can estimate billions of connec-

tions between different locations in the brain, with complex spatial structures that are

highly nonuniform in size and shape. Correctly identifying the detailed boundaries

between brain regions is critical for understanding distributed neural processing, since

even small inaccuracies in parcellation can yield major errors in estimating network

structure [266].

Obtaining a brain parcellation with spatially coherent clusters has been difficult,

since it is unclear how to extend standard clustering methods to include the constraint

that only adjacent elements should be clustered together. Biasing the connectivity

matrix to encourage local solutions can produce local parcels in some situations [64,
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285], or distributed clusters can be split into their connected components after cluster-

ing [1], but these approximations will not necessarily find the best parcellation of the

original connectivity matrix. It is also possible to add a Markov Random Field prior

(such as the Ising model) onto a clustering model to encourage connected parcels [143,

250], but in practice this does not guarantee that clusters will be spatially connected

[137].

Currently, finding spatially-connected parcels is often accomplished using agglom-

erative clustering [28, 131, 202, 282], which iteratively merges neighboring elements

based on similarity in their connectivity maps. There are a number of disadvantages

to this approach; most critically, the solution is only a greedy approximation (only a

single pass over the data is made, and merged elements are never unmerged), which

as will be shown below can lead to poor parcellations when there is a high level

of noise. Edge detection methods [66, 110, 310] define cluster boundaries based on

sharp changes in connectivity properties, which are also sensitive to localized patches

of noisy data. Spectral approaches such as normalized cut [70] attempt to divide the

spatial map into clusters by maximizing within-cluster similarity and between-cluster

dissimilarity, but this approach has a strong bias to choose clusters that all have sim-

ilar sizes [28]. It is also possible to incorporate a star-convexity prior into an MRF

to efficiently identify connected parcels [137]. This approach, however, constrains

clusters to be convex (in connectivity space); as will be shown below, our method

finds structures in real datasets violating this assumption, such as nested regions in

functional brain connectivity data. All of these methods require explicitly setting the

specific number of desired clusters, and are optimizing a somewhat simpler objective

function; they seek to maximize the similarity between the one-dimensional rows or

columns of the connectivity matrix, while our method takes into account reordering

of the both the rows and columns to make the between-parcel 2D connectivity matrix

as simple as possible.

Our model is highly robust to noise, has no constraints on the potential sizes and

shapes of brain regions, and makes many passes over the data to precisely identify

region boundaries. We validate that our method outperforms previous approaches

on synthetic datasets, and then show that we can more efficiently summarize both
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Figure 6.1: Parcellating connectivity in spatial maps. Given a set of elements
arranged on a spatial map (such as points within the human cortex) as well as the
connectivity between each pair of elements, our method finds the best parcellation of
the spatial map into connected clusters of elements that all have similar connectivity
properties. Brain image by Patrick J. Lynch, licensed under CC BY 2.5.

functional and structural brain connectivity data. Our parcellation of human cortex

generalizes more effectively across subjects, and reveals new structure in the functional

connectivity properties of visual cortex.

To demonstrate the wide applicability of our method, we apply the same model to

find spatial patterns in human migration patterns within the United States. Despite

the fact that this is an entirely different type of data at a different spatial scale, we

are able to find new insights into how state borders shape migratory behavior. Our

results on these diverse datasets suggest that our analysis could have a wide range

of potential applications in understanding biological networks. It is also important

to note that the “spatial adjacency” constraint of our method could also be used for

other, nonspatial notions of adjacency; for example, clustering an organism’s life into

contiguous temporal segments based on its changing social interactions.

6.2 Materials and Methods

6.2.1 Probabilistic Model

Intuitively, we wish to find a parcellation z which identifies local regions, such that

all elements in a region have the same connectivity “fingerprint.” Specifically, for

any two parcels m and n, all pairwise connectivities between an element in parcel m

and an element in parcel n should have a similar value. Our method uses the full
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distribution of all pairwise connectivities between two parcels, and finds a clustering

for which this distribution is highly peaked. This makes our method much more robust

than approaches which greedily merge similar clusters [28, 282] or define parcel edges

where neighboring voxels differ [110, 281, 310]. The goal of identifying modules with

similar connectivity properties is conceptually similar to weighted stochastic block

models [3], but it is unclear how these models could be extended to incorporate the

spatial-connectivity constraint.

We would like to learn the number of regions automatically from data, and ad-

ditionally impose the requirement that all regions must be spatially-connected. We

can accomplish both goals more efficiently in a single framework, by using an infinite

clustering prior on our parcellation z which simultaneously constrains regions to be

spatially coherent and does not limit the number of possible clusters. Specifically,

since the mere existence of a element (even with unknown connectivity properties)

changes the spatial connectivity and thus affects the most likely clustering, we must

employ a nonparametric prior which is not marginally invariant. Other Bayesian non-

parametric models allow for spatial dependencies between datapoints, but the only

class of CRPs which is not marginally invariant is the distance-dependent Chinese

Restaurant Process (dd-CRP) [27]. Instead of directly sampling a label for each el-

ement, the dd-CRP prior assigns each element i a link to a neighboring element ci.

The actual parcel labels z(c) are then defined implicitly as the undirected connected

components of the link graph. Intuitively, this allows for changes in the labels of

many elements when a single connection ci is modified, since it may break apart or

merge together two large connected sets of elements. Additionally, this construction

allows the model to search freely in the space of parcel links c, since every possible set-

ting of the parcel links corresponds to a parcellation satisfying the spatial-coherence

constraint.
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Mathematically, our generative clustering model is:

c ∼ dd-CRP(α, f)

Amn, σ
2
mn ∼ Normal-Inverse-χ2(µ0, κ0, σ

2
0, ν0)

Dij|z(c) ∼ Normal(Az(c)iz(c)j , σ
2
z(c)iz(c)j

)

For N elements and K parcels: c is a vector of length N which defines the cluster

links for all elements (producing a region labeling vector z(c) of length N , taking

values from 1 to K); α and f are the scalar hyperparameter and N × N distance

function defining the dd-CRP; A and σ2 are the K × K connectivity strength and

variance between regions; µ0 and κ0 are the scalar prior mean and precision for the

connectivity strength; σ2
0 and ν0 are the scalar prior mean and precision for the

connectivity variance; and D is the N ×N observed connectivity between individual

elements.

The probability of choosing a particular ci in the dd-CRP is defined by a distance

function f ; we use fij = 1 if i and j are neighbors, and 0 otherwise, which guarantees

that all clusters will be spatially connected. A hyperparameter α controls the proba-

bility that a voxel will choose to link to itself. Note that, due to our choice of distance

function f , a random partition drawn from the dd-CRP can have many clusters even

for α = 0, since elements are only locally connected.

The connectivity strength Amn and variance σ2
mn between each pair of clusters

m and n is given by a Normal-Inverse-χ2 (NIχ2) distribution, and the connectivity

Dij between every element i in one region and j in the other is sampled based on

this strength and variance. The conjugacy of the Normal-Inverse-χ2 and Normal

distributions allows us to collapse over Amn and σ2
mn and sample only the clustering

variables ci. Empirically, we find that the only critical hyperparameter is the expected

variance σ2
0, with lower values encouraging parcels to be smaller (we set α = 10, µ0 =

0, κ0 = 0.0001, ν0 = 1 for all experiments).

To allow the comparison of hyperparameter values between problems with the

same number of elements (e.g. the functional and structural datasets), we normalize

the input matrix D to have zero mean and unit variance. We then initialize the
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model using the Ward clustering (see below) with the most likely number of clusters

under our model, and setting the links c to form a random spanning tree within each

cluster.

In summary, we have introduced a novel connectivity clustering model which

(a) uses the full distribution of connectivity properties to define the parcellation

likelihood, and (b) employs an infinite clustering model which automatically chooses

the number of parcels and enforces that parcels be spatially-connected.

6.2.2 Derivation of Gibbs Sampling Equations

To infer a maximum a posteriori (MAP) parcellation z based on the dd-CRP prior,

we perform collapsed Gibbs sampling on the element links c. A link ci for element i

is drawn from

p(c
(new)
i |c−i, D) ∝ p(c

(new)
i )p(D|z(c−i ∪ c(new)i )) = p(c

(new)
i )p(D|z(new))

∝

{
α if c

(new)
i = i

1 else

} |z(new)|∏
k1,k2=1

p(D
z
(new)
k1

,z
(new)
k2

) (6.1)

To compare the likelihood term for different choices of c
(new)
i , we first remove the

current link ci, giving the induced partition z(c−i) (which may split a region). If

we resample ci to a self-loop or to a neighbor j that does not join two regions, the

likelihood term is based on the partition z(c−i) = z. Alternatively, ci can be resampled

to a neighbor j such that two regions K ′ and K ′′ in z(c−i) are merged into one region

K in z(c−i ∪ c(new)i ) = ẑ. Numbering the regions so that zi ∈ {1 · · · (K − 1), K ′, K ′′}
and ẑi ∈ {1 · · · (K − 1), K} gives

p(D|ẑ)

p(D|z)
=

∏K
k=1 p(Dẑk,ẑK )

∏K−1
k=1 p(DẑK ,ẑk)∏K′

k=1 p(Dzk,zK′ )
∏K′′

k=1 p(Dzk,zK′′ )
∏K−1

k=1 p(DzK′ ,zk)
∏K′

k=1 p(DzK′′ ,zk)
(6.2)

Each term p(Dzm,zn) is a marginal likelihood of the NIχ2 distribution, and can be
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computed in closed form as shown in [206]:

p(Dzm,zn) =
Γ(νmn/2)

Γ(ν0/2)

(
κ0
κmn

) 1
2 (ν0σ

2
0)ν0/2

(νmnσ2
mn)νmn/2

(π)−n/2

L = |zm||zn| κmn = κ0 + L νmn = ν0 + L

d̄ =
1

L

∑
i∈zm
j∈zn

Dij s =
∑
i∈zm
j∈zn

(Dij − d̄)2 µmn =
κ0µ0 + Ld̄

κmn

σ2
mn =

1

νmn
(ν0σ

2
0 + s+

Lκ0
κ0 + L

(µ0 − d̄)2)

Intuitively, eq. 6.2 computes the probability of merging or splitting two regions at

each step based on whether the connectivities between these regions’ elements and

the rest of the regions are better fit by one distribution or two.

