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Abstract 

Generating structured stimuli for investigations of human behavior and brain activity  

with computational models 

Matthew E. Siegelman 

 

 Some of the most important discoveries in cognitive neuroscience have come from recent 

innovations in experimental tools. Computational models that simulate human perception of 

environmental inputs have revealed the internal processes and features by which those inputs are 

learned and represented by the brain. We advance this line of work across two separate research 

studies in which we leveraged these models to both generate experimental task stimuli and make 

predictions about behavioral and neural responses to those stimuli. Chapter 1 details how nine 

language models were used to generate controversial sentence pairs for which two of the models 

disagreed about which sentence is more likely to occur. Human judgments about these sentence 

pairs were collected and compared to model preferences in order to identify model-specific 

pitfalls and provide a behavioral performance benchmark for future research. We found that 

transformer models GPT-2, RoBERTa and ELECTRA were most aligned with human 

judgments. Chapter 2 utilizes the GloVe model of semantic word vectors to generate a set of 

schematically structured poems comprising ten different topics whose specific temporal order 

was learned by a group of participants. The GloVe model was then used to investigate learning-

induced changes in the spatial geometry of the representations of the topics across the cortex. A 

Hidden Markov Model was also used to measure neural event segmentation during poem 

listening. In both analyses we identified a consistent topography of learning-induced changes in 

the default mode network, which could be partially explained by the models.  
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Introduction 

Why do psychologists want to construct a model the brain? To better understand how it 

works. Our best neuroimaging methods have a limited spatial and temporal resolution. A model 

that appears to match the behavior and activity of the brain could help us gain deeper insights 

into the kinds of computations the brain uses to process information. How do we test a 

computational model of the brain? The same way we test the brain – by recording its output and 

internal activity in response to a certain stimulus. If the model acts like the brain, it could 

simulate the neural computations and representations of that stimulus. 

For example, we can show pictures to deep convolutional neural networks (CNNs). These 

models have several hierarchical processing layers that integrate information over many spatial 

scales, which allows them to recognize objects in images (Kriegeskorte, 2015). The output of 

these models is a probabilistic label for the objects in the images, and the internal activity is the 

activation of units within each processing layer of the model. The human visual cortex also has 

several hierarchical processing layers, which also integrate information over different spatial 

scales to allow us to recognize objects. And in fact, it has been shown that the kinds of visual 

features relevant to human behavior and represented in the visual cortex are similar to those in 

deep CNNs (Kriegeskorte, 2015; Krizhevsky et al., 2017). 

Just as CNNs integrate information over different spatial scales, recurrent neural network 

models (RNNs) integrate information over different time scales, allowing them to recognize 

patterns in language inputs (Bengio et al., 2000). The output of these models is a probabilistic 

prediction of an upcoming word, and the internal activity is embedded in its recurrent internal 

state, which updates with each new word. Also like CNNs, RNNs have helped us learn about the 

brain. By comparing the internal activity of RNNs to neural activity in the language system 
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during language comprehension, psychologists have found regions in the temporal lobe that 

integrate linguistic information over short and long timescales (Jain et al., 2020). More recent 

transformer models, such as BERT and GPT (Devlin et al., 2019; Radford et al., 2019), have 

been used to predict fine-grained brain responses in the language system during sentence 

comprehension (Schrimpf et al., 2021).  

In all such cases of using models to understand the brain, the original source of 

information was human ecology, where natural human behavior created training data for these 

models. We took pictures of our experiences and uploaded them to the internet. We 

communicated with each other online with digital text. Models were then architected specifically 

to capture the structure of these multiple modalities of experience, and in turn helped us learn 

about our own brains and behavior. This is a compelling story, not only for the computational 

model architects and cognitive neuroscientists who have helped advance this knowledge, but for 

the billions of people on this planet who unwittingly contributed rich data sources to this 

scientific enterprise, and who benefit directly from its labors. Today, models like Dall-E and 

chatGPT are widely used across an array of business, artistic and personal ventures.   

All that said, using these models to better understand the brain does have some 

limitations. For one thing, machine learning models tend to have strange, non-humanlike 

properties. The best object recognition models are routinely fooled by adversarial examples 

(Goodfellow et al., 2015), where random noise added to the pixel values of an image can cause a 

model to become extremely confident that an incorrect, unrelated object is present in an image. 

RNNs and transformer models have widely identified pitfalls, such as endless word and 

sentence-level repetitions characterized by a self-reinforcement effect (Xu et al., 2022). These 

models have also been shown to be capable of fooling each other into thinking that an obviously 
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errored sentence is relatively more likely than a human-preferred sentence (Golan et al., 2023). 

These odd behaviors suggest that there are still critical misalignments between models and 

human brains.  

Another limitation to this approach is that good models tend to act similarly in response 

to typical inputs. Our field has been saturated with so many well performing models, in part 

because anytime a research lab achieves 0.1% greater accuracy than the current leader on a 

popular benchmark task, it is deemed worthy of publication. How do we compare all these 

models to each other, or determine which model is acting similarly to human behavior or the 

brain, when they all converge on similar solutions and respond in a similar manner? We need 

new methods to make models behave differently in interesting ways.  

Finally, even the most sophisticated models do not fully capture naturalistic human 

experiences. Models have proven effective at simulating responses to things like basic linguistic 

and visual tasks, which have bottom up, ground truth structure. When we aim to study higher 

level brain functions and behaviors that involve dynamic perception, memory, prediction, 

emotion, and attention, we must use stimuli that match the richness and complexity of the real 

word, such as movies and stories. However, these types of complex experiences are not captured 

by our current models.  

In this dissertation, we propose that one way to push against these various limitations is 

to use these models to generate stimuli for experiments. By doing so, we can create specially 

crafted inputs that attempt to “break” the alignment between models and typical human behavior, 

so that if a model does have a so-called “strange property,” it can be identified in an efficient 

way. We can also identify stimuli that optimally distinguish between models which tend to 

behave similarly and design stimulus sets to exploit those distinctions, thus introducing 
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meaningful variance between the models to then compare them to humans. Lastly, we can guide 

model outputs to create structured stimuli of intermediate complexity, which are engaging for 

participants by incorporating naturalistic properties such as temporal dynamics and semantic 

complexity, and yet are also tied directly to model features and can therefore be used to test-

model driven hypotheses about higher level cognition.  

