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Abstract. Functional connectivity patterns are known to exist in the
human brain at the millimeter scale, but the standard fMRI connectiv-
ity measure only computes functional correlations at a coarse level. We
present a method for identifying fine-grained functional connectivity be-
tween any two brain regions by simultaneously learning voxel-level con-
nectivity maps over both regions. We show how to formulate this problem
as a constrained least-squares optimization, which can be solved using
a trust region approach. Our method can automatically discover multi-
ple correspondences between distinct voxel clusters in the two regions,
even when these clusters have correlated timecourses. We validate our
method by identifying a known division in the lateral occipital complex
using only functional connectivity, thus demonstrating that we can suc-
cessfully learn subregion connectivity structures from a small amount of
training data.

1 Introduction

Untangling the connectivity structure of the incredibly complex networks under-
lying cognition is one of the key goals in modern neuroscience research. Func-
tional magnetic resonance imaging (fMRI) has become an invaluable tool for un-
derstanding macro-scale connectivity networks, since it can sample brain activ-
ity at the millimeter scale across the entire cortex simultaneously. The standard
approach for measuring functional connectivity using fMRI, however, ignores
voxel-level information present in the fMRI signal, and can only investigate con-
nectivity between large, predefined regions of interest (ROIs). This approach is
unable to answer a more interesting question: “which specific voxels in each of
these two regions are most strongly connected?”

We present a method for identifying voxel-level functional connectivity maps
between any two regions, which can automatically detect multiple correspon-
dences between subregions (see Fig. 1). Unlike previous approaches, our method
has no limitations on the sizes of the regions and can find multiple solutions even
when their timecourses are correlated. Our formulation also makes no assump-
tions about the anatomical locations of the connected clusters, making it much
more widely applicable than previous methods.



Fig. 1: Functional connectivity methods. The standard measurement of func-
tional connectivity between two regions averages together all voxels in each ROI,
ignoring voxel-level connectivity differences. Recent CCRF/FF work produces a
separate map over one region for each voxel in a seed region. Our method can
learn connectivity structures over both ROIs simultaneously, and automatically
identifies multiple connectivities between different sets of voxels.

Most fMRI studies measure functional connectivity between regions by sim-
ply computing the correlation between their mean timecourses [19], ignoring any
connectivity differences at the subregion level. Methods that investigate subre-
gion connectivity typically formulate the problem as learning “cortico-cortical
receptive fields” (CCRFs) [12, 13] or “functional fingerprints” (FFs) [14]; one
of the two regions is chosen as a seed region, and for each individual voxel (or
cluster of voxels) in the seed region, these methods identify voxels in the second
region that are most strongly functionally connected to the seed voxel. Seed vox-
els may then be grouped based on their connectivity signatures [5, 14, 16]. The
connectivity weights are generally computed using linear regression [16, 22] or
correlation [14], but have also been learned using support vector regression [13],
mutual information mapping [4], and spatially-regularized regression [1]. All of
these methods require treating the two regions asymmetrically, and cannot pro-
duce continuous-valued maps over both input regions, reducing their sensitivity
to fine-grained connectivity differences.

There have been several proposed approaches for learning continuous-valued
maps at the subregion level in both regions simultaneously. Some studies have
performed multiple linear regression, measuring connectivity between multiple
seed clusters in one region and all voxels in a second region [15, 20]. However,
these methods require downsampling the seed region to a small number of clus-
ters based on prior anatomical knowledge and manually comparing the connec-
tivity maps for each seed cluster. Canonical correlation analysis can be used
to learn voxel-level maps over both regions [8], but has a number of limitations.
Multiple correspondences between subregions can only be identified if their time-
courses are not (positively) correlated (as shown in section 3.2, this assumption
is not typically valid) and the number of voxels in each region must be smaller
than the number of timepoints (limiting the datasets to which this method can
be applied). Our method can learn voxel-level maps for regions of any size, and
can identify distinct subregions even if their timecourses are correlated, making
it widely applicable for investigating connectivity between any arbitrary pair of
ROIs.



2 Functional Connectivity as an Optimization Problem

2.1 Traditional Method

Functional connectivity between two ROIs is often measured by computing the
Pearson product-moment correlation coefficient (r value) between the mean
timecourses of the two ROIs [19]. Pairs of ROIs with a high r2 value are then
said to be strongly functionally connected. In order to generalize this method,
we first recast it as an equivalent linear regression problem, in which we measure
the similarity of the two mean timecourses, up to a scaling factor w:

minimize
w

||w ·meanv(A
1)−meanv(A

2)||22

where A1 and A2 are the (# voxels x # timepoints) data matrices from two
ROIs, and meanv(·) denotes an average across voxels. The r2 value is then
equivalent to the fraction of variance in meanv(A

2) explained by our predic-
tor w · meanv(A

1) [21]. We can therefore think of the traditional correlation

method as minimizing an objective of the form ||a1TA1 − a2TA2||22, in which
a1 and a2 are constant-weight connectivity maps.