In practice, the time-consuming portion of each sampling iteration is computing

the sum of squared deviations s. This can be made more efficient by computing the s

values for the merged ẑ in closed form. Given that the connectivities DK′ = {DiK′}i∈k
between parcel k and K ′ have sum of squares deviations sK′ and mean d̄K′ , and

similarly for K ′′, then the sum of squares sK for the connectivities between parcel k

and the merged parcel K (merging K ′ and K ′′) is:
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sK =
∑

d∈DK′∪DK′′

(d− d̄)2

=

 ∑
d∈DK′∪DK′′

d2

− (|DK′ |+ |DK′′ |) ·
(
|DK′| · d̄K′ + |DK′′ | · d̄K′′

|DK′ |+ |DK′′ |

)2

=

 ∑
d∈DK′∪DK′′

d2

− |DK′ |2

|DK′ |+ |DK′′ |
d̄2K′ −

|DK′′ |2

|DK′ |+ |DK′′ |
d̄2K′′−

2
|DK′||DK′′|
|DK′|+ |DK′′|

d̄K′ d̄K′′

=

 ∑
d∈DK′

d2 − |DK′ |d̄2K′

+

 ∑
d∈DK′′

d2 − |DK′′ |d̄2K′′

+

|DK′||DK′′ |
|DK′|+ |DK′′|

(
d̄2K′ + d̄2K′′ − 2d̄K′ d̄K′′

)
=sK′ + sK′′ +

|DK′||DK′′ |
|DK′|+ |DK′′ |

(d̄K′ − d̄K′′)2

6.2.3 Comparison Methods

In order to evaluate the performance of our model, we compared our results to those

of four existing methods. All of them require computing a dissimilarity measure

between the connectivity patterns of elements i and j. For a connectivity matrix D,

Wi,j =

√∑
a6=i,j

(Di,a −Dj,a)2 +
∑
a6=i,j

(Da,i −Da,j)2 (6.3)

“Local similarity” computes the edge dissimilarity Wi,j between each pair of neigh-

boring elements, and then removes all edges above a given threshold. Here we set the

threshold in order to obtain a desired number of clusters. This type of edge-finding

approach has been used extensively for neuroimaging parcellation [66, 110, 310]. Ad-

ditionally, this is equivalent to using a spectral clustering approach [281] if clustering

in the embedding space is performing using single-linkage hierarchical clustering.
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“Normalized cut” computes the edge similarity Si,j = 1/Wi,j between each pair of

neighboring elements, then runs the normalized cut algorithm of [263]. This draws

partitions between elements a and b when their edge similarity Sa,b is low relative

to their similarities with other neighbors. Although computing the globally optimal

normalized cut is NP-complete, an approximate solution can be found quickly by

solving a generalized eigenvalue problem. This approach has been specifically applied

to neuroimaging data [70].

“Region growing” is based on the approach described in [28]. First, a set of seed

points is selected which have high similarity to all their neighbors, since they are

likely to be near the center of parcels. Seeds are then grown by iteratively adding

neighboring elements with high similarity to the seed. Once every element has been

assigned to a region, Ward clustering (see below) was used to cluster adjacent regions

until the desired number of regions is reached.

“Ward clustering” requires computing Wi,j between all pairs of elements (not

just neighboring elements). Elements are each initialized as a separate cluster, and

neighboring clusters are merged based on Ward’s variance-minimizing linkage rule

[307]. This approach has been previously applied to neuroimaging data [86, 282].

We also compared to random clusterings. Starting with each element in its own

cluster, we iteratively picked a cluster uniformly at random and then merged it with

a neighboring cluster (also picked uniformly at random from all neighbors). The

process continued until the desired number of clusters remained.

6.2.4 Synthetic Data

To generate synthetic connectivity data, we created three different parcellation pat-

terns on an 18x18 grid (see Fig. 6.2), with the number of regions K = 5, 6, 9. Each

element of the KxK connectivity matrix A was sampled from a standard normal dis-

tribution. For a given noise level σ, the connectivity value Di,j between element i in

cluster zi and element j in cluster zj is sampled from a normal distribution with mean

Azi,zj and standard deviation σ. This data matrix was then input to our method with

σ2
0 = 0.01, which returned the MAP solution after 30 passes through the elements
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(approximately 10,000 steps). Both our method and all comparison methods were run

for 20 different synthetic datasets for each noise level σ and the results were averaged.

Parcellations were evaluated by calculating their normalized mutual information

(NMI) with the ground truth labeling. We calculate NMI as in [273]. This measure

ranges from 0 to 1, and does not require any explicit “matching” between parcels.

For N total elements, if z assigns nh elements to cluster h, zgt assigns ngtl elements

to cluster l, and nh,l elements are assigned to cluster h by z and cluster l by zgt, this

is given by

NMI(z, zgt) =
I(z, zgt)√
H(z)H(zgt)

=

∑
h

∑
l nh,l log(Nnh,l/(nhn

gt
l ))√

(
∑

h nh log(nh/N))
(∑

l n
gt
l log(ngtl /N)

) (6.4)

6.2.5 Human Brain Functional Data

We utilized group-averaged resting-state functional MRI correlation data from 468

subjects, provided by the Human Connectome Project’s 500 Subjects release [291].

Using a specialized Siemens 3T “Connectome Skyra” scanner, data was collected

during four 15-minute runs, during which subjects fixated with their eyes open on a

small cross-hair. A multiband sequence was used, allowing for acquisition of 2.0mm

isotropic voxels at a rate of 720ms. Data for each subject was cleaned using mo-

tion regression and ICA+FIX denoising [252, 264] and then combined across subjects

using an approximate group-PCA method yielding the strongest 4500 spatial eigen-

vectors [265]. The symmetric 59412 by 59412 functional connectivity matrix Da,b was

computed as the correlation between the 4500-dimensional eigenmaps of voxels a and

b. For each of σ2
0 = 2000, 3000, 4000, 5000, we ran Gibbs Sampling for 10 passes (ap-

proximately 600,000 steps) to find the MAP solution. For comparison with individual

subjects, we also computed functional connectivity matrices for the first 20 subjects

with resting-state data in the 500 Subjects release.

The map of retinotopic regions in visual cortex was created by mapping the

volume-based atlas from [304] onto the Human Connectome group-averaged surface.
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6.2.6 Human Brain Structural Data

We obtained diffusion MRI data for 10 subjects from the Human Connectome

Project’s Q3 release [291]. This data was collected on the specialized Skyra de-

scribed above, using a multi-shell acquisition over 6 runs. Probabilistic tractgraphy

was performed using FSL [144], by estimating up to 3 crossing fibers with bedpostx

(using gradient nonlinearities and a rician noise model) and then running probtrackx2

using the default parameters and distance correction. 2000 fibers were generated for

each of the 1.7 · 106 white-matter voxels, yielding 3.4 · 109 total sampled tracks per

subject (approximately 34 billion tracks in total). We assigned each of the endpoints

to gray-matter voxels using the 32k/hemisphere Conte69 registered standard mesh

distributed for each subject, discarding the small number of tracks that did not have

both endpoints in gray matter (e.g. cerebellar or spinal cord tracks). Since we are

using distance correction, the weight of a track is set equal to its length. In or-

der to account for imprecise tracking near the gray matter border, the weight of a

track whose two endpoints are closest to voxels a and b is spread evenly across the

connection between a and b, the connections between a and b’s neighbors, and the

connections between a’s neighbors and b. Since the gray-matter mesh has a corre-

spondence between subjects, we can compute the group-average number of tracks

between every pair of voxels. Finally, since connectivity strengths are known to have

a lognormal distribution [188], we define the symmetric 59412 by 59412 structural

connectivity matrix Da,b as the log group-averaged weight between voxels a and b.

The hyperparameter σ2
0 was set to 3000, and Gibbs Sampling was run for 10 passes

(approximately 600,000 steps) to find the MAP solution.

6.2.7 Human Migration Data

We used the February 2014 release of the 2007-2011 county-to-county U.S. migration

flows from the U.S. Census Bureau American Community Survey [290]. This dataset

includes estimates of the number of annual movers from every county to every other

county, as well as population estimates for each county. We restricted our analysis

to the continential U.S. To reduce the influence of noisy measurements from small
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counties, we preprocessed the dataset by iteratively merging the lowest-population

county with its lowest-population neighbor (within the same state) until all regions

contained at least 10000 residents. This process produced 2594 regions which we con-

tinue to refer to as “counties” for simplicity, though 306 cover multiple low-population

counties. For visualization of counties and states, we utilized the KML Cartographic

Boundary Files provided by the U.S. Census Bureau [289].

One major issue with analyzing this migration data is that counties have widely

varying populations (even after the preprocessing above), making it difficult to com-

pare the absolute number of movers between counties. We correct for this by normal-

izing the migration flows relative to chance flows driven purely by population. If we

assume a chance distribution in which a random mover is found to be moving from

county a to county b based purely on population, then the normalized flow matrix is

Da,b =
Ma,b(∑

i,jMi,j

)
· PaPb

(
∑

i Pi)
2

(6.5)

where Mi,j is the absolute number of movers from county i to county j, and Pi is

the population of county i. This migration connectivity matrix D is therefore a

nonnegative, asymmetric matrix in which values less than 1 indicate below-chance

migration, and values greater than 1 indicate above-chance migration. Setting σ2
0 =

10, we ran Gibbs Sampling for 50 passes (approximately 130,000 steps) to find the

MAP solution.

6.3 Results

6.3.1 Comparison on Synthetic Data

In order to understand the properties of our model and quantitatively compare it

to alternatives on a dataset with a known ground truth, we performed several ex-

periments with synthetic datasets. We compared against random parcellations (in

which elements were randomly merged together) as well as four existing methods:

local similarity, which simply thresholds the similarities between pairwise elements



CHAPTER 6. PARCELLATING CONNECTIVITY IN SPATIAL MAPS 126

(similar to [66, 110, 281, 310]); normalized cut [70] which finds parcels maximizing the

within-cluster similarity and between-cluster difference; region growing [28], an ag-

glomerative clustering method which selects stable points and iteratively merges sim-

ilar elements; and Ward clustering [282], an agglomerative clustering method which

iteratively merges elements to minimize the total variance. Since these methods can-

not automatically discover the number of clusters, they (and the random clustering)

are set to use the same number of clusters as inferred by our method. We varied

the noise level of the synthetic connectivity matrix from low to high, and evaluated

the learned clusters using the normalized mutual information with the ground truth,

which ranges from 0 to 1 (with 1 indicating perfect recovery).

As shown in Fig. 6.2, our method identifies parcels that best match the ground

truth, across all three datasets and all noise levels. The naive local similarity ap-

proach performs very poorly under even mild noise conditions, and becomes worse

than chance for high noise levels (for which most parcellations consist of single noisy

voxels). Normalized cut is competitive only when the ground-truth parcels are equally

sized (matching results from [28]), and is near-chance in the other cases. Region grow-

ing is more consistent across datasets, but does not reach the performance of Ward

clustering, which outperforms all methods other than ours. Our model correctly infers

the number of clusters with moderate amounts of noise (using the same hyperparam-

eters in all experiments), and finds near-perfect parcellations even at very high noise

levels (see Fig. 6.2c).