The work reported in this dissertation utilizes that line of reasoning. In both chapters, we 

use language models to generate highly structured experimental task stimuli, and then input the 

stimuli back into the models to make specific predictions about new human data. In Chapter 1, 

we used nine different language models (including n-gram, recurrent neural networks, and 

transformers) to construct controversial sentence pairs for which two of the models disagreed 

about which sentence is more likely to occur. We compared model preferences to human 

judgments on the same set of sentence pairs, including sentences sampled from natural text, and 

synthetic sentences optimized to be controversial for a given pair of models. We found that 1) 

GPT-2 (a unidirectional transformer model trained on predicting upcoming tokens) and 

RoBERTa (a bidirectional transformer trained on a held-out token prediction task) were the most 

predictive of human judgments on controversial natural sentence pairs; 2) GPT-2, RoBERTa, 

and ELECTRA (a bidirectional transformer trained on detecting corrupted tokens) were the most 

predictive of human judgments on synthetic sentence pairs; and 3) GPT-2 was the most human-

consistent model when considering the entire behavioral dataset we collected. These findings 

coincide with recent evidence that transformers also outperform recurrent networks for 

predicting behavioral reading speed (Wilcox et al., 2021; Merkx & Frank, 2021) and neural 

responses to natural language (Schrimpf et al., 2021; Goldstein et al., 2022). However, all of the 

models, including GPT-2, exhibited behavior inconsistent with human judgments; using an 
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alternative model as a counterforce, we could corrupt natural sentences such that their probability 

under a model did not decrease, but humans tended to reject the corrupted sentence as unlikely. 

These errors could be informative about model-specific pitfalls related to their architectures or 

training procedures. They also provide a behavioral performance benchmark to compare to 

future neurobiologically plausible models, which might be more robust to this type of corruption. 

Those models could then be probed further, either by pitting them against each other as we 

showed here, or by synthesizing stimuli for another experiment.  

In Chapter 2, we used BERT (a bidirectional transformer) and GloVe (a non-recurrent 

model of semantic features) to generate a set of schematically structured poems comprising a 

temporal sequence of ten different topics. We used these stimuli to investigate changes in the 

temporal dynamics and semantic representations associated with learning a new schema by 

playing spoken recordings of the poems in fMRI before and after participants learned its topic 

sequence. We found a topography of changes that was consistent between two independent 

groups of participants who learned two different sequences across multiple regions of the default 

mode network (DMN), in line with previous work on schema perception and memory 

(Baldassano et al., 2017; Baldassano et al., 2018). In a Hidden Markov Model analysis, we 

showed how changes in the neural time course activity associated with individual poems could 

be explained in one group of participants by an increase in the strength of event boundaries – 

shifts between stable patterns of neural activity at event transitions – which facilitate the mental 

segmentation of experiences in perception and memory (Kurby & Zacks, 2008). In a 

representational similarity analysis, we used the GloVe model, which has been previously used 

to decode semantic representations in fMRI data in response to a wide variety of concrete and 

abstract topics (Pereira et al., 2018), to describe how topic representations in the DMN changed 
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with respect to their spatial geometry in GloVe vector space, thereby making full use of this 

model by both constructing experimental task stimuli and subsequently predicting brain 

responses to those stimuli. 

The results reported in these studies provide novel insights into current debates in the 

literature and create unique opportunities for further investigation. In both chapters we build on 

recent work applying similar experimental procedures and introduce several novel methods that 

could materially benefit future research.  
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Chapter 1: Testing the limits of natural language models for 

predicting human language judgments 

 

Please note, chapter to be published as: 

Golan, T.*, Siegelman, M.*, Kriegeskorte, N. & Baldassano, C. (Accepted). Testing the limits 

of natural language models for predicting human language judgments. Nature Machine 

Intelligence. 

 

∗The first two authors contributed equally to this work. 
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1.1 Introduction 

Neural network language models are not only key tools in natural language processing 

(NLP) but are also drawing an increasing scientific interest as potential models of human 

language processing. Ranging from recurrent neural networks (Rumelhart et al., 1986; 

Hochreiter & Schmidhuber, 1997) to transformers (Devlin et al., 2019; Liu et al., 2019; Conneau 

& Lample, 2019; Clark et al., 2020; Radford et al., 2019), each of these language models 

(explicitly or implicitly) defines a probability distribution over strings of words, predicting which 

sequences are likely to occur in natural language. There is substantial evidence from measures 

such as reading times (Goodkind & Bicknell, 2018), functional MRI (Shain et al., 2020), scalp 

EEG (Broderick et al., 2018), and intracranial ECoG (Goldstein et al., 2022) that humans are 

sensitive to the relative probabilities of words and sentences as captured by language models, 

even among sentences that are grammatically correct and semantically meaningful. Furthermore, 

model-derived sentence probabilities can also predict human graded acceptability judgments 

(Lau et al., 2017; Lau et al., 2020). These successes, however, have not yet addressed two central 

questions of interest: (1) Which of the models is best-aligned with human language processing? 

(2) How close is the best-aligned model to the goal of fully capturing human judgments?  

The standard approach for evaluating language models is to use a set of standardized 

benchmarks such as those in the General Language Understanding Evaluation (GLUE) (Wang et 

al., 2019a), or its successor, SuperGLUE (Wang et al., 2019b). Though instrumental in 

evaluating the utility of language models for downstream NLP tasks, these benchmarks prove 

insufficient for comparing such models as candidate explanations of human language-processing. 

Many components of these benchmarks do not aim to measure human alignment, but rather the 

usefulness of the models’ language representation when tuned to a specific downstream task. 
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Some benchmarks challenge language models more directly by comparing the probabilities they 

assign to grammatical and ungrammatical sentences (e.g., Warstadt et al., 2020). However, since 

such benchmarks are driven by theoretical linguistic considerations, they might fail to detect 

novel, unexpected ways in which language models may diverge from human language 

understanding. Last, an additional practical concern is that the rapid pace of NLP research has 

led to rapid saturation of these kinds of static benchmarks, making it difficult to distinguish 

between models (Kiela et al., 2021).  

One proposed solution to these issues is the use of dynamic human-in-the-loop 

benchmarks in which people actively stress-test models with an evolving set of tests. However, 

this approach faces the major obstacle that “finding interesting examples is rapidly becoming a 

less trivial task” (Kiela et al., 2021). We propose to complement human-curated benchmarks 

with model-driven evaluation. Guided by model predictions rather than experimenter intuitions, 

we would like to identify particularly informative test sentences, where different models make 

divergent predictions. This approach of running experiments mathematically optimized to “put in 

jeopardy” particular models belongs to a long-standing scientific philosophy of design 

optimization (Box & Hill, 1967). We can find these critical sentences in large corpora of natural 

language or synthesize novel test sentences that reveal how different models generalize beyond 

their training distributions.  