2.2 Voxel-Level Method

Although the traditional problem can describe functional connectivity at the
coarse scale of ROIs, it makes the simplistic assumption that all voxels within
each region have the same functional connectivity properties. This prevents us
from using the traditional method to explore connectivity differences at the
voxel level, which are often of scientific interest [13–16, 20, 22]. To learn voxel-
level connectivity weights, we would like to relax the constraints on both a1 and
a2 and allow the connectivity maps to be nonconstant. Note that a CCRF/FF
method would relax only one of these constraints, learning a connectivity map
over only one of the regions.

As will be shown in section 3, simply allowing each voxel to be chosen inde-
pendently can lead to severe overfitting on the small datasets typical of fMRI
experiments. It is possible to avoid overfitting by imposing a spatial regulariza-
tion term that penalizes the average squared difference between every voxel i and
its neighbors n(i). This type of regularization encourages the maps to be spa-
tially smooth, reflecting a common view of cortical organization, and has been
applied in a variety of MRI and fMRI experiments [1, 6–8, 11, 17]. The neighbor-
hoods n(i) can be defined in a number of ways, with neighbors chosen based on
physical distance between voxels or distance along the cortical surface. For the
experiments in this paper, we choose the 10 voxels that are closest to i along
the cortical surface (varying the number of neighbors between 5 and 15 has little
effect). Adding these regularization terms to our objective function, we obtain:
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where T is the number of timepoints in our dataset, vk is the set of all voxels in
ROI k, and λ is a hyperparameter that controls the regularization strength. We
can write this objective compactly as∣∣∣∣∣∣∣
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where Dk is a sparse connectivity matrix; each row represents an edge from a
voxel i to a voxel j, with nonzero entries in column i (1/

√
|n(i)|) and column

j (−1/
√
|n(i)|). Our objective therefore has the form ||Xλ · β||22, where β =

[a1 a2]T is the concatenation of the connectivity maps in both regions.
Since this is a homogeneous least-squares problem, it is clear that we must

impose some constraint on the voxel weights β to avoid the degenerate solution
β = 0 (intuitively, the best timecourse prediction will always occur when the
weight maps on both ROIs are identically zero, since this allows for perfect
matching between the two regions). A standard method for choosing nonzero-
weight solutions to homogeneous least-squares problems is to constrain the norm
of β to be a constant, so we choose the constraint ||β||2 = 1. In addition, we
impose the elementwise constraint β � 0; allowing negative connectivity weights
makes the maps hard to interpret, since multiple solutions can be superimposed
(with different signs) and inter-region connectivity can be confounded with intra-
region connectivity (since weights in the same region can have opposite signs).

2.3 Solving the Voxel-Level Optimization Problem

Due to the constraint ||β||2 = 1, this optimization problem is not convex and may
have multiple local minima. Although this makes the problem more complicated
to analyze, the existence of multiple optima actually matches our intuition about
functional connectivity structure; we know that for some pairs of regions (such
as in early visual cortex [13]) there are multiple distinct connectivities between
different subregions.

To find a locally optimal β, we use a trust region approach [2, 3, 18]. This
optimization method searches for local extrema by iteratively taking small steps
in the parameter space. On each iteration, we create a convex approximation to
the optimization problem by linearizing the norm constraint around the current
set of parameters, and then find the optimal solution within a local trust region.
Given our current solution βi, we minimize ||Xλ · (βi + s)||22 over s, subject
to |(||βi||22 − 1) + 2βi

Ts| ≤ θ, ||s||2 ≤ ∆, and βi + s � 0; the trust region
is defined by the radius ∆ and the constraint tolerance θ, and we iterate by
setting βi+1 ⇐ βi + s until ||s||2 < ε. In our experiments, we use θ = 0.05,

∆ =
√
θ, ε = ∆/100, and λ = 102 (our results are not sensitive to this choice)

and use CVX (a package for specifying and solving convex programs) to solve the
convex problem at each iteration [9]. We obtain multiple solutions by trying 20
initializations of β0, each of which assigns all the connectivity weight to a single
random voxel (in either region).



3 Results

3.1 Experimental Design

To validate our method, we use an objects-in-context block-design dataset con-
sisting of 10 subjects performing 4 runs (for full details, see [1]). We trained our
model on only a single run (306 timepoints) to demonstrate the efficiency of our
approach. In each subject, LOC was defined in an independent set of localizer
scans as the top 500 voxels responding more to objects than scrambled images.