6.3.2 Functional connectivity in the human brain

To investigate the spatial structure of functional connectivity in the human brain, we

applied our model to data from the Human Connectome Project [291]. Combining

data from 468 subjects, this symmetric 59412 by 59412 matrix gives the correlation

between fMRI timecourses of every pair of vertices on the surface of the brain (at

2mm resolution) during a resting-state scan (in which subjects fixated on a blank

screen). Using the anatomical surface models provided with the data, we defined

vertices to be spatially adjacent if they were neighbors along the cortical surface.
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Figure 6.2: Results on synthetic data. (a) In three different synthetic datasets,
our method is consistently better at recovering the ground-truth parcellation than al-
ternative methods. This advantage is most pronounced when the parcels are arranged
nonuniformly with unequal sizes, and the noise level is relatively high. Results are
averaged across 20 random datasets for each noise level, and the gray region shows
the standard deviation around random clusterings. (b) Our model can correctly infer
the number of underlying clusters in the dataset for moderate levels of noise, and
becomes more conserative about splitting elements into clusters as the noise level
grows. (c) Example clusterings under the next-best clustering method and our model
on the stripes dataset, for σ = 6. Although greedy clustering achieves a reasonable
result, it is far noisier than the output of our method, which perfectly recovers the
ground truth except for incorrectly merging the two smallest clusters.
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Figure 6.3: Results on functional brain connectivity. (a) Our model consistently
provides a better fit to the data than greedy clustering, explaining the same amount
of variance with 30 fewer clusters (different points were generated from different
values of the hyperparameter σ2

0). (b) When using our group-learned clustering to
explain variance in 20 individual subjects, we consistently generalize better than the
greedy clusters for cluster sizes less than 200 (* p < 0.05, ** p < 0.01). (c) A sample
172-cluster parcellation from our method. (d) Comparison between our parcels and
retinotopic maps, showing a transition from eccentricity-based divisions to field map
divisions.
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Evaluating cortical parcellations is challenging since there is no clear ground truth

for comparison, and different applications could require parcellations with different

types of properties (e.g. optimizing for fitting individual subjects or for stability

across subjects [282]). One simple measure of an effective clustering is the fraction of

variance in the full 3.5 billion element matrix which is captured by the connectivity

between parcels (consisting of only tens of thousands of connections). As shown in

Fig. 6.3(a), our parcellation explains more variance for a given number of clusters

than greedy Ward clustering; in order to achieve the same level of performance as

our model, the simpler approach would require approximately 30 additional clusters.

We can also measure how well this group-level parcellation (using data averaged

from hundreds of subjects) fits the data from 20 individual subjects. Although the

variance explained is substantially smaller for individual subjects, due both to higher

noise levels and inter-subject connectivity differences, our model explains significantly

more variance than Ward clustering with 140 clusters (t19 = 2.97, p < 0.01 one-tailed

t-test), 155 clusters (t19 = 3.67, p < 0.01), or 172 clusters (t19 = 1.77, p < 0.05). The

220-cluster solutions from our model and Ward clustering generalize equally well,

suggesting that our method’s largest gains over greedy approximation occur in the

more challenging regime of small numbers of clusters.

One part of the brain in which we do have prior knowledge about cortical or-

ganization is in visual cortex, which is segmented into well-known retinotopic field

maps [304]. We can qualitatively examine the match between our 172-cluster parcel-

lation (Fig. 6.3(c)) and these retinotopic maps on an inflated cortical surface, shown

in Fig. 6.3(d). First, we observe a wide variety in the size and shape of the learned

parcels, since the model places no explicit constraints on the clusters except that they

must be spatially connected. We also see that we correctly infer very similar parcel-

lations between hemispheres, despite the fact that bilateral symmetry is not enforced

by the model. The earliest visual field maps (V1, V2, V3, hV4, LO1, LO2) all radiate

out from a common representation of the fovea [34], and in this region, our model

generates ring parcellations which divide the visual field based on distance from the

fovea. The parcellation also draws a sharp border between peripheral V1 and V2.

In the dorsal V3A/V3B cluster, V3A and V3B are divided into separate parcels. In
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medial temporal regions, parcel borders show an approximate correspondence with

known VO and PHC borders, with an especially close match along the PHC1-PHC2

border. Overall, we therefore see a transition from an eccentricity-based parcellation

in the early visual cluster to a parcellation corresponding to known field maps in the

later dorsal and ventral visual areas.

6.3.3 Structural connectivity in the human brain

Based on diffusion MRI data from the Human Connectome Project [291], we used

probabilistic tractography [23] to generate estimates of the strength of the structural

fiber connections between each pair of 2mm gray-matter voxels. Approximately 34

billion tracts were sampled across 10 subjects, yielding a symmetric 59412 by 59412

matrix in which about two-thirds of the elements are non-zero. Applying our method

to this matrix parcellates the brain into groups of voxels that all had the same distri-

bution of incident fibers. This problem is even more challenging than in the functional

case, since this matrix is much less spatially smooth.

Fig. 6.4(a) shows a 190-region parcellation. Our clustering outperforms greedy

clustering by an even larger margin than with the functional data, explaining as

much variance as a greedy parcellation with 55 additional clusters. Fig. 6.4(b) also

shows how the model fit evolves over many rounds of Gibbs sampling, when initialized

with the greedy solution. Since our method can flexibly explore different numbers of

clusters, it is able (unlike a greedy method) to perform complex splitting and merging

operations on the parcels. Qualitatively evaluating our parcellation is even more

challenging than in the previous functional experiment, but we find that our parcels

match the endpoints of major known tracts. For example, Fig. 6.4(c) shows 35,000

probabilistically-sampled tracts intersecting with a parcel in the left lateral occipital

sulcus, which (in addition to many short-range fibers) connects to the temporal lobe

through the inferior longitudinal fasciculus, to the frontal lobe through the inferior

fronto-occipital fasciculus, and to homologous regions in the right hemisphere through

the corpus callosum [300]. Note that the full connectivity matrix was constructed

from a million times as many tracks as shown in this figure, in order to estimate the
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Figure 6.4: Results on structural brain connectivity. (a) A 190-cluster parcel-
lation of the brain based on structural tractography patterns. (b) This parcellation
fits the data substantially better than greedy clustering, which would require an ad-
ditional 55 clusters to explain the same amount of variance. The blue path shows
how our model fit improves over the course of Gibbs sampling when initialized with
the greedy solution. (c) An example of 35,000 tracks (from one subject) connected to
a parcel in the lateral occipital sulcus, marked with an asterisk in (a). These include
portions of major fascicles such as the inferior longitudinal fasciculus (ILF), inferior
fronto-occipital fasciculus (IFO), and corpus callosum (CC).
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pairwise connectivity between every pair of gray-matter voxels.

6.3.4 Human migration in the United States

Given our successful results on neuroimaging data, we then applied our method to

an entirely distinct dataset: internal migration within the United States. Using our

probabilistic model, we sought to summarize the (asymmetric) matrix of migration

between US counties as flows between a smaller number of contiguous regions. The

model is essentially searching for a parcellation such that all counties within a parcel

have similar (in- and out-) migration patterns. Note that this is a challenging dataset

for clustering analyses since the county-level migration matrix is extremely noisy and

sparse, with only 3.8% of flows having a nonzero value.

As shown in Fig. 6.5(a), we identify 83 regions defined by their migration proper-

ties. There are a number of interesting properties of this parcellation of the United

States. Many clusters share borders with state borders, even though no information

about the state membership of different counties was used during the parcellation.

This alignment was substantially more prominent than when generating random 83-

cluster parcellations, as shown in Fig. 6.5(b). As described in the Discussion, this is

consistent with previous work showing behavioral differences caused by state borders,

providing the first evidence that state membership also has an impact on intranational

migration patterns. Greedy clustering performs very poorly on this sparse, noisy ma-

trix, producing many clusters containing only one or a small number of counties, and

has a lower NMI with state borders than even the random parcellations.

The 10 most populous clusters (Fig. 6.5(c)) cover 18 of the 20 largest cities in the

US, with the two largest parcels covering the Northeast and the west coast. Some

clusters roughly align with states or groups of states, while other divide states (e.g. the

urban centers of east Texas) or cut across multiple states (e.g. the “urban midwest”

cluster consisting of Columbus, Detroit, and Chicago). As shown in Fig. 6.5(d), our

method succeeds in reordering the migration matrix to be composed of approximately

piecewise constant blocks. In this case (and in many applications) the blocks along

the main diagonal are most prominent, but this assortative structure is not enforced
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Figure 6.5: Results on migration dataset. (a) Our parcellation identified 83
contiguous regions within the continental US, such that migration between these
regions summarizes the migration between all 2594 counties. (b) This parcellation
was better aligned with state borders than an 83-cluster random parcellation (95%
confidence interval shown) or an 83-cluster greedy Ward parcellation. (c) The top
10 clusters (by population) are shown, with arrows indicating above-chance flows
between the clusters. The 20 most populous US cities are indicated with black dots
for reference. (d) A portion of the migration matrix, showing the 1051 counties
covered by the top 10 clusters.
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by the model. Though largely symmetric, some flows do show large asymmetries.

For example, the two most asymmetrical flows by absolute difference are between the

urban midwest and Illinois (out of Illinois = 1.3, into Illinois = 2.0), and Florida and

Georgia (out of Georgia = 1.3, into Georgia = 2.0).

6.4 Discussion

In this work we have introduced a new generative nonparametric model for parcellat-

ing a spatial map based on connectivity information. After showing that our model

outperforms existing baselines on synthetic data, we applied it to three distinct real-

world datasets: functional brain connectivity, structural brain connectivity, and US

migration. In each case our method showed improvements over the current state-of-

the-art, and was able to capture hidden spatial patterns in the connectivity data. The

gap between our approach and past work varied with the difficulty of the parcellation

problem; hierarchical clustering would require 17% more clusters for the relatively

smooth functional connectivity data and 29% more clusters for the more challeng-

ing structural connectivity data, and fails completely for the most noisy migration

dataset.

Finding a connectivity-based parcellation of the brain’s cortical surface has been

an important goal in recent neuroimaging research, for two primary reasons. First,

the shapes and locations of connectivity-defined regions may help inform us about

underlying modularity in cortex, providing a relatively hypothesis-free delineation of

regions with distinct functional or structural properties. For example, connectivity

clustering has been used to identify substructures in the posterior medial cortex [45],

temporoparietal junction [192], medial frontal cortex [71, 145, 157, 160], occipital

lobes [280], frontal pole [180, 200], lateral premotor cortex [285], lateral parietal cor-

tex [191, 245], amygdala [64, 199], and insula [58]. Second, an accurate parcellation is

necessary for performing higher-level analysis, such as analyzing distributed connec-

tivity networks among parcels [7, 134, 228], using connectivity as a clinical biomarker

[57], or pooling voxel features for classification [317]. Consistent with our results,

previous work has found that greedy Ward clustering generally fits the datasets best
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(in terms of variance explained) among these existing methods [282].

Our finding of eccentricity-based resting-state parcels in early visual areas is con-

sistent with previous results showing a foveal vs. peripheral division of visual regions

based on connectivity [172, 321]. Since our parcellation is much higher-resolution,

we are able to observe nested clusters at multiple eccentricities. Our results are the

first to suggest that higher-level retinotopic regions, especially PHC1 and PHC2, have

borders that are related to changes in connectivity properties.

Parcellation based on structural tractography has generally been limited to spe-

cific regions of interest [71, 145, 160, 180, 191, 192, 200, 245, 280, 285], in part due to

the computational difficulties of computing and analyzing a full voxel-by-voxel con-

nectivity matrix. Our parcellation for this modality is somewhat preliminary; prob-

abilistic tractography algorithms are still in their infancy, with recent work showing

that they produce many tracts that are not well-supported by the underlying diffusion

data [224] and are of questionable anatomical accuracy [283]. As diffusion imaging

and tractography methods continue to improve, the input connectivity matrix to our

method will become higher quality and allow for more precise parcellation.

There has been detailed scientific study of both inter- and intra-national migra-

tion patterns for over a century, beginning with the 1885 work of Ravenstein [233].

Even in this initial study (within the UK), it was clear that migration properties var-

ied with spatial location; for example, rural areas showed large out-migration, while

metropolitan areas showed greater in-migration, including long-distance migrants.