We propose here a systematic, model-driven approach for comparing language models in 

terms of their consistency with human judgments. We generate controversial sentence pairs: 

pairs of sentences designed such that two language models strongly disagree about which 

sentence is more likely to occur. In each of these sentence pairs, one model assigns a higher 

probability to the first sentence than the second sentence, while the other model prefers the 
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second sentence to the first. We then collect human judgments of which sentence in each pair is 

more probable to settle this dispute between the two models.  

This approach builds on previous work on controversial images for models of visual 

classification (Golan et al., 2020). That work relied on absolute judgments of a single stimulus, 

which are appropriate for classification responses. However, asking the participants to rate each 

sentence’s probability on an absolute scale is complicated by between-trial context effects 

common in magnitude estimation tasks (Cross, 1973; Foley et al., 1990; Petzschner et al., 2015), 

which have been shown to impact judgments like acceptability (Greenbaum, 1977). A binary 

forced-choice behavioral task presenting the participants with a choice between two sentences in 

each trial, the approach we used here, minimizes the role of between-trial context effects by 

setting an explicit local context within each trial. Such an approach has been previously used for 

measuring sentence acceptability (Schutze & Sprouse, 2014) and provides substantially more 

statistical power compared to designs in which acceptability ratings are provided for single 

sentences (Sprouse & Almeida, 2017).  

Our experiments demonstrate that 1) it is possible to procedurally generate controversial 

sentence pairs for all common classes of language models, either by selecting pairs of sentences 

from a corpus or by iteratively modifying natural sentences to yield controversial predictions; 2) 

the resulting controversial sentence pairs enable efficient model comparison between models that 

otherwise are seemingly equivalent in their human consistency; and 3) all current NLP model 

classes incorrectly assign high probability to some non-natural sentences (one can modify a 

natural sentence such that its model probability does not decrease but human observers reject the 

sentence as unnatural). This framework for model comparison and model testing can give us new 
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insight into the classes of models that best align with human language perception and suggest 

directions for future model development. 

1.2 Methods 

Language models  

We tested nine models from three distinct classes: n-gram models, recurrent neural 

networks, and transformers. The n-gram models were trained with open source code from the 

Natural Language Toolkit (Bird et al., 2009), the recurrent neural networks were trained with 

architectures and optimization procedures available in PyTorch (Paszke et al., 2019), and the 

transformers were implemented with the open-source repository HuggingFace (Wolf et al., 

2020). For full details see Supplementary Methods. 

Evaluating sentence-level probabilities in transformer models  

We then sought to compute the probability of arbitrary sentences under each of the 

models described above. The term “sentence” is used in this context in its broadest sense–a 

sequence of English words, not necessarily restricted to grammatical English sentences. Unlike 

some classification tasks in which valid model predictions may be expected only for grammatical 

sentences (e.g., sentiment analysis), the sentence probability comparison task is defined over the 

entire domain of eight-word sequences. 

For the set of unidirectional models, evaluating sentence probabilities was performed 

simply by summing the log probabilities of each successive token in the sentence from left to 

right, given all the previous tokens. For bidirectional models, this process was not as 

straightforward. One challenge is that transformer model probabilities do not necessarily reflect a 

coherent joint probability; the summed log sentence probability resulting from adding words in 

one order (e.g. left to right) does not necessarily equal the probability resulting from a different 
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order (e.g. right to left). Here we developed a novel formulation of bidirectional sentence 

probabilities in which we considered all permutations of serial word positions as possible 

construction orders (analogous to the random word visitation order used to sample serial 

reproduction chains, Yamakoshi et al., 2022). In practice, we observed that the distribution of log 

probabilities resulting from different permutations tends to center tightly around a mean value 

(for example, for RoBERTa evaluated with natural sentences, the average coefficient of variation 

was approximately 0.059). Therefore in order to efficiently calculate bidirectional sentence 

probability, we evaluate 100 different random permutations and define the overall sentence log 

probability as the mean log probability calculated from each permutation. Specifically, we 

initialized an eight-word sentence with all tokens replaced with the “mask” token used in place 

of to-be-predicted words during model training. We selected a random permutation P of 

positions 1 through 8, and started by computing the probability of the word at first of these 

positions P1 given the other seven “mask” tokens. We then replaced the “mask” at position P1 

with the actual word at this position and computed the probability of the word at P2 given the 

other six “mask” tokens and the word at P1. This process was repeated until all “mask” tokens 

had been filled by the corresponding word. 

A secondary challenge in evaluating sentence probabilities in bidirectional transformer 

models stems from the fact that these models use word-piece tokenizers (as opposed to whole 

words), and that these tokenizers are different for different models. For example, one tokenizer 

might include the word “beehive” as a single token, while others strive for a smaller library of 

unique tokens by evaluating “beehive” as the two tokens “bee” and “hive”. The model 

probability of a multi-token word–similar to the probability of a multi-word sentence–may 

depend on the order in which the chain rule is applied. Therefore, all unique permutations of 
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token order for each multi-token word were also evaluated within their respective “masks”. For 

example, the probability of the word “beehive” would be evaluated as follows (Eq. 1): 

log p(w = beehive) = 0.5 log p(w1 = bee | w2 = MASK) + log p(w2 = hive | w2 = bee) 

       + 0.5 log p(w2 = hive | w1 = MASK) + log p(w1 = bee | w2 = hive) 

 

This procedure aimed to yield a more fair estimate of the conditional probabilities of 

word-piece tokens and therefore the overall probabilities of multi-token words by 1) ensuring 

that the word-piece tokens were evaluated within the same context of surrounding words and 

masks, and 2) eliminating the bias of evaluating the word-piece tokens in any one particular 

order in models which were trained to predict bidirectionally.  

One more procedure was applied in order to ensure that all models were computing a 

probability distribution over sentences with exactly 8 words. When evaluating the conditional 

probability of a masked word in models with word-piece tokenizers, we normalized the model 

probabilities to ensure that only single words were being considered, rather than splitting the 

masked tokens into multiple words. At each evaluation step, each token was restricted to come 

from one of four normalized distributions: i) single-mask words were restricted to be tokens with 

appended white space, ii) masks at the beginning of a word were restricted to be tokens with 

preceding white space (in models with preceding white space, e.g. BERT), iii) masks at the end 

of words were restricted to be tokens with trailing white space (in models with trailing white 

space, e.g. XLM), and iv) masks in the middle of words were restricted to tokens with no 

appended white space. 