Imaging data were acquired with a 3 Tesla G.E. Healthcare scanner. A gra-
dient echo, echo-planar sequence was used to obtain functional images (TR=2s,
1.56x1.56x4 mm3). The functional data were motion-corrected and each voxel’s
timecourse was z-scored to have zero mean and unit variance. A high-resolution
(1x1x1mm3) SPGR structural scan was collected in each scanning session.

3.2 lLOC - rLOC Connectivity

We used the objects-in-context dataset to learn the connectivity between left
LOC (lLOC) and right LOC (rLOC). It has been previously shown that LOC
consists of two functionally distinct subregions: a posterior-dorsal subdivision
(LO), and an anterior-ventral subdivision (pFs) [10]. Since these two subregions
have different functional response patterns, we expect distinct functional connec-
tions between the anterior side of lLOC and rLOC and/or between the posterior
side of lLOC and rLOC. For comparison purposes, we also apply a CCRF/FF
correlation clustering method, which can only learn maps over one region at a
time, from [14].

Fig. 2a shows the solutions for a representative subject. Little spatial struc-
ture is evident when using the CCRF/FF correlation clustering method with
either left or right LOC as the seed region (top, results shown using left LOC as
seed region) or using our method without regularization (middle). However, af-
ter adding the regularization term (bottom), we obtain a clear posterior-anterior
segregation of the two solutions in this subject. These two clusters partition left
and right LOC into two functional units, corresponding to LO and pFs [10]. Note
that our algorithm did not use any prior knowledge about the number of subre-
gions or their spatial configuration. Across subjects, the number of solutions in
the regularized case ranged from one to three.

To quantify the correspondence between the left and right connectivity maps,
we then measure the correlation between these posterior-anterior connectivity
profiles for the left and right hemispheres, shown in Fig. 2b. Using correlation
clustering (averaged for the choice of lLOC or rLOC as the seed region) or
applying our method without regularization (NR), we obtain only a slight corre-
lation between the posterior-anterior profiles. When adding regularization (R),
however, our method produces maps which are highly correlated between hemi-
spheres (t9 = 3.95, p < 0.01, two-tailed t-test), giving a significant improvement
over both the CCRF/FF method (t9 = 3.98, p < 0.01, two-tailed paired t-test)
and the unregularized method (t9 = 3.82, p < 0.01, two-tailed paired t-test).
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Fig. 2: lLOC-rLOC results. (a) In this representative subject, a CCRF/FF cor-
relation clustering approach (top) fails to find anterior-posterior connectivity
maps in left and right LOC, as does our method without spatial regularization
(middle). Adding regularization (bottom) produces a separate posterior and an-
terior correspondence between hemispheres. (b) Only our proposed method (with
spatial regularization) yields a strong correspondence between the hemispheres’
weight maps along the posterior-anterior axis. ** p < 0.01. (Best viewed in color)

Note that the representative timecourses for the anterior and posterior clusters
are strongly positively correlated (r = 0.83 left, 0.81 right, averaged among sub-
jects with exactly two clusters); the subtle distinction between these clusters
therefore could not be identified by a CCA method [8]. Unlike [10], which used
a specialized adaptation design, we are able to identify this anterior-posterior
difference using only a single run from a dataset that was not tailored for this
purpose.

4 Conclusion

We have shown that learning smooth voxel-level functional connectivity maps
can be formulated as a constrained least-squares problem, and have demon-
strated that we can recover the ground truth subregional connectivity structure
of LOC without using specialized datasets or a large number of training time-
points. By simultaneously learning weight maps over two regions and by includ-
ing a spatial smoothness term, our method is much more sensitive to fine-grained
connectivity differences than previous methods.



This work is funded by National Institutes of Health Grant 1 R01 EY019429 (to L.F.-
F. and D.M.B.), a National Science Foundation Graduate Research Fellowship under
Grant No. DGE-0645962 (to C.B.) and a William R. Hewlett Stanford Graduate Fel-
lowship (to M.C.I.).