The impact of state borders on migration behavior has not, to our knowledge, been

specifically addressed, but there is a growing literature documenting differences in be-

haviors across state lines. Neighboring counties across state lines are less politically

similar than those within a state, suggesting that a state border “creates a barrier

to, or contains, political and economic institutions, policies, and possibly movement”

[279]. State borders also play a role in isolating communities economically; this phe-

nomenon gained a great of attention after Wolf’s 2000 study [313], showing that trade

was markedly lower between states than within states (controlling for distance using

a gravity model). Our results demonstrate in a hypothesis-free way that migration

behavior is influenced by state identities, since our method discovers a parcellation
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related in many regions to state borders, without being given any information about

the state membership of each county. Our results also show that state borders alone

are not sufficient to capture the complexities of migration behavior, since other fac-

tors can override state identities to create other types of communities (such as in our

“Urban midwest” parcel).

Since our algorithm is searching a much larger space of potential parcellations

compared to previous methods, it does take longer to find the most likely clustering.

There are a number of possible approaches for speeding up inference which could

be explored in future work. One possibility is parallelize inference by performing

Gibbs sampling on multiple elements simultaneously; although this would no longer

be guaranteed to converge to the true posterior distribution, in practice this may

not be an issue. Another option is to compute the Gibbs sampling probabilities only

approximately [164], by using only a random subset of connectivities in a large matrix

to approximate the likelihood of a proposed parcellation. It also may be possible to

increase the performance of our algorithm even further by starting with many different

initializations and selecting the solution with highest MAP probability.

6.5 Conclusions

In summary, we have proposed the first general-purpose probabilistic model to intrin-

sically incorporate spatial information in its clustering prior, allowing us to search

directly in the space of contiguous parcellations using collapsed Gibbs sampling. Our

approach is far more flexible and precise than previous work, with no constraints on

the sizes and shapes of the learned parcels. This makes our model more resilient to

noise in synthetic tests, and provides better fits to real-world data drawn from three

different domains. This diverse set of results suggests that our model could be applied

to a large set of biological network datasets to reveal fine-grained structure in spatial

maps.
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Chapter 7

Two distinct scene processing

networks connecting vision and

memory

Research on visual scene understanding has identified a number of regions involved in

processing natural scenes, but has lacked a unifying framework for understanding how

these different regions are organized and interact. We propose a new organizational

principle, in which scene processing relies on two distinct networks that split the

classically defined Parahippocampal Place Area (PPA). The first network consists of

the Transverse Occipital Sulcus (TOS, or the Occipital Place Area) and the posterior

portion of the PPA (pPPA). These regions have a well-defined retinotopic organiza-

tion and do not show strong memory or context effects, suggesting that this network

primarily processes visual features from the current view of a scene. The second

network consists of the caudal Inferior Parietal Lobule (cIPL), Retrosplenial Cortex

(RSC), and the anterior portion of the PPA (aPPA). These regions are involved in

a wide range of both visual and non-visual tasks involving episodic memory, navi-

gation, and imagination, and connect information about a current scene view with

a much broader temporal and spatial context. We provide evidence for this division

from a diverse set of sources. Using a data-driven approach to parcellate resting-state

fMRI data, we identify coherent functional regions corresponding to scene-processing

138
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areas. We then show that a network clustering analysis separates these scene-related

regions into two adjacent networks, which show sharp changes in connectivity proper-

ties. Additionally, we argue that the cIPL has been previously overlooked as a critical

region for full scene understanding, based on a meta-analysis of previous functional

studies as well as diffusion tractography results showing that cIPL is well-positioned

to connect visual cortex with other cortical systems. This new framework for under-

standing the neural substrates of scene processing bridges results from many lines of

research, and makes specific predictions about functional properties of these regions.

This chapter is joint work with Andre Esteva, Diane M. Beck, and Fei-Fei Li.

7.1 Introduction

Natural scene perception has been shown to rely on a distributed set of cortical

regions, including the parahippocampal place area (PPA) [92], retrosplenial cortex

(RSC) [213], and the transverse occipital sulcus (TOS, aka the occipital place area,

OPA) [125, 208]. More recent work has suggested that the picture is even more com-

plicated, with PPA containing multiple subdivisions and the possible involvement of

the parietal lobe [15]. Although there has been substantial progress in understand-

ing the functional properties of each of these regions and the differences between

them, the field has lacked a coherent overall framework for summarizing the overall

architecture of the human scene processing system.

There is a long history of proposals for partitioning the visual system into sep-

arable components with different functions, such as spatial frequency channels [48],

what versus where/how pathways [167, 198], or magnocellular, parcocellular, and ko-

niocellular streams [152]. A division that is particularly relevant to natural scene

perception is between the specific visual features present in the current glance of a

scene, and the stable, high-level knowledge of where the place exists in the world,

what has happened here in the past, and what possible actions we could take here in

the future. For most cognitive and physical tasks we undertake in real-world places,

the specific visual attributes we perceive are just a means to this end, of recalling

and updating information about the physical environment; “the essential feature of
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a landmark is not its design, but the place it holds in a city’s memory” [207]. The

connection between place and memory has been recognized for thousands of years,

reflected in the ancient Greek method of loci that seeks to strengthen a memory by

associating it with a physical location [319].

Some previous work has begun to point to this type of organizing principle among

scene perception regions. Mapping functional connectivity differences between pairs

of scene-sensitive regions has revealed some consistent distinctions, with some regions

more connected to visual cortex and others to parietal and medial temporal regions

[15, 210]. Contrasting activity evoked by perceptual categorization tasks compared

to semantic retrieval tasks shows a similar division between visual and higher-level

cortex [98]. These experiments, however, have all been targeted, hypothesis-driven

comparisons between regions with similar functional properties. It is unclear whether

these divisions are major organizing principles of the brains connectivity networks,

or simply subtle differences within a single coherent scene-processing network.

To answer this question, we took a data-driven approach to identifying scene-

sensitive regions and clustering cortical connectivity. After applying a state-of-the-

art connectivity algorithm [16] to generate spatially-coherent parcels based on high-

resolution resting-state connectivity, we associate these parcels with components of

the scene-processing network using category localizers, retinotopic field maps, cate-

gory decoding, and a meta-analysis of previous work. We then perform hierarchical

clustering and multidimensional scaling to show that there is a prominent, bilaterally

symmetric division of scene-related regions into two separate networks: one includes

TOS and the posterior portion of PPA (retinotopic maps PHC1 and PHC2), while

the other is composed of the RSC, anterior PPA (aPPA), and the caudal inferior

parietal lobule (cIPL). We show that the least well-known of these regions, the cIPL,

actually has unique structural connectivity properties which makes it well suited to

link visual perception with processing throughout the rest of the cortex.

Based on these results, as well as a review of previous studies, we propose that

scene processing is fundamentally divided into two collaborating but distinct net-

works, with one focused on the visual features of a scene image and the other related

to contextual retrieval and navigation. Under this framework, scene perception is less
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the function of a unified set of distributed neural machinery and more of “an ongoing

dialogue between the material and symbolic aspects of the past and the continuously

unfolding present” [14].

7.2 Materials and Methods

7.2.1 Imaging Data

The majority of the data used in this study was obtained from the Human Con-

nectome Project (HCP), which provides detailed documentation on the experimental

and acquisition parameters for these datasets [291]. We provide an overview of these

datasets below.

Diffusion imaging data was used for the first 10 subjects from the January 2014

“Q3” HCP data release with complete data (subj ids 100408, 101915, 102816, 105216,

106016, 106319, 111009, 111514, 111716, 112819). Data were acquired using a multi-

band sequence at three different b-values (1000, 2000, 3000 s/mm2), with a total of

270 diffusion weighting directions and a resolution of 1.25mm isotropic.

The group-level functional connectivity data were derived from the 468-subject

group-PCA eigenmaps, distributed with the June 2014 500 Subjects HCP data re-

lease. Resting-state fMRI data were acquired over four sessions (14 min, 33 seconds

each) while subjects fixed on a bright cross-hair on a dark background, using a multi-

band sequence to achieve a TR of 720ms at 2.0mm isotropic resolution (59412 sur-

face vertices). These timecourses were cleaned using FMRIB’s ICA-based Xnoiseifier

(FIX) [252], and then the top 4500 eigenvectors for each voxel were estimated across

all subjects using Group-PCA [265].

For the first 20 subjects within the “500 Subjects” release with complete data

(and non-overlapping with the Q3 subjects: subj ids 101006, 101107, 101309, 102008,

102311, 103111, 104820, 105014, 106521, 107321, 107422, 108121, 108323, 108525,

108828, 109123, 109325, 111413, 113922, 120515), we created individual subject
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resting-state datasets by demeaning and concatenating their four resting-state ses-

sions. We also obtained these subjects data from the HCP Working Memory exper-

iment, in which they observed blocks of stimuli consisting of faces, places, tools, or

body parts. We collapse across the two memory tasks being performed by participants

(target-detection or 2-back detection).

To identify group-level scene localizers, we used data from a separate set of 24

subjects scanned at Stanford University (see below). Each subject viewed blocks

of stimuli from six categories: child faces, adult faces, indoor scenes, outdoor scenes,

objects (abstract sculptures with no semantic meaning), and scrambled objects. Func-

tional data were acquired with an in-place resolution of 1.56mm, slice thickness of

3mm (with 1 mm gap), and a TR of 2s; a high-resolution (1mm isotropic) SPGR

structural scan was also acquired to allow for transformation to MNI space. Full

details of the localizer stimuli and acquisition parameters are given in our previous

work [15].

7.2.2 Subjects

Scene localizer data was collected from 24 subjects (6 female, ages 22-32, including

one of the authors). Subjects were in good health with no past history of psychi-

atric or neurological diseases, and with normal or corrected-to-normal vision. The

experimental protocol was approved by the Institutional Review Board of Stanford

University, and all subjects gave their written informed consent.

7.2.3 Resting-state Parcellation

We generated a voxel-level functional connectivity matrix by correlating the group-

level eigenmaps for every pair of voxels and applying the arctangent function. We

parcellated this 59412 by 59412 matrix into contiguous regions, using a generative

probabilistic model [16]. This method finds a parcellation of the cortex such that

the connectivity properties within each parcel are as uniform as possible, making

multiple passes over the dataset to fine-tune the parcel borders. We set the scaling

hyperparameter 2
0 = 3000 to produce a manageable number of parcels.
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7.2.4 Scene localizers and retinotopic field maps

To identify PPA, RSC, and TOS, we deconvolved the localizer data from the 24

Stanford subjects using the standard block hemodynamic model in AFNI [69], with

faces, scenes, objects, and scrambled objects as regressors. The Scenes ¿ Objects

t-statistic was used to define PPA (top 300 voxels near the parahippocampal gyrus),

RSC (top 200 voxels near retrosplenial cortex), and TOS (top 200 voxels near the

transverse occipital sulcus). The ROI masks were then transformed to MNI space,

summed across all subjects, and mapped to the closest vertices on the group cortical

surface. The cluster denoting highest overlap between subjects was then manually

annotated.

A volumetric group-level probabilistic atlas [304] was used to define retinotopic

field maps, by mapping each field map to the closest vertices on the group-level

surface.

7.2.5 Scene category decoding

For each cortical parcel (generated from resting-state connectivity as described

above), we measured its sensitivity to scenes versus other visual categories through a

category decoding analysis. We first used a hemodynamic model to associate time-

points within the 20 HCP working memory datasets with specific stimulus categories.