Assessing potential token count effects on sentence probability estimates 

Note that, because tokenization schemes varied across models, the number of tokens in a 

sentence could differ for different models. These alternative tokenizations can be conceived of as 

different factorizations of the modeled language distribution, changing how a sentence’s log 
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probability is additively partitioned across the conditional probability chain (but not affecting its 

overall probability) (Chestnut, 2019). Had we attempted to normalize across models by dividing 

the log probability by the number of tokens, as is done when aligning model predictions to 

human acceptability ratings (Lau et al., 2017; Lau et al., 2020), our probabilities would have 

become strongly tokenization-dependent (Chestnut, 2019). To empirically confirm that 

tokenization differences were not driving our results, we statistically compared the token counts 

of each model’s preferred synthetic sentences with the token counts of their non-preferred 

counterparts. While we found significant differences for some of the models, there was no 

systematic association between token count and model sentence preferences (Table S2). In 

particular, lower sentence probabilities were not systematically confounded by higher token 

counts. 

Defining a shared vocabulary 

To facilitate the sampling, selection, and synthesis of sentences that could be evaluated 

by all of the candidate models, we defined a shared vocabulary of 29,157 unique words. Defining 

this vocabulary was necessary in order to unify the space of possible sentences between the 

transformer models (which can evaluate any input due to their word-piece tokenizers) and the 

neural network and n-gram models (which include whole words as tokens), and to ensure we 

only included words that were sufficiently prevalent in the training corpora for all models. The 

vocabulary consisted of the words in the subtlex database (Heuven et al., 2014), after removing 

words that occurred fewer than 300 times in the 300M word corpus used to train the n-gram and 

recurrent neural network models (i.e., with frequencies lower than one in a million). 

Sampling of natural sentences 
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Natural sentences were sampled from the same four text sources used to construct the 

training corpus for the n-gram and recurrent neural network models (see above), while ensuring 

that there was no overlap between training and testing sentences. Sentences were filtered to 

include only those with eight distinct words and no punctuation aside from periods, exclamation 

points, or question marks at the end of a sentence. Then, all eight-word sentences were further 

filtered to include only the words included in the shared vocabulary and to exclude those 

included in a predetermined list of inappropriate words and phrases. To identify controversial 

pairs of natural sentences, we used integer linear programming to search for sentences that had 

above-median probability in one model and minimum probability rank in another model (see 

Supplementary Methods). 

Generating synthetic controversial sentence pairs 

For each pair of models, we synthesized 100 sentence triplets. Each triplet was initialized 

with a natural sentence n (sampled from Reddit). The words in sentence n were iteratively 

modified to generate a synthetic sentence with reduced probability according to the first model 

but not according to the second model. This process was repeated to generate another synthetic 

sentence from n, in which the roles of the two models were reversed. Conceptually, this approach 

resembles Maximum Differentiation (MAD) competition (Wang & Simoncelli, 2008), 

introduced to compare models of image quality assessment. Each synthetic sentence was 

generated as a solution for a constrained minimization problem (Eq. 2): 

s∗ = argmin log p(s | mreject) 

          s 

          subject to log p(s | maccept) ≥ log p(n | maccept) 

mreject denotes the model targeted to assign reduced sentence probability to the synthetic 

sentence compared to the natural sentence, and maccept denotes the model targeted to maintain a 
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synthetic sentence probability greater or equal to that of the natural sentence. For one synthetic 

sentence, one model served as maccept and the other model served as mreject, and for the other 

synthetic sentence the model roles were flipped. 

At each optimization iteration, we selected one of the eight words pseudorandomly (so 

that all eight positions would be sampled N times before any position would be sampled N + 1 

times) and searched the shared vocabulary for the replacement word that would minimize the  

log p(s | mreject) under the constraint. We excluded potential replacement words that already 

appeared in the sentence, except for a list of 42 determiners and prepositions such as “the”, “a”, 

or “with”, which were allowed to repeat. The sentence optimization procedure was concluded 

once eight replacement attempts (i.e., words for which no loss-reducing replacement has been 

found) have failed in a row. 

Word-level search for bidirectional models 

For models for which the evaluation of log p(s | m) is computationally cheap (2-gram, 3-

gram, LSTM, and the RNN), we directly evaluated the log-probability of the 29,157 sentences 

resulting from each of the 29,157 possible word replacements. When such probability vectors 

were available for both models, we simply chose the replacement minimizing the loss. For GPT-

2, whose evaluation is slower, we evaluated sentence probabilities only for word replacements 

for which the new word had a conditional log-probability (given the previous words in the 

sentence) of no less than −10; in rare cases when this threshold yielded fewer than 10 candidate 

words, we reduced the threshold in steps of 5 until there were at least 10 words above the 

threshold. For the bi-directional models (BERT, RoBERTa, XLM, and ELECTRA), for which 

the evaluation of log p(s | m) is costly even for a single sentence, we used a heuristic to prioritize 

which replacements to evaluate. 
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Since bi-directional models are trained as masked language models, they readily provide 

word-level completion probabilities. These word-level log-probabilities typically have positive 

but imperfect correlation with the log-probabilities of the sentences resulting from each potential 

completion. We hence formed a simple linear regression-based estimate of log p(s{i} ← w | m), 

the log-probability of the sentence s with word w assigned at position i, predicting it from  

log p(s{i} = w | m, s{i} ← mask), the completion log-probability of word w at position i, given 

the sentence with the i-th word masked (Eq. 3): 

log p̂(s{i} ← w | m) = β1 log p(s{i} = w | m,s{i} ← mask) + β0 

This regression model was estimated from scratch for each word-level search. When a 

word was first selected for being replaced, the log-probability of two sentences was evaluated: 

the sentence resulting from substituting the existing word with the word with the highest 

completion probability and the sentence resulting from substituting the existing word with the 

word with the lowest completion probability. These two word-sentence log-probability pairs, as 

well as the word-sentence log-probability pair pertaining to the current word, were used to fit the 

regression line. The regression prediction, together with the sentence probability for the other 

model (either the exact probability, or approximate probability if the other model was also 

bidirectional) was used to predict log p(s | mreject) for each of the 29,157 potential replacements. 

We then evaluated the true (non-approximate) sentence probabilities of the replacement word 

with the minimal predicted probability. If this word indeed reduced the sentence probability, it 

was chosen to serve as the replacement and the word-level search was terminated (i.e., 

proceeding to search a replacement for another word in the sentence). If it did not reduce the 

probability, the regression model (Eq. 3) was updated with the new observation, and the next 
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replacement expected to minimize the sentence probability was evaluated. This word-level 

search was terminated after five sentence evaluations that did not reduce the loss. 

Selecting the best sentence triplets from the optimization results 

Since the discrete hill-climbing procedure described above is highly local, the degree to 

which this succeeded in producing highly-controversial pairs varied depending on the starting 

sentence n. We found that typically, natural sentences with lower than average log-probability 

gave rise to synthetic sentences with greater controversiality. To better represent the distribution 

of natural sentences while still choosing the best (most controversial) triplets for human testing, 

we used stratified selection. 