References

1. Baldassano, C., Iordan, M.C., Beck, D.M., Fei-Fei, L.: Voxel-level func-
tional connectivity using spatial regularization. NeuroImage (2012),
http://www.sciencedirect.com/science/article/pii/S1053811912007756

2. Byrd, R.H., Schnabel, R.B., Shultz, G.A.: A trust region algorithm for nonlinearly
constrained optimization. SIAM Journal on Numerical Analysis 24(5), 1152–1170
(October 1987)

3. Celis, M.R., Jr., J.E.D., Tapia, R.A.: A trust region strategy for equality con-
strained optimization. Tech. Rep. 84-1, Mathematical Sciences Department, Rice
University (September 1984)

4. Chai, B., Walther, D.B., Beck, D., Fei-Fei, L.: Exploring functional connectivity of
the human brain using multivariate information analysis. In: Advances in Neural
Information Processing Systems 22 (2009)

5. Cohen, A.L., Fair, D.A., Dosenbach, N.U., Miezin, F.M., Dierker, D., Van Essen,
D.C., Schlaggar, B.L., Petersen, S.E.: Defining functional areas in individual hu-
man brains using resting functional connectivity MRI. Neuroimage 41, 45–57 (May
2008)

6. Conroy, B., Singer, B., Haxby, J., Ramadge, P.: fMRI-based inter-subject corti-
cal alignment using functional connectivity. In: Advances in Neural Information
Processing Systems 22 (2009)

7. Cuignet, R., Chupin, M., Benali, H., Colliot, O.: Spatial and anatomical regu-
larization of SVM for brain image analysis. In: Advances in Neural Information
Processing Systems 23 (2010)

8. Deleus, F., Van Hulle, M.M.: Functional connectivity analysis of fMRI data based
on regularized multiset canonical correlation analysis. J. Neurosci. Methods 197(1),
143–157 (Apr 2011)

9. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming,
version 1.21. http://cvxr.com/cvx (Apr 2011)

10. Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., Malach,
R.: Differential processing of objects under various viewing conditions in
the human lateral occipital complex. Neuron 24(1), 187 – 203 (1999),
http://www.sciencedirect.com/science/article/pii/S0896627300808326

11. Grosenick, L., Klingenberg, B., Knutson, B., Taylor, J.E.: A family of interpretable
multivariate models for regression and classification of whole-brain fMRI data.
ArXiv e-prints (Oct 2011)

12. Haak, K.V., Winawer, J., Harvey, B.M., Dumoulin, S.O., Wandell, B.A., Cornelis-
sen, F.W.: Cortico-cortical population receptive field modeling. In: Perception 40
ECVP Abstract Supplement. p. 49 (2011)

13. Heinzle, J., Kahnt, T., Haynes, J.: Topographically specific functional connectivity
between visual field maps in the human brain. NeuroImage 56(3), 1426 – 1436
(2011), http://www.sciencedirect.com/science/article/pii/S1053811911002540

14. Kim, J.H., Lee, J.M., Jo, H.J., Kim, S.H., Lee, J.H., Kim, S.T., Seo, S.W., Cox,
R.W., Na, D.L., Kim, S.I., Saad, Z.S.: Defining functional SMA and pre-SMA



subregions in human MFC using resting state fMRI: functional connectivity-based
parcellation method. Neuroimage 49, 2375–2386 (Feb 2010)

15. Margulies, D.S., Kelly, A.M., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham,
M.P.: Mapping the functional connectivity of anterior cingulate cortex. Neuroimage
37, 579–588 (Aug 2007)

16. Margulies, D.S., Vincent, J.L., Kelly, C., Lohmann, G., Uddin, L.Q., Biswal, B.B.,
Villringer, A., Castellanos, F.X., Milham, M.P., Petrides, M.: Precuneus shares
intrinsic functional architecture in humans and monkeys. Proc. Natl. Acad. Sci.
U.S.A. 106(47), 20069–20074 (Nov 2009)

17. Ng, B., Abugharbieh, R.: Generalized sparse regularization with application to fmri
brain decoding. In: IPMI. pp. 612–623 (2011)

18. Powell, M.J.D., Yuan, Y.: A trust region algorithm for equality constrained opti-
mization. Mathematical Programming 49, 189–211 (1991)

19. Rogers, B.P., Morgan, V.L., Newton, A.T., Gore, J.C.: Assessing functional con-
nectivity in the human brain by fMRI. Magn Reson Imaging 25, 1347–1357 (Dec
2007)

20. Roy, A.K., Shehzad, Z., Margulies, D.S., Kelly, A.M., Uddin, L.Q., Gotimer, K.,
Biswal, B.B., Castellanos, F.X., Milham, M.P.: Functional connectivity of the hu-
man amygdala using resting state fMRI. Neuroimage 45, 614–626 (Apr 2009)

21. Stockburger, D.W.: Introductory statistics: Concepts, models, and applications
(1996), http://www.psychstat.missouristate.edu/IntroBook/sbk00.htm

22. Zhang, D., Snyder, A.Z., Fox, M.D., Sansbury, M.W., Shimony, J.S., Raichle, M.E.:
Intrinsic functional relations between human cerebral cortex and thalamus. J. Neu-
rophysiol. 100, 1740–1748 (Oct 2008)