We labeled timepoints as corresponding to bodies, faces, places, or tools by construct-

ing a boxcar timecourse denoting when each stimulus category was being displayed,

convolving these indicators with the standard SPM hemodynamic response function

provided with AFNI [69], rescaling the maximum value to 1, then re-thresholding to

a binary indicator. Effectively, this produced a shift of the stimulus blocks by 5.55s to

account for hemodynamic delay. The fMRI timecourses were cleaned by regressing out

movement (6 degree-of-freedom translation/rotation and derivatives) and constant,

linear, and quadratic trends from each run, then normalizing each voxel to have unit

variance. Voxel timecourses were then averaged within each parcel, yielding a vector

of average parcel activities for each timepoint.

Linear support vector machines (SVMs) were trained separately for each subject
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to discriminate scene timepoints from non-scene timepoints, and then tested on the

other 19 subjects. We set the soft-margin hyperparameter c=1, but our results are

not sensitive to this choice. Note that chance performance is 75%, since only 25%

of the stimulus timepoints are scenes. Each subjects classifier assigned a weight to

each parcel, indicating how strongly activity in this parcel predicted that a scene was

being viewed. Parcels consistently assigned high positive weights were therefore most

strongly associated with visual scene processing.

7.2.6 Meta-analysis

We sought to identify all fMRI studies involving scene memory, navigation, imag-

ined experiences, or context memory that reported activation coordinates around the

posterior parietal lobe. These coordinates were assumed to be in MNI space, unless

identified as being in Talairach space, in which case we transformed the coordinates

to MNI space [33]. Each coordinate was then mapped to the closest vertex on the

group surface.

7.2.7 Parcel-to-parcel functional connectivity matrices

The 468-subject eigenmaps distributed by the HCP are approximately equal to per-

forming a singular value decomposition on the concatenated timecourses of all 468

subjects, and then retaining the right singular values scaled by their eigenvalues [265].

This allows us to treat these eigenmaps as pseudo-timecourses, since dot products

(and thus correlations) between eigenmaps approximate the dot products between

the original voxel timecourses. Given a parcellation, we computed the group-level

connectivity between a pair of regions by taking the mean over all eigenmaps in each

region, then correlating these mean eigenmaps and applying the Fisher z-transform

(hyperbolic arctangent). We computed subject-level connectivity in the same way,

using the resting-state timecourse for each voxel rather than the eigenmap.
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7.2.8 Network Clustering and Multidimensional scaling

The 172 by 172 parcel functional connectivity matrix was converted into a distance

matrix by subtracting every entry from the maximum entry. Ward clustering (uncon-

strained by parcel position) was used to compute a hard clustering into 10 networks.

Separately, classical multidimensional scaling was also applied to the distance matrix,

and the first three dimensions were used to assign voxels RGB colors (with each color

channel scaled to span the full range of 0 to 255 along each axis) and to plot parcels

in a 3D space. We performed the same operation on each subject-level matrix as

well, and then aligned each subjects 3D pointcloud to the group pointcloud using a

procrustes transform.

7.2.9 Structural connectivity

Probabilistic tractgraphy was performed on each of the 10 HCP diffusion datasets

using FSL [144], by estimating up to 3 crossing fibers with bedpostx (using gradi-

ent nonlinearities and a rician noise model) and then running probtrackx2 using the

default parameters and distance correction. 2000 fibers were generated for each of

the 1.7x106 white-matter voxels, yielding 3.4x109 total sampled tracks per subject

(approximately 34 billion tracks in total). We assigned each of the endpoints to

gray-matter voxels using the 32k/hemisphere Conte69 registered standard mesh dis-

tributed for each subject, discarding the small number of tracks that did not have

both endpoints in gray matter (e.g. cerebellar or spinal cord tracks). Since we are

using distance correction, the weight of a track is set equal to its length.

The distance-based connectivity profile of a voxel was obtained by summing all of

the voxels connections within 1cm bins based on Euclidean distance from the voxel.

The profile for a parcel was then computed as the average of all its voxel profiles

(rather than the sum, which does not control for differing parcel areas). Connectivity

profiles for cIPL parcels vs. other parcels were compared using a two-way repeated

measures ANOVA, with cIPL vs. other as the first factor and distance bin as the

second factor.

We computed the structural connectivity between a pair of parcels A and B as the
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mean connectivity strength over all pairs of voxels with one voxel drawn from A and

one drawn from B. Note that this also yields a measurement independent of parcel

size.

7.3 Results

In order to reduce the complexity of the full 1.8-billion element whole-brain resting-

state functional connectivity matrix, we first performed spatial parcellation using

a generative modeling approach [16]. This parcellation consisted of 172 spatially-

coherent regions across both hemispheres, each of which contains voxels with near-

uniform connectivity properties. The connectivity matrix between these 172 parcels

captures more than 76% of the variance in the original connectivity matrix, despite

being dramatically smaller (by five orders of magnitude). Representing the connec-

tivity matrix in this way allows us to identify locations where functional connectivity

profiles change rapidly (the boundaries between parcels), and lets us examine func-

tional and connectivity properties at the more manageable and meaningful parcel

level rather than at the voxel level.

7.3.1 Identifying Scene-Sensitive Parcels

Our first goal was to identify parcels that were related to processing visual scenes,

using several different approaches as shown in Figure 7.1. Mapping group-level retino-

topic field maps to the surface shows that the parcels exhibit an eccentricity-based

organization (dividing foveal and peripheral voxels) in early visual areas, but that

parcel boundaries begin to align with field map boundaries in later dorsal and ventral

regions, as we have previously reported [16]. This alignment is especially prominent

in parahippocampal regions PHC1 and PHC2, which are divided into anterior and

posterior parcels. In the left (right) hemisphere, 86% (87%) of PHC1 voxels fall into

the posterior parcel and 97% (72%) of PHC2 voxels fall into the anterior parcel. We

also overlaid group-level localizer data (from a separate group of subjects) for scene-

sensitive regions TOS, RSC, and PPA. TOS and RSC fall largely within single parcels
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(which we label the TOS and RSC parcels), while PPA runs perpendicular to par-

cel boundaries, extending through at least three separate parcels. The two posterior

parcels correspond to PHC1 and PHC2 (which we collectively refer to as “posterior

PPA”, pPPA), and we label the most anterior parcel as “anterior PPA” (aPPA).

We can directly confirm that these parcels are scene-sensitive by applying our

parcellation to task-fMRI data from the Human Connectome Project, and using the

mean activity of each parcel as a feature for decoding scenes vs. other visual categories

(faces, tools, bodies). These decoding accuracies were well above chance, even across

subjects; a decoder trained on one subject could identify scene timepoints in other

subjects with 85.1% accuracy (t19=23.71, p<0.01; one-tailed t-test). Parcels that

were consistently assigned positive weights for decoding scenes vs. other categories

are identified in Figure 7.2. Scene-related parcels labeled from retinotopic maps and

localizers exhibit high decoding weights (TOS: left t19=3.95, p<0.01; right t19=5.70,

p<0.01; RSC: left t19=4.95, p<0.01; right t19=2.80, p<0.01; PHC1: left t19=3.83,

p<0.01; right t19=1.06, n.s.; PHC2: left t19=4.95, p<0.01; right t19=5.66, p<0.01;

aPPA: left t19=1.73, p<0.05; right t19=7.34, p<0.01; one-tailed t-test).

Interestingly, scene selectivity extends dorsally beyond TOS, into the caudal infe-

rior parietal lobule (cIPL). Labeling the three parcels in this region cIPL1-3 (ordered

posterior to anterior along the angular gyrus), both cIPL1 and cIPL2 consistently

show discriminative weights for the (unfamiliar) localizer scenes (cIPL1: left t19=9.61,

p<0.01; right t19=8.34, p<0.01; cIPL2: left t19=3.87, p<0.01; right t19=3.58, p<0.01)

while cIPL3 does not (left t19=-1.16, n.s; right t19=1.48, n.s.). This result suggests

that there may be scene-related activity anterior to typically-defined TOS, but does

not provide clear evidence for a separate region with different functional properties.

Scene localizers, however, are missing a critical component of real-world scene per-

ception; since they typically include only unfamiliar scenes, they may fail to robustly

activate memory and contextual networks engaged in processing familiar environ-

ments. A meta-analysis of previous studies shows that personally familiar places

robustly activate cIPL, especially around cIPL2 and cIPL3 (Figure 7.3). This acti-

vation appears for a wide variety of tasks, including memory for visual scene images

[10, 88, 94, 201, 278], learning navigational routes [32, 41], and even simply imagining
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TOS

RSC

PPA

Figure 7.1: Relationship between resting-state parcels, retinotipic maps,
and scene localizers. Group-level visual field maps and functional localizers are
overlaid on parcels derived from resting-state connectivity patterns (black borders).
RSC and TOS largely fall within a single parcel, with TOS corresponding roughly
to V3B. Ventrally, PHC1 and PHC2 are well divided into two separate parcels, with
PPA extending anteriorly into a parcel we denote aPPA.

past events or future events in familiar places [123, 275]. This same region can also

be activated by recalling non-place stimuli (including words and objects), if the stim-

uli are associated with strong memory of the source context [146, 225, 294]. These

studies, along with our previous work showing connectivity differences between TOS

and cIPL [15], provide strong evidence that the caudal inferior parietal lobe is in fact

a separate, important component of the scene-processing system.

7.3.2 Clustering Parcels into Networks

Having identified these eight (bilateral) parcels critical to scene perception, we clus-

tered the whole-brain connectivity matrix to identify 10 functionally-connected net-

works. This data-driven analysis groups together parcels that all have high functional

connectivity with one another, regardless of their spatial position.As shown in Figure

7.4, these networks are remarkably symmetric between hemispheres, and split scene

perception regions into two separate categories. Posterior parcels - TOS, cIPL1,

PHC1, and PHC2 - were clustered into visual network (dark blue) covering all of vi-

sual cortex outside of the early foveal cluster. Anterior parcels - cIPL2, cIPL3, RSC,

and aPPA - were clustered into a separate parietal/medial-temporal network (pink),
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RSC
TOS

cIPL1
cIPL2 cIPL3

n.s. low high

SVM Place vs. All Decoding Weights

Figure 7.2: Parcel scene decoding weights. Linear SVMs were trained to classify
unfamiliar scenes vs other images (faces, tools, bodies) based on mean activity in
each resting-state parcel. Colored regions are those having significant positive weights
across subjects (p<0.05). High activity in the parcels identified using field maps and
scene localizers (Figure 1) predict that subjects are viewing scenes, and these positive
weights extend from TOS partially onto the angular gyrus.
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Figure 7.3: Meta-analysis of cIPL involvement in place memory. Although
not typically identified as a scene-sensitive region, the posterior parietal lobe is con-
sistently activated in studies involving familiar places. Perceiving images of familiar
scenes, learning navigational routes, or imagining events in familiar places produces
activation clustered around cIPL2-3. This same region also appears in memory studies
of non-scene stimuli associated with a strong context.
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which also included anterior temporal and medial frontal parcels. This corresponds

to a portion of the known default mode regions, with other default mode regions

being grouped into a separate network (green). The dividing line between the vi-

sual and context networks falls consistently near the edge of known retinotopic maps,

suggesting a division between regions strongly tied to the current retinal input and

those which are more driven by internally-driven processes and integrate information

over longer time-scales. If the number of clusters is increased, divisions within these

networks appear, first between TOS and pPPA, and then between RSC/cIPL and

aPPA.