First, we quantified the controversiality of each triplet as (Eq. 4): 

cm1,m2 (n, s1, s2) = log [p(n | m1) / p(s1 | m1)] + log [p(n | m2) / p(s2 | m2)] 

where s1 is the sentence generated to reduce the probability in model m1 and s2 is the sentence 

generated to reduce the probability in model m2. 

We employed integer programming to choose the 10 most controversial triplets from the 

100 triplets optimized for each model pair (maximizing the total controversiality across the 

selected triplets), while ensuring that for each model, there was exactly one natural sentence in 

each decile of the natural sentences probability distribution. The selected 10 synthetic triplets 

were then used to form 30 unique experimental trials per model pair, comparing the natural 

sentence with one synthetic sentence, comparing the natural sentence with the other synthetic 

sentence, and comparing the two synthetic sentences. 

Design of the human experiment 

Our experimental procedures were approved by the Columbia University Institutional 

Review Board (protocol number IRB-AAAS0252). All participants provided informed consent 
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prior. We presented the controversial sentence pairs selected and synthesized by the language 

models to 100 native English-speaking, US-based participants (55 male) recruited from Prolific 

(www.prolific.co), and paid each participant $5.95. The average participant age was 34.08 ± 

12.32. The subjects were divided into 10 groups, and each ten-subject group was presented with 

a unique set of stimuli. Each stimulus set contained exactly one sentence pair from every 

possible combination of model pairs and the four main experimental conditions: selected 

controversial sentence pairs; natural vs. synthetic pair, where one model served as maccept and the 

other as mreject; a natural vs. synthetic pair with the reverse model role assignments; and directly 

pairing the two synthetic sentences. These model-pair-condition combinations accounted for 144 

(36×4) trials of the task. In addition to these trials, each stimulus set also included nine trials 

consisting of sentence pairs randomly sampled from the database of eight-word sentences (and 

not already included in any of the other conditions). All subjects also viewed 12 control trials 

consisting of a randomly selected natural sentence and the same natural sentence with the words 

scrambled in a random order. The order of trials within each stimulus set as well as the left-right 

screen position of sentences in each sentence pair were randomized for all participants. While 

each sentence triplet produced by the optimization procedure (see subsection “Generating 

synthetic controversial sentence pairs”) gave rise to three trials, these were allocated such that no 

subject viewed the same sentence twice. 

On each trial of the task, participants were asked to make a binary decision about which 

of the two sentences they considered more probable (for the full set of instructions given to 

participants, see Fig. S1). In addition, they were asked to indicate one of three levels of 

confidence in their decision: somewhat confident, confident, or very confident. The trials were 

not timed, but a 90-minute time limit was enforced for the whole experiment. A progress bar at 
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the bottom of the screen indicated to participants how many trials they had completed and had 

remaining to complete. 

We rejected the data of 21 participants who failed to choose the original, unshuffled 

sentence in at least 11 of the 12 control trials, and acquired data from 21 alternative participants 

instead, all of whom passed this data-quality threshold. In general, we observed high agreement 

in sentence preferences among our participants, though the level of agreement varied across 

conditions. There was complete or near-complete agreement (at least 9/10 participants with the 

same binary sentence preference) in 52.2% of trials for randomly-sampled natural-sentence pairs, 

36.6% of trials for controversial natural-sentence pairs, 67.6% of trials for natural-synthetic 

pairs, and 60.0% of trials for synthetic-synthetic pairs (versus a chance rate of 1.1%, assuming a 

binomial distribution with p = 0.5). 

Evaluation of model-human consistency 

To measure the alignment on each trial between model judgments and human judgments, 

we binarized both measures; we determined which of the two sentences was assigned with a 

higher probability by the model, regardless of the magnitude of the probability difference, and 

which of the two sentences was favored by the subject, regardless of the reported confidence 

level. When both the subject and the model chose the same sentence, the trial was considered as 

correctly predicted by that model. This correctness measure was averaged across sentence pairs 

and across the 10 participants who viewed the same set of trials. For the lower bound on the 

noise ceiling, we predicted each subject’s choices from a majority vote of the nine other subjects 

who were presented with the same trials. For the upper bound (i.e., the highest possible accuracy 

attainable on this data sample), we included the subject themselves in this majority vote-based 

prediction. 
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Since each of the 10 participant groups viewed a unique trial set, these groups provided 

10 independent replications of the experiment. Models were compared to each other and to the 

lower bound of the noise ceiling by a Wilcoxon signed-rank test using these 10 independent 

accuracy outcomes as paired samples. For each analysis, the false discovery rate across multiple 

comparisons was controlled by the Benjamini-Hochberg procedure (Benjamini & Hochberg, 

1995). 

In Figure 1.4, we instead measure model-human consistency in a more continuous way, 

comparing the sentence probability ratio in a model to the graded Likert ratings provided by 

humans; see Supplementary Methods for full details. 

Selecting trials for model evaluation 

All of the randomly sampled natural-sentence pairs (Fig. 1.1a) were evaluated for each of 

the candidate models. Controversial sentence pairs (either natural, Fig. 1.1b or synthetic, Fig. 

1.3) were included in a model’s evaluation set only if they were formed to target that model 

specifically. The overall summary analysis (Fig. 1.4) evaluated all models on all available 

sentence pairs. 

Comparison to an existing approach for computing sentence probabilities in bidirectional 

models 

Wang & Cho (2019) have suggested an alternative approach for computing sentence 

probabilities in bidirectional (BERT-like) models, using a pseudo-log-likelihood measure which 

simply sums the log-probability of each token conditioned on all of the other tokens in the 

sentence. While this measure does not yield a probability measure Cho, 2019, it is positively 

correlated with human acceptability judgments for several bidirectional models (Lau et al., 2020; 

Salazar et al., 2020). To directly compare this existing approach to our novel method for 
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computing probabilities, we again used the method of controversial sentence pairs to identify the 

approach most aligned with human judgments. For each bidirectional model (BERT, RoBERTa, 

and ELECTRA), we created two copies of the model, each using a different approach for 

computing sentence probabilities. We synthesized 40 synthetic sentence pairs to maximally 

differentiate between the two copies of each model, with each copy assigning a higher 

probability to a different sentence in the pair. We then tested 30 human participants, presenting 

each participant with all 120 sentence pairs. 

Data and code availability 

Experimental stimuli, detailed behavioral testing results, sentence optimization code, and 

code for reproducing all analyses and figures are available at github.com/dpmlab/contstimlang. 

1.3 Results 

We acquired judgments from 100 native English speakers tested online. In each 

experimental trial, the participants were asked to judge which of two sentences they would be 

“more likely to encounter in the world, as either speech or written text”, and provided a rating of 

their confidence in their answer on a 3-point scale (see Fig. S1 for task instructions and Fig. S2 

for a trial example). The experiment was designed to compare nine different language models: 

probability models based on corpus frequencies of 2-word and 3-word sequences (2-grams and 

3-grams) and a range of neural network models comprising a recurrent neural network (RNN), a 

long short-term memory network (LSTM), and five transformer models (BERT, RoBERTa, 

XLM, ELECTRA, and GPT-2). 

Controversial natural-sentence pairs enable efficient model comparison 

As a baseline, we randomly sampled and paired 8-word sentences from a corpus of 

Reddit comments. However, as shown in Figure 1.1a, these sentences fail to uncover meaningful 
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differences between the models. For each sentence pair, all models tend to prefer the same 

sentence, and therefore perform similarly in predicting human preference ratings (see 

Supplementary Results). 

Instead, we can use an optimization procedure (Eq. 5, Methods) to search for 

controversial sentence pairs, in which one language model assigns a high probability (above the 

median probability for natural sentences) only to sentence 1 and a second language model 

assigns a high probability only to sentence 2; see examples in Table 1.1. Measuring each model’s 

accuracy in predicting human choices for sentence pairs in which it was one of the two targeted 

models indicated many significant differences in terms of model-human alignment (Fig. 1.1b), 

with GPT-2 and RoBERTa showing the best human consistency and 2-gram the worst. We can 

also compare each model pair separately (using only the stimuli targeting that model pair), 

yielding a similar pattern of pairwise dominance (Fig. S4a). All models except GPT-2, 

RoBERTa, and ELECTRA performed significantly below our lower bound on the noise ceiling 

(the accuracy obtained by predicting each participant’s responses from the other participants’ 

responses), indicating a misalignment between these models’ predictions and human judgments 

which was only revealed when using controversial sentence pairs. 

sentence log probability (model 1) log probability (model 2) # human 

choices 
n1: Rust is generally caused by salt and sand. logp(n1|GPT-2) =−50.72 logp(n1|ELECTRA) =−38.54 10 

n2: Where is Vernon Roche when you need him. logp(n2|GPT-2) =−32.26 logp(n2|ELECTRA) =−58.26 0 

n1: Excellent draw and an overall great smoking 

experience. 
logp(n1|RoBERTa) =−67.78 logp(n1|GPT-2) =−36.76 10 

n2: I should be higher and tied to inflation. logp(n2|RoBERTa) =−54.61 logp(n2|GPT-2) =−50.31 0 

n1: You may try and ask on their forum. logp(n1|ELECTRA) =−51.44 logp(n1|LSTM) =−44.24 10 

n2: I love how they look like octopus tentacles. logp(n2|ELECTRA) =−35.51 logp(n2|LSTM) =−66.66 0 

n1: Grow up and quit whining about minor 

inconveniences. 
logp(n1|BERT) =−82.74 logp(n1|GPT-2) =−35.66 10 

n2: The extra a is the correct Sanskrit pronunciation. logp(n2|BERT) =−51.06 logp(n2|GPT-2) =−51.10 0 

n1: I like my password manager for this reason. logp(n1|XLM) =−68.93 logp(n1|RoBERTa) =−49.61 10 

n2: Kind of like clan of the cave bear. logp(n2|XLM) =−44.24 logp(n2|RoBERTa) =−67.00 0 

n1: We have raised a Generation of Computer geeks. logp(n1|LSTM) =−66.41 logp(n1|ELECTRA) =−36.57 10 
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n2: I mean when the refs are being sketchy. logp(n2|LSTM) =−42.04 logp(n2|ELECTRA) =−52.28 0 

n1: This is getting ridiculous and ruining the hobby. logp(n1|RNN) =−100.65 logp(n1|LSTM) =−43.50 10 

n2: I think the boys and invincible are better. logp(n2|RNN) =−45.16 logp(n2|LSTM) =−59.00 0 

n1: Then attach them with the supplied wood screws. logp(n1|3-gram) =−119.09 logp(n1|GPT-2) =−34.84 10 

n2: Sounds like you were used both a dog. logp(n2|3-gram) =−92.07 logp(n2|GPT-2) =−52.84 0 

n1: Cream cheese with ham and onions on crackers. logp(n1|2-gram) =−131.99 logp(n1|RoBERTa) =−54.62 10 

n2: I may have to parallel process that drinking. logp(n2|2-gram) =−109.46 logp(n2|RoBERTa) =−70.69 0 

Table 1.1: Examples of controversial natural-sentence pairs that maximally contributed to 

each model’s prediction error. For each model (double row, “model 1”), the table shows 

results for two sentences on which the model failed severely. In each case, the failing model 1 

prefers sentence n2 (higher log probability bolded), while the model it was pitted against (“model 

2”) and all 10 human subjects presented with that sentence pair prefer sentence n1. (When more 

than one sentence pair induced an equal maximal error in a model, the example included in the 

table was chosen at random.) 
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Figure 1.1: Model comparison using natural sentences. (a) (Left) Percentile-transformed 

sentence probabilities for GPT-2 and RoBERTa (defined relative to all sentences used in the 

experiment) for randomlysampled pairs of natural sentences. Each pair of connected dots depicts 

one sentence pair. The two models are highly congruent in their rankings of sentences within a 

pair (lines have upward slope). (Right) Accuracy of model predictions of human choices, 

measured as the proportion of trials in which the same sentence was preferred by both the model 

and the human participant. Each dot depicts the prediction accuracy of one candidate model 

averaged across a group of 10 participants presented with a unique set of trials. The colored bars 

depict grand-averages across all 100 participants. The gray bar is the noise ceiling whose left and 

right edges are lower and upper bounds on the grand-average performance an ideal model would 

achieve (based on the consistency across human subjects). There were no significant differences 

in model performance on the randomly sampled natural sentences. (b) (Left) Controversial 

natural-sentence pairs were selected such that the models’ sentence probability ranks were 

incongruent (lines have downward slope). (Right) Controversial sentence pairs enable efficient 

model comparison, revealing that BERT, XLM, LSTM, RNN and the n-gram models perform 

significantly below the noise ceiling (asterisks indicate significance–two-sided Wilcoxon signed-

rank test, controlling the false discovery rate for nine comparisons at q < .05). On the right of the 

plot, each closed circle indicates a model significantly dominating alternative models indicated 

by open circles (two-sided Wilcoxon signed-rank test, controlling the false discovery rate for all 

36 model pairs at q < .05). GPT-2 outperforms all models except RoBERTA at predicting human 

judgments. 