Rather than performing a hard clustering into distinct groups, we can use classi-

cal multidimensional scaling (MDS) to embed parcels into a three-dimensional space.

Distances in this space approximate the functional connectivity strength between

parcels, such that strongly-connected parcels are close together. Setting the RGB

color of each parcel based on its position in this three-dimensional embedding space

gives a soft clustering (Figure 7.5(a)). Moving along either the dorsal (TOS-cIPL)

or ventral (PHC-aPPA) boundaries between scene regions produces rapid changes in

functional connectivity properties, visualized in embedding space in Figure 7.5(b-c).

In both cases, the most posterior regions (TOS and PHC1) show strong connectivity

to other parcels in visual cortex, while the most anterior regions (cIPL3 and aPPA) are

instead more related to default mode regions. To statistically evaluate this difference,

we measure the connectivity between each scene-related parcel and a default-mode

reference parcel on the opposite side of cortex (medial versus lateral), to avoid spu-

rious connectivity due to local noise correlations. For the dorsal parcels, we measure

connectivity to RSC, and for the ventral parcels, we measure connectivity to cIPL3.

Along the dorsal boundary, we see significant increases in connectivity to RSC when

moving from TOS to cIPL1 (Left: t19=6.98, p<0.01; Right: t19=6.35, p<0.01; two-

tailed paired t-test), from cIPL1 to cIPL2 (Left: t19=7.72, p<0.01; Right: t19=6.16,

p<0.01), and from cIPL2 to cIPL3 (Right: t19=2.44, p<0.05). We observe a similar

(though less dramatic) increase in connectivity to cIPL3 when moving from PHC1 to

PHC2 (Left: t19=4.21, p<0.01; Right: t19=2.68, p<0.05) and PHC2 to aPPA (Right:

t19=3.03, p<0.01). These results (Figure 7.5(d-e)) indicate that the borders between
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cIPL3

cIPL2

cIPL1

TOS

RSC

aPPA

PHC2
PHC1

Figure 7.4: Connectivity clustering of parcels. Performing hierarchical clustering
on the resting-state parcels based on their pairwise functional connectivity reveals that
the scene processing network is split across two networks: a visual network (blue)
which includes TOS and PHC1/2, and a parietal/medial-temporal network including
cIPL, RSC, and aPPA. The visual network covers known retintopic field maps outside
the early fovea, while the parietal/medial-temporal network corresponds to a portion
of the default mode network.

the visual and context networks are not artifacts of the clustering procedure, but are

in fact marked by rapid changes in connectivity properties.

Given the dramatic differences in functional connectivity properties among the

scene parcels (especially cIPL, e.g. in Figure 7.5(d)), we examined whether these

regions also differed in terms of structural connectivity, using diffusion imaging. We

sampled 34 billion white matter seed locations across 10 subjects, and performed prob-

abilistic tractography to identify the likely endpoints of the fiber tract passing through

that seed. As shown in Figure 7.6, the cIPL parcels were qualitatively different from

all other scene parcels, with both higher overall fiber incidence (per unit area) and a

disproportionate number of long-range fibers (cIPL parcels vs. others, F1,9=191.24,

p<0.01; distance bin, F19,171=47.04, p<0.01; interaction, F19,171=14.82, p<0.01).

These connections are widely distributed over posterior parietal, lateral and medial

temporal, and prefrontal cortices, indicating the cIPL is structurally well-positioned

to connect visual scene information with a wide variety of other cortical networks.
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Figure 7.5: Connectivity changes across the network border. (a) Rather than
performing a hard clustering assignment as in Figure 7.4, we can perform classical
MDS on the parcel connectivity network and set regions RGB values based on their
positions in a three-dimensional embedding space. This shows a similar result to
hierarchical clustering, with abrupt connectivity changes across scene networks. (b)
In MDS space, moving dorsally from TOS to cIPL3 produces the curves shown in
blue, while moving ventrally from PHC1 to aPPA produces the curves shown in
red. These curves move in parallel out of the retinotopic cluster toward the default
mode cluster. (c) Plotting these curves for 20 individual subjects shows a similar
pattern in each subject, with curves moving in parallel toward RSC (purple dots).
(d) The connectivity between scene parcels and RSC increases dramatically as we
move dorsally from TOS to cIPL3. (e) Connectivity with cIPL changes more subtly
but significantly when moving ventrally from PHC1 to aPPA. *,** p<0.05, p<0.01



CHAPTER 7. TWO SCENE NETWORKS 154

0 2 4 6 8 10 12 14 16 18 20

Euclidean distance to connected voxel (cm)

To
ta

l 
st

ru
ct

u
ra

l 
co

n
n

e
ct

iv
it

y

cIPL1

cIPL2

cIPL3

TOS

RSC

PHC1

PHC2

aPPA

0 2 4 6 8 10 12 14 16 18 20

Euclidean distance to connected voxel (cm)

N
u

m
b

e
r 

o
f 

v
ox

e
ls

0

2x105

4x105

6x105

8x105
(a)

(b)
10000

5000

0

Right
0 700

7
0

0
Le

ft

cIPL3
Structural

Connectivity

Figure 7.6: Structural connectivity profiles of scene parcels. (a) The connec-
tivity between voxels in each parcel and the rest of the brain is plotted as a function
of Euclidean distance (averaged between hemispheres, shaded regions show standard
error of the mean). The cIPL parcels shows a distinct profile, both in overall connec-
tivity strength and an emphasis on long-range connectivity. As shown in the inset,
cIPL3 is structurally connected to a distributed set of cortical regions (primarily re-
stricted to the same hemisphere). (b) The peak of cIPL connectivity around 10 cm is
not driven by simple geometry, since the percentage of the cortex that is this distance
away from cIPL is smaller than for other parcels such as RSC and those in PPA.
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Figure 7.7: Two-network model of scene perception. Our results provide strong
evidence for dividing scene-sensitive regions into two separate networks. TOS and
posterior PPA (PHC1/2) process the current visual features of a scene (in concert
with other visual areas, such early visual cortex and LOC), while cIPL, RSC, and
anterior PPA perform higher-level context and navigation tasks (drawing on long-
term memory structures such as the hippocampus).
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7.4 Discussion

By combining a variety of data sources including function and structural connectiv-

ity data, task-fMRI, retinotopic maps, and a meta-analysis of previous results we

have shown converging evidence for a functional division of scene-processing regions

into two separate networks (summarized in Figure 7.7). The visual network covers

retintopically-organized regions including TOS and posterior PPA (pPPA), while a

separate memory-related network connects cIPL, RSC, and anterior PPA (aPPA).

This division emerges from a purely data-driven network clustering, suggesting that

this is a core organizing principle of the visual system. Our data also support a much

more prominent role for cIPL in processing real-world familiar scenes, since it is well

positioned both functionally and structurally to connect scene processing with the

rest of the brain.

7.4.1 Subdivisions of the PPA

The division of the PPA into multiple anterior-posterior subregions with differing

connectivity properties replicates our previous work (Baldassano et al., 2013) on an

entirely different large-scale dataset, and shows that there is a strong connection

between connectivity changes in PPA and the boundaries of retinotopic field maps.

There is now a growing literature on anterior versus posterior PPA, including not

only connectivity differences [210] but also the response to low-level [211] and high-

level [178, 219] scene properties. Our results place this division into a larger context,

and demonstrate that the connectivity differences within PPA are not just an isolated

property of this region but a general organizing principle for scene-processing regions.

This subdivision may be the key to resolving a long-standing debate over the

role of context effects in PPA. Some have proposed that PPA is primarily driven not

by scenes per se but any stimuli with strong spatial contextual associations [5], and

that these associations drive activity during even the early stages of perception [171].

Others have argued that PPA is only involved in visual spatial layout processing,

and that context effects are mostly an artifact of later imagery [97]. We argue that

both these descriptions may be correct, but for different portions of PPA, with pPPA
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more related to concrete features of a visual scene and aPPA more related to general

spatial context. In fact, the maps illustrated in these papers (Figure 4 in [5]; Figure

4 in [97]) suggest this type of anterior/posterior division.

7.4.2 The visual network

The visual network shows a close correspondence with the full set of retinotopic maps

identified in previous studies [34, 138, 304], extending through the intraparietal sulcus

(IPS) and laterally to hMT+. Our observation that TOS overlaps at the group level

with retinotopic maps, primarily V3B, is consistent with prior measurements made

in individual subjects [24, 209]. The only portion of cortex with known retinotopic

maps that is not clustered in this network is the shared foveal representation of early

visual areas, which segregates into its own cluster. One possible explanation is that

our connectivity measures are based on eyes-open resting-state scans, during which a

subjects fovea is being stimulated with a bright cross. This stimulation may be the

dominant signal in this region, resulting in a suppression of the intrinsic fluctuations

used to define resting-state networks.

TOS and posterior PPA have been shown to be responsive primarily to visual

features of a stimulus, rather than higher-level attributes such as familiarity. Posterior

PPA has a preferential response to high spatial frequencies [230], and both posterior

PPA and TOS are activated by rectilinear shapes [211], even in non-scene images.

Also, neither TOS nor posterior PPA show reliable familiarity effects ([94], but see

further discussion below).

The functional distinction between pPPA and TOS is currently unclear. Previous

work has speculated about the purpose of the apparent ventral and dorsal duplication

of regions sensitive to large landmarks, proposing that it may be related to different

output goals (e.g. action planning in TOS, object recognition in pPPA) [163], or to

different input connections (e.g. lower visual field processing in TOS, upper visual

field processing in pPPA) [168].
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7.4.3 The context and navigation network

The network of parahippocampal, retrosplenial, and posterior parietal regions we

identify has been emerged independently in many different fields of neuroimaging,

outside of scene perception. Meta-analyses of internally-directed tasks such as theory

of mind, autobiographical memory, and prospection have identified this as a core,

re-occurring network [155, 268] (and component C10 of [320])). This network also

appears in navigation [41, 267], recalling the study context of a stimulus [42, 128, 146,

225], recognition of personally familiar locations[10, 88], viewing objects with strong

contextual associations [6], and thinking about past or imagined events in familiar

contexts [123, 275, 276].

The broad set of tasks which recruit this network have been summarized in vari-

ous ways, such as “scene construction” [124], “mnemonic scene construction” [7], or

“relational processing” [85]. A review of memory studies referred to this network as

the posterior medial (PM) memory system, and proposed that it is involved in any

task requiring “situation models” relating entities, actions, and outcomes [231].

Sometimes this network appears as part of the larger default mode network, which

includes other regions such as parts of medial prefrontal cortex. However, the func-

tional and anatomical structure of the default mode network suggests that it not a

single coherent structure, and that the parietal/medial-temporal portion is in fact a

distinct subnetwork [7, 8, 321].

The specific functions of the individual components of this network have also

been studied in a number of contexts. RSC appears to be most directly involved in

orienting the viewer to the structure of the environment (both within and beyond the

borders of the presented image) for the purpose of navigational planning; it encodes

both absolute location and facing direction [96, 185, 293], integrates across views

presented in a panoramic sequence [220], and shows strong familiarity effects [94, 95].