 

Synthesized controversial sentence pairs enable even greater disentanglement of model 

predictions 

Selecting controversial natural-sentence pairs may provide greater power than randomly 

sampling natural-sentence pairs, but this search procedure considers a very limited part of the 

space of possible sentence pairs. Instead, we can iteratively replace words in a natural sentence 

to drive different models to make opposing predictions, forming synthetic controversial 

sentences that may lay outside any natural language corpora, as illustrated in Figure 1.2 (see 

Methods, “Generating synthetic controversial sentence pairs” for full details). Examples of 

controversial synthetic-sentence pairs that maximally contributed to the models’ prediction error 

appear in Table 1.2. 

We evaluated how well each model predicted the human sentence choices in all of the 

controversial synthetic-sentence pairs in which the model was one of the two models targeted 
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(Fig. 1.3a). This evaluation of model-human alignment resulted in an even greater separation 

between the models’ prediction accuracies than was obtained when using controversial natural 

sentence pairs, pushing the weaker models (RNN, 3-gram, and 2-gram) far below the 50% 

 

 

Figure 1.2: Synthesizing controversial sentence pairs. The small open dots denote 500 

randomly sampled natural sentences. The big open dot denotes the natural sentence used for 

initializing the controversial sentence optimization, and the closed dots are the resulting synthetic 

sentences. (a) In this example, we start with the randomly sampled natural sentence “Luke has a 

ton of experience with winning”. If we adjust this sentence to minimize its probability according 

to GPT-2 (while keeping the sentence at least as likely as the natural sentence according to 

ELECTRA), we obtain the synthetic sentence “Nothing has a world of excitement and joys”. By 

repeating this procedure while switching the roles of the models, we generate the synthetic 

sentence “Diddy has a wealth of experience with grappling”, which decreases ELECTRA’s 

probability while slightly increasing GPT-2’s. (b) In this example, we start with the randomly 

sampled natural sentence “I need to see how this played out”. If we adjust this sentence to 

minimize its probability according to RoBERTa (while keeping the sentence at least as likely as 

the natural sentence according to 3-gram), we obtain the synthetic sentence “You have to realize 

is that noise again”. If we instead decrease only 3-gram’s probability, we generate the synthetic 

sentence “I wait to see how it shakes out”. 

 

 
sentence log probability (model 1) log probability (model 2) # human 

choices 
s1: You can reach his stories on an instant. logp(s1|GPT-2) =−64.92 logp(s1|RoBERTa) =−59.98 10 

s2: Anybody can behead a rattles an an antelope. logp(s2|GPT-2) =−40.45 logp(s2|RoBERTa) =−90.87 0 
s1: However they will still compare you to others. logp(s1|RoBERTa) =−53.40 logp(s1|GPT-2) =−31.59 10 

s2: Why people who only give themselves to others. logp(s2|RoBERTa) =−48.66 logp(s2|GPT-2) =−47.13 0 
s1: He healed faster than any professional sports player. logp(s1|ELECTRA) =−48.77 logp(s1|BERT) =−50.21 10 

s2: One gets less than a single soccer team. logp(s2|ELECTRA) =−38.25 logp(s2|BERT) =−59.09 0 
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s1: That is the narrative we have been sold. logp(s1|BERT) =−56.14 logp(s1|GPT-2) =−26.31 10 

s2: This is the week you have been dying. logp(s2|BERT) =−50.66 logp(s2|GPT-2) =−39.50 0 
s1: The resilience is made stronger by early adversity. logp(s1|XLM) =−62.95 logp(s1|RoBERTa) =−54.34 10 

s2: Every thing is made alive by infinite Ness. logp(s2|XLM) =−42.95 logp(s2|RoBERTa) =−75.72 0 
s1: President Trump threatens to storm the White House. logp(s1|LSTM) =−58.78 logp(s1|RoBERTa) =−41.67 10 

s2: West Surrey refused to form the White House. logp(s2|LSTM) =−40.35 logp(s2|RoBERTa) =−67.32 0 
s1: Las beans taste best with a mustard sauce. logp(s1|RNN) =−131.62 logp(s1|RoBERTa) =−60.58 10 

s2: Roughly lanes being alive in a statement ratings. logp(s2|RNN) =−49.31 logp(s2|RoBERTa) =−99.90 0 
s1: You are constantly seeing people play the multi. logp(s1|3-gram) =−107.16 logp(s1|ELECTRA) =−44.79 10 

s2: This will probably the happiest contradicts the 

hypocrite. 
logp(s2|3-gram) =−91.59 logp(s2|ELECTRA) =−75.83 0 

s1: A buyer can own a genuine product also. logp(s1|2-gram) =−127.35 logp(s1|ELECTRA) =−40.21 10 

s2: One versed in circumference of highschool I rambled. logp(s2|2-gram) =−113.73 logp(s2|ELECTRA) =−92.61 0 

Table 1.2: Examples of controversial synthetic-sentence pairs that maximally contributed 

to each model’s prediction error. For each model (double row, “model 1”), the table shows 

results for two sentences on which the model failed severely. In each case, the failing model 1 

prefers sentence s2 (higher log probability bolded), while the model it was pitted against (“model 

2”) and all 10 human subjects presented with that sentence pair prefer sentence s1. (When more 

than one sentence pair induced an equal maximal error in a model, the example included in the 

table was chosen at random.) 

 

 

chance accuracy level. GPT-2, RoBERTa and ELECTRA were found to be significantly more 

accurate than the alternative models (BERT, XLM, LSTM, RNN, 3-gram, and 2-gram) in 

predicting the human responses to these trials (with similar results when comparing model pair 

separately, see Fig. S4b). All of the models except for GPT-2 were found to be significantly 

below the lower bound on the noise ceiling, demonstrating misalignment with human judgments. 

Pairs of natural and synthetic sentences uncover blindspots in all models 

Last, we considered trials in which the participants were asked to choose between a 

natural sentence and one of the synthetic sentences which was generated from that natural 

sentence. If the language model is fully aligned with human judgments, we would expect humans 

to agree with the model, and select the synthetic sentence at least as much as the natural 

sentence. In reality, human participants showed a systematic preference for the natural sentences 

over their synthetic counterparts (Fig. 1.3b), even when the synthetic sentences were formed 

such that the stronger models (i.e., GPT-2, RoBERTA, or ELECTRA) favored them over the 
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natural sentences; see Table 1.3 for examples. Evaluating natural sentence preference separately 

for each model-pairing (Fig. S5), we find that these imperfections can be uncovered even when 

pairing a strong model with a relatively weak model (such that the strong model “accepts” the 

synthetic sentence and the weak model rejects it). 