This is consistent with rodent neurophysiological studies, which have identified head

direction cells in this region [63]. RSC is not sensitive to low-level rectilinear features

in non-scene images such as objects or textures, though it does show some preference

for rectilinear features in images of 3D scenes [211].

Anterior PPA has been less well-studied, since it was not recognized as a separate
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region within the PPA until recently, but has been most strongly associated with

coding the size of a scene [219]. Its representation of scene spaciousness draws on

prior knowledge about the typical size of different scene categories, since it is affected

by the presence of diagnostic objects [178].

The cIPL (also referred to as pIPL, PGp, or the angular gyrus) has been proposed

as a “cross-modal hub” [8] that connects visual information with other sensory modal-

ities as well as knowledge of the past. It is more intimately associated with visual

cortex than most lateral parietal regions, since it has strong anatomical connections

to higher-level visual regions in humans and macaques [53], and has a neurotrans-

mitter receptor distribution similar to V3v and distinct from the rest of the IPL

[55]. It is primarily involved in two related kinds of tasks. First, it supports contex-

tual recall, showing both increases in mean activity [201, 294] as well as voxel-level

activity patterns related to the specific context associated with an item [169]. Sec-

ond, it performs temporal integration, sustaining activity under long delay periods

[296], and accumulating both visual and auditory information over long time-scales

[174]. Consistent with our structural connectivity results, its functional connections

are distributed and flexible, coupling to the dorsal attention network during a spatial

learning task [32] or to dorsolateral prefrontal and extrastriate visual cortex during

successful recollection [159]. Based on these properties, it has been proposed [295]

that this region implements the multi-modal episodic buffer proposed by [12].

Given cIPLs involvement in a diverse set of tasks, it has not traditionally been

identified as a central part of the scene perception system. However, our results

suggest a deep connection between cIPL and understanding real-world places, which

(unlike typical localizer images) are associated with a wealth of memory, context, and

navigational information. Our meta-analysis shows that cIPL is selectively responsive

to familiar scenes (arguably the most common high-context stimuli in everyday life),

but this property has largely gone unnoticed in the scene perception literature; for

example, one of the studies in Figure 7.3 showing cIPL activation [94] described this

location only as “near TOS.” More importantly, our clustering analyses revealed that

cIPL is tightly coupled (at rest) with RSC and aPPA, two regions that are widely

recognized as performing scene-specific processing. Lesion studies support this view
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that the posterior parietal lobe is primarily involved in scene-related functions (such

as orienting to a previously learned map based on the current view), since these

abilities can be selectively impacted without general memory deficits (reviewed in

[167]).

7.4.4 Contrasting the two networks

Although our work is the first to propose the visual versus context networks as a gen-

eral framework for scene perception, several previous studies have shown differential

effects within these two networks. Contrasting the functional connectivity patterns

of RSC vs. TOS or LOC [210] or anterior vs. posterior PPA [15] show a division

between the two networks, consistent with our results. Contrasting scene-specific ac-

tivity with general (image or word) memory retrieval showed an anterior vs. posterior

distinction in PPA and cIPL/TOS, with only more anterior regions (aPPA and cIPL,

along with RSC) responding to content-independent retrieval tasks [98, 146]. Our

two-network division is also consistent with the dual intertwined rings model, which

argues for a high-level division of cortex into a sensory ring and an association ring,

the second of which is distributed but connected into a continuous ring through fiber

tracts [194].

7.4.5 Open questions

The anterior/posterior pairing of aPPA/pPPA and cIPL/TOS raises the question of

whether there is a similar anterior/posterior division in RSC. There is some evidence

to suggest that this is the case: wide-field retinotopic mapping using natural scenes

shows a partial retinotopic organization in RSC [138], and RSCs response to visual

rectilinear features appears to be limited to the posterior portion [211]. However, we

did not observe strong scene-selective responses in neighboring parcels near RSC (see

Figure 7.2), a study of retinotopic coding in scene-selective regions failed to find any

consistent topographic organization to RSC responses [306], and previous analyses

of the functional properties of anterior versus posterior RSC have not found any

significant differences [219].
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Another interesting question is how spatial reference frames differ between and

within the two networks. Given its retinotopic fieldmaps, the visual network presum-

ably represents scene information relative to the current eye position; previous work

has argued that this reference frame is truly retina-centered and not egocentric [107,

306]. The context network, however, likely transforms information between multiple

reference frames. Models of spatial memory suggest that medial temporal lobe (possi-

bly including aPPA) utilizes an allocentric representation, while the posterior parietal

lobe (possibly including cIPL) is based on an egocentric reference frame, and that

the two are connected via a transformation circuit in RSC that combines allocentric

location and head direction [44, 292]. There is some recent evidence for this model

in human neuroimaging: posterior parietal cortex codes the direction of attention in

an egocentric reference frame (even for positions outside the field of view) [259], and

RSC contains both position and head direction information (anchored to the local

environment) [185]. This raises the possibility that another critical role of cIPL could

be to transform retinotopic visual information into a stable egocentric scene over the

course of multiple eye movements. The properties of aPPA, however, are much less

clear; it seems unlikely that it would utilize an entirely different coordinate system

than neighboring PHC1/2, and some aspects of the scene encoded in aPPA (such as

overall scene size [219]) dont seem tied to any particular coordinate system.

7.4.6 Conclusion

Based on a review of previous literature, as well as novel comparisons of scene-related

regions with data-driven clustering analyses, we have proposed a unifying framework

for understanding the neural systems involved in processing both visual and non-

visual properties of natural scenes. This new two-network classification system makes

explicit the relationships between known scene-sensitive regions, re-emphasizes the

importance of the functional subdivision within the PPA, and incorporates posterior

parietal cortex as a primary component of the scene-understanding system. Our

proposal, that much of the scene-processing network relates more to contextual and

navigational information than to specific visual features, suggests that experiments
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with unfamiliar natural scene images will give only a partial picture of the neural

processes evoked in real-world places. Experiencing our visual environment requires

a dynamic cooperation between distinct cortical systems, to extract information from

the current view of a scene and then integrate it with our understanding of the world

and determine our place in it.
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Chapter 8

Conclusion

What makes a scene more than just a collection of objects? This work has provided

several new answers to this question, and has also produced several novel methods for

neuroimaging analysis that can be applied to many other questions about the human

brain.

The emergent features present in a scene were first investigated in Chapter 2,

in which subjects were shown objects, people, groups of noninteracting objects and

people, and real human-object interactions. Decoding and cross-decoding analyses

revealed that a collection of regions, especially the posterior superior temporal sulcus

(pSTS), only represented the category of the stimuli drawn from real interactions and

had category representations that were not predictable from the sum of individual

object and human response patterns. This points to a neural mechanism underlying

the perception of social features in multi-component scenes, which are not present in

individual humans or objects.

Chapter 3 then tackled the question of emergent features in general scenes, full

environments composed of many components. The results of this large-scale study

found that the high-level meaning of a scene can be well-captured by the actions

one could perform in that scene. In comparison to models based on individual scene

components (objects or visual features), this high-level functionality description was

a better predictor of which types of scenes participants thought were most similar.

Scene functions are therefore a critical part of scene representation, and are not simply
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inherited from the collection of objects in the image.

All of these experiments involved unfamiliar images with no associated memories

or places for the participants. In real-world scene perception, almost every scene we

experience has associated contextual and navigation information, which is not present

in the image but must be retrieved from a representation in memory. Chapters 4 and

5 investigated how memory systems and visual perception systems intersect in the

parahippocampal place area (PPA), the most prominent brain region underlying scene

perception. Chapter 4 developed a set of tools for measuring fine-grained connectivity

differences at the millimeter scale, which were then applied in Chapter 5 to show that

the PPA consists of multiple subregions along the anterior-posterior axis, connected

separately to visual and memory regions.

This visual vs. contextual division was extended into a general framework for un-

derstanding all scene-related processing in Chapters 6 and 7. Chapter 6 introduced a

method for producing precise gray-matter clusters based on connectivity differences,

and this parcellation was used in Chapter 7 to identify two distinct networks under-

lying scene perception: an occipital network responsible for processing the current

visual input, and a parietal/medial-temporal network that connected visual informa-

tion with long-term memories. This new organizing principle for scene processing

shows another critical way in which scenes are not the sum of their parts: scenes

evoke representations of a real location in time and space, and a large part of the

brain’s scene processing machinery is specialized for grounding a visual scene to a

real-world place.

There are still many unanswered questions about high-order features of real-world

scenes. How precisely are these features (such as functionality) implemented, at an

algorithmic level and at a physical neural circuit level? How do these networks develop

over a lifetime, from young children to older adults? How are these representations

affected by task goals or demands? Are there individual differences in the way scenes

or scene categories are encoded? What is the causal role of each component in the

scene-processing system, and how can we help patients with damage to one or more of

these regions? Answering these questions will require new computational and imaging

techniques, larger-scale studies, and more effective translational research. This work
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provides a starting point for diving deeper into the neural networks underlying the

mysterious and critical mechanisms of visual scene perception.
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Supplementary Figure A1: Robustness of cross-decoding result to number of

voxels selected. The fraction of voxels selected for classifier training (based on

overall visual responsiveness) did not have a major impact on the results reported in

Figure 2. As long as at least 20% of the voxels in all areas were used in training, the

same pattern of significant results can be shown. Starred points are those that are

significantly greater than zero (p<0.05 one-tailed t-test).
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Supplementary Figure A2: Determination of decoding significance threshold.

1,000 null searchlight maps were generated for each of the searchlight analyses, by

randomly permuting the stimulus labels for each classifier and then running the de-

coding searchlight. A threshold was chosen for each searchlight such that fewer than

5% of the null difference maps yielded false positive clusters larger than 100 voxels.

(a) For experiment 1, in which we are measuring differences between classifier accu-

racies, we obtain thresholds of 5.6 and 6.4. (b) For experiment 2, in which we are

measuring 4-way decoding accuracies, we obtain thresholds of 27.4 and 29.0.
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Supplementary Figure B1: Principal components of action matrix. MDS was

performed on the scene by action matrix, yielding a coordinate for each scene along

each MDS dimension, as well as a correlation between each action and each dimension.
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Supplementary Figure B2: Robustness to dimensionality reduction. For each

feature space, we reconstructed the feature matrix using a variable number of PCA

components and then correlated the cosine distance in this feature space with the hu-

man scene distances. Although the number of features varies widely between spaces,

all can be described in 100 dimensions, and the ordering of how well the features

predict human responses is essentially the same regardless of the number of dimen-

sions.
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List of Affordances

• Personal care

– Health related self-care

– Sexual activity

– Sleeping

– Washing/dressing/grooming oneself

• Household activities

– Appliance repair & maintenance (self)

– Building & repairing furniture

– Cleaning home exterior

– Email

– Exercising & playing with animals

– Exterior home repair & decoration

– Financial management

– Food & drink preparation

– Food presentation

– Grocery shopping

– Home heating / cooling

– Home security

– Home-schooling children

– Household organization & planning

– Interior decoration & repair

– Interior home cleaning

– Kitchen & food clean-up

– Laundry

– Lawn/garden & plant care
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– Mailing

– Maintaining home pool/pond/hot tub

– Non-veterinary pet care

– Sewing & repairing textiles

– Storing household items

– Vehicle repair & maintenance (self)

• Caring for & helping household members

– Arts & crafts with children

– Attending childs events

– Helping adult

– Helping child with homework

– Looking after adult

– Looking after children

– Obtaining medical care for adult

– Obtaining medical care for child

– Organizing & planning for adults

– Organizing & planning for children

– Physical care of adult

– Physical care of children

– Picking up / dropping off adult

– Picking up / dropping off child

– Playing sports with children

– Playing with children (not sports)

– Providing medical care to adult

– Providing medical care to child

– Reading with children
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– Talking with children

• Work & work-related activities

– Architecture & engineering work

– Arts / Design / Entertainment / Sports / Media work

– Building and Grounds Cleaning and Maintenance work

– Business and Financial Operations work

– Community and social work

– Computer and mathematical work

– Construction and Extraction work

– Education and library work

– Farming / Fishing and Forestry work

– Food Preparation and Serving work

– Healthcare work

– Income-generating hobbies & crafts

– Income-generating performance

– Income-generating rental property activity

– Income-generating selling activities

– Income-generating services

– Installation / Maintenance and Repair work

– Job interviewing

– Job search activities

– Legal work

– Management/Executive work

– Military work

– Office and Administrative work

– Personal Care and Service work
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– Production work

– Protective services work

– Sales work

– Science work

– Transportation and Material Moving work

– Work-related eating/drinking

– Work-related social activities

– Work-related sports

• Education

– Attending school-related meetings & conferences

– Education-related administrative activities

– Extracurricular club activities

– Homework

– School music activities

– Student government

– Taking class for degree or certification

– Taking class for personal interest

• Consumer purchases

– Comparison shopping

– Purchasing food (not groceries)

– Purchasing gasoline

– Shopping (except food and gas)

• Professional & personal care services

– Banking

– Buying & selling real estate

– Out-of-home medical services



APPENDIX B. VISUAL SCENES ARE CATEGORIZED BY FUNCTION 176

– Using clothing repair & cleaning services

– Using legal services

– Using meal preparation services

– Using other financial services

– Using personal care services

– Using professional photography services

– Using vehicle maintenance & repair services

– Using veterinary services

• Household services

– Using home repair & construction services

– Using in-home medical services

– Using interior home cleaning services

– Using lawn & garden services

– Using paid childcare services

– Using pet services

• Government services & civic obligations

– Civic obligations

– Obtaining licenses & paying fees

– Security screening

– Using police & fire services

– Using social services

– Waiting

• Eating & drinking

– Eating & drinking

• Socializing, relaxing & leisure

– Arts & crafts
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– Attending meetings for personal interest

– Attending movies

– Attending museums

– Attending or hosting parties

– Attending the performing arts

– Collecting as a hobby

– Computer use (not games)

– Dancing

– Gambling

– Hobbies

– Listening to music (not radio)

– Listening to radio

– Playing games

– Reading for personal interest

– Relaxing

– Socializing

– Tobacco use

– Watching television & movies

– Writing for personal interest

• Sports, exercise & recreation

– Biking

– Boating

– Bowling

– Camping

– Doing aerobics

– Doing gymnastics
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– Doing martial arts

– Fencing

– Fishing

– Golfing

– Hiking

– Hunting

– Participating in aquatic sports

– Participating in equestrian sports

– Participating in rodeo

– Playing baseball

– Playing basketball

– Playing billiards

– Playing football

– Playing hockey

– Playing racquet sports

– Playing rugby

– Playing soccer

– Playing softball

– Playing volleyball

– Rock climbing / caving

– Rollerblading / skateboarding

– Running

– Skiing / ice skating / snowboarding

– Using cardiovascular equipment

– Vehicle racing/touring

– Walking
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– Watching aerobics

– Watching aquatic sports

– Watching biking

– Watching billiards

– Watching boating

– Watching bowling

– Watching dance

– Watching equestrian sports

– Watching fencing

– Watching fishing

– Watching golf

– Watching gymnastics

– Watching hockey

– Watching live baseball

– Watching live basketball

– Watching live football

– Watching live soccer

– Watching live softball

– Watching live vehicle racing

– Watching martial arts

– Watching people walk

– Watching racquet sports

– Watching rock climbing / caving

– Watching rodeo

– Watching rollerblading / skateboarding

– Watching rugby
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– Watching running

– Watching skiing / snowboarding

– Watching volleyball

– Watching weightlifting

– Watching wrestling

– Weightlifting

– Working out

– Wrestling

– Yoga

• Religious & spiritual activities

– Attending religious services

– Religious education

– Religious practices

• Volunteer activities

– Volunteer at event

– Volunteer work: attending meeting

– Volunteer work: blood donation

– Volunteer work: building

– Volunteer work: clean up

– Volunteer work: collecting goods

– Volunteer work: computer use

– Volunteer work: food preparation

– Volunteer work: fundraising

– Volunteer work: organizing

– Volunteer work: performing

– Volunteer work: providing care
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– Volunteer work: public safety

– Volunteer work: reading

– Volunteer work: teaching

– Volunteer work: telephone calls

– Volunteer work: writing

• Telephone calls

– Telephone calls

• Traveling

– In transit / traveling

– Travel
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Supplementary Figure C1: Effects of λ and k parameters on V1-VP connec-

tivity. We calculate the median difference between the VP receptive fields and the

receptive fields generated by the V1 connectivity map for the VP voxels, averaged

across subjects (smaller is better). Each curve corresponds to a k value between 2

and 16, and the x-axis corresponds to the λ value (log scale). Diamonds indicate

(λ, k) combinations that give a significant reduction in error, compared with using

a single weight for all voxels (λ → ∞) (t(12) > 1.78, p < 0.05, one-tailed t-test).

Improvement over the traditional approach is observed over a wide range of λ values

(101 through 106), and for all k > 2.
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Supplementary Figure C2: hV4 connectivity results using only pre-smoothing.

To demonstrate that spatial regularization is not equivalent to pre-smoothing, we

smoothed the input data and then learned hV4 connectivity weights without regu-

larization (λ = 0). This smoothing was performed by iteratively averaging the time-

course of a voxel with those of its neighbors, for a given number of rounds (k = 10).

The generalization performance of the learned hV4 maps on held-out testing data is

plotted for seed regions PPA and FFA. In both cases, the generalization accuracy sim-

ply asymptotes as smoothing increases, and we are unable to identify non-constant

maps that give better performance than constant maps. Our results with regular-

ization (Fig. 5, top) are qualitatively different, since intermediate values of λ give a

peak in prediction accuracy (achieving a performance level higher than any amount

of pre-smoothing). The shaded region indicates standard error.
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Supplementary Figure C3: Smoothness of learned maps as a function of λ. To

quantify the relationship between the regularization strength λ and spatial smooth-

ness, we compute the average FWHM (full width at half maximum) for the learned

hV4 connectivity maps [314]. As λ→ 0, maps vary at the scale of individual voxels,

while as λ→∞, maps are constant across the entire ROI.
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Supplementary Figure D1: Weightmaps Learned by Voxelwise Correlation.

Rather than using our regularized connectivity approach, here the weight of each

voxel for its connectivity with a seed ROI is simply set to the correlation between that

voxel’s timecourse and the seed ROI timecourse (constrast with main paper Fig. 2b).

Although this approach can successfully detect that LOC and TOS are preferentially

connected to posterior PPA, it fails to show significant effects for RSC and cIPL

(LOC: t17 = 6.02, p < 0.01; TOS: t17 = 7.03, p < 0.01; RSC: t17 = 0.22, p = 0.83;

cIPL: t17 = −1.81, p = 0.09; two-tailed t-test after z-transform). Error bars represent

s.e.m. across subjects, ** p < 0.01.
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Supplementary Figure D2: Predictive performance of the connectivity model

with varying regularization strength. After learning a map of connectivity

weights over PPA for each seed region (LOC, TOS, RSC, and cIPL) using one run,

we measured how well the weighted average of PPA timecourses predicted the mean

seed timecourse on the held-out runs. The X-axis (log scale) indicates the strength of

spatial regularization applied; at the left side of the graph voxel weights are estimated

independently, while the right endpoint corresponds to the traditional connectivity

model in which only constant weight maps are learned. Intermediate regularization

values (colored) produce better significantly generalization accuracy than those at

the endpoints of the graph. This improvement occurs for a wide range of regular-

ization strengths λ (LOC: 10−0.07 < λ < 106.58; TOS: 100.64 < λ < 105.63; RSC:

10−0.07 < λ < 106.34; cIPL: 101.36 < λ < 106.10; t17 > 1.74, p < 0.05 one-tailed t-

test, uncorrected). The error bars indicate the standard deviation across subjects

(controlling for performance as λ→∞).
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Supplementary Figure D3: Weightmap Correlations along Other PPA Axes.

(a) The weightmaps for all areas show little correlation with the inferior to superior

axis (LOC: t17 = −1.71, p = 0.11; TOS: t17 = 0.63, p = 0.54; RSC: t17 = 1.87, p =

0.08; cIPL: t17 = −1.03, p = 0.32; two-tailed t-test after z-transform). (b) Along the

medial to lateral axis, cIPL is connected preferentially to the medial side of PPA,

but other regions show no significant biases (LOC: t17 = −1.73, p = 0.10; TOS:

t17 = 0.55, p = 0.59; RSC: t17 = −1.95, p = 0.07; cIPL: t17 = −3.55, p < 0.01;

two-tailed t-test after z-transform). Error bars represent s.e.m. across subjects,

** p < 0.01.
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a b

c d

Supplementary Figure D4: Robustness of Connectivity Result to Task and

Regularization Parameter. (a) Using only “resting” timepoints between stimulus

blocks yields similar results as when using all timepoints (FDR < 0.01, cluster size >

300mm3). (b) Rather than selecting an optimal regularization parameter using leave-

one-run-in cross validation, we can optimize our regularization using leave-one-run-

out cross validation, resulting in a smaller value of λ = 0.54. This does not change

the overall pattern of connectivity. (c-d) Results for each set of subjects in the two

experiments are similar to the whole-group results. These maps are thresholded at

p = 0.01 (uncorrected) to show the trends in these smaller sample sizes.
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a b

Supplementary Figure D5: Fraction of Variance Explained in Searchlight

Analysis. The fraction of variance explained for each searchlight seed by PPA was

calculated for both (a) the ROI-level method (using a spatially constant connectivity

map over each PPA hemisphere, i.e. λ → ∞) and (b) the voxel-level method. The

fraction of variance explained by each voxel was computed as the average value of

all searchlights including that voxel. Both methods show similar trends, with regions

near LOC, TOS, and RSC having a large amount of shared variance with PPA, and

other regions less related to PPA. The connectivity is substantially stronger overall

for the voxel-level method, consistent with our results for the individual ROIs (main

paper Fig. 2a).
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Supplementary Figure D6: LOC/TOS vs. RSC/cIPL Connectivity. The data

from Figure 6 is shown here across the entire inflated surface (FDR <0.05, cluster

size >1000 mm3). The Talairach coordinates of the cortical Default Mode Network

(DMN) regions identified by [100] are indicated with white dots. Voxels showing

the same connectivity pattern as anterior PPA (RSC/cIPL connectivity greater than

LOC/TOS connectivity) overlap closely with the DMN regions, showing that our

RSC and cIPL regions are key components of this network.
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