 

 

Figure 1.3: Model comparison using synthetic sentences. (a) (Left) Percentile-transformed 

sentence probabilities for GPT-2 and RoBERTa for controversial synthetic-sentence pairs. Each 

pair of connected dots depict one sentence pair. (Right) Model prediction accuracy, measured as 

the proportion of trials in which the same sentence was preferred by both the model and the 

human participant. GPT-2, RoBERTa and ELECTRA significantly outperformed the other 

models (two-sided Wilcoxon signed-rank test, controlling the false discovery rate for all 36 

model comparisons at q < .05). All of the models except for GPT-2 were found to perform below 

the noise ceiling (gray) of predicting each participant’s choices from the majority votes of the 
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other participants (asterisks indicate significance–two-sided Wilcoxon signed-rank test, 

controlling the false discovery rate for nine comparisons at q < .05). (b) (Left) Each connected 

triplet of dots depicts a natural sentence and its derived synthetic sentences, optimized to 

decrease the probability only under GPT-2 (left dots in a triplet) or only under RoBERTa 

(bottom dots in a triplet). (Right) Each model was evaluated across all of the synthetic-natural 

sentence pairs for which it was targeted to keep the synthetic sentence at least as probable as the 

natural sentence (see Fig. S6 for the complementary data binning). This evaluation yielded a 

below-chance prediction accuracy for all of the models, which was also significantly below the 

lower bound on the noise ceiling. This indicates that, although the models assessed that these 

synthetic sentences were at least as probable as the original natural sentence, humans disagreed 

and showed a systematic preference for the natural sentence. See Fig. 1.1’s caption for details on 

the visualization conventions used in this figure. 

 
sentence log probability (model 1) log probability (model 2)      # human       

choices 
n: I always cover for him and make excuses. logp(n|GPT-2) =−36.46 logp(n|2-gram) =−106.95 10 

s: We either wish for it or ourselves do. logp(s|GPT-2) =−36.15 logp(s|2-gram) =−122.28 0 

n: This is why I will never understand boys. logp(n|RoBERTa) =−46.88 logp(n|2-gram) =−103.11 10 

s: This is why I will never kiss boys. logp(s|RoBERTa) =−46.75 logp(s|2-gram) =−107.91 0 

n: One of the ones I did required it. logp(n|ELECTRA) =−35.97 logp(n|LSTM) =−40.89 10 

s: Many of the years I did done so. logp(s|ELECTRA) =−35.77 logp(s|LSTM) =−46.25 0 

n: There were no guns in the Bronze Age. logp(n|BERT) =−48.48 logp(n|ELECTRA) =−30.40 10 

s: There is rich finds from the Bronze Age. logp(s|BERT) =−48.46 logp(s|ELECTRA) =−44.34 0 

n: You did a great job on cleaning them. logp(n|XLM) =−40.38 logp(n|RNN) =−43.47 10 

s: She did a great job at do me. logp(s|XLM) =−39.89 logp(s|RNN) =−61.03 0 

n: This logic has always seemed flawed to me. logp(n|LSTM) =−39.77 logp(n|RNN) =−45.92 10 

s: His cell has always seemed instinctively to me. logp(s|LSTM) =−38.89 logp(s|RNN) =−62.81 0 

s: Stand near the cafe and sip your coffee. logp(s|RNN) =−65.55 logp(s|ELECTRA) =−34.46 10 

n: Sit at the front and break your neck. logp(n|RNN) =−44.18 logp(n|ELECTRA) =−34.65 0 

n: Most of my jobs have been like this. logp(n|3-gram) =−80.72 logp(n|LSTM) =−35.07 10 

s: One of my boyfriend have been like this. logp(s|3-gram) =−80.63 logp(s|LSTM) =−41.44 0 

n: They even mentioned that I offer white flowers. logp(n|2-gram) =−113.38 logp(n|BERT) =−62.81 10 

s: But even fancied that would logically contradictory 

philosophies. 
logp(s|2-gram) =−113.24 logp(s|BERT) =−117.98 0 

Table 1.3: Examples of pairs of synthetic and natural sentences that maximally contributed 

to each model’s prediction error. For each model (double row, “model 1”), the table shows 

results for two sentences on which the model failed severely. In each case, the failing model 1 

prefers synthetic sentence s (higher log probability bolded), while the model it was pitted against 

(“model 2”) and all 10 human subjects presented with that sentence pair prefer natural sentence 

n. (When more than one sentence pair induced an equal maximal error in a model, the example 

included in the table was chosen at random.) 
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Evaluating the entire dataset reveals a hierarchy of language models, but no model is fully 

human aligned 

Rather than evaluating each model’s prediction accuracy with respect to the particular 

sentence pairs that were formed to compare this model to alternative models, we can maximize 

our statistical power by computing the average prediction accuracy for each model with respect 

to all of the experimental trials we collected. Furthermore, rather than binarizing the human and 

model judgments, here we measure the ordinal correspondence between the graded human 

choices (taking confidence into account) and the log ratio of the sentence probabilities assigned 

by each candidate model. Using this more sensitive benchmark (Fig. 1.4), we found GPT-2 to be 

the most human-aligned, followed by RoBERTa; then ELECTRA; BERT; XLM and LSTM; and 

the RNN, 3-gram, and 2-gram models. However, all of the models (including GPT-2) were found 

to be significantly less accurate than the lower bound on the noise ceiling. One possible reason 

for the poorer performance of the bidirectional transformers (RoBERTa, ELECTRA, BERT, and 

XLM) compared to the unidirectional transformer (GPT-2) is that computing sentence 

probabilities in these models is complex, and the probability estimator we developed (see 

Methods, “Evaluating sentence-level probabilities in bidirectional models”) could be non-

optimal; however, when directly comparing our estimator to the popular pseudo-log-likelihood 

approach by means of synthetic controversial sentences, our estimator was found to be better 

aligned to human judgments (see Fig. S8 and Supplementary Results). 
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Figure 1.4: Ordinal correlation of the models’ sentence probability log-ratios and human 

Likert ratings. For each sentence pair, model prediction was quantified by log [p(s1|m) / 

p(s2|m)]. This log-ratio was correlated with the Likert ratings of each particular participant, using 

signed-rank cosine similarity (see Methods). This analysis, taking all trials and human 

confidence level into account, indicates that GPT-2 performed best in predicting human sentence 

probability judgments. However, its predictions are still significantly misaligned with the human 

choices. See Fig. 1.1’s caption for details on the visualization convention. 

 

1.4 Discussion 

In this study, we probed the ability of language models to predict human relative sentence 

probability judgments using controversial sentence pairs, selected or synthesized so that two 

models disagreed about which sentence was more probable. We found that 1) GPT-2 (a 

unidirectional transformer model trained on predicting upcoming tokens) and RoBERTa (a 

bidirectional transformer trained on a held-out token prediction task) were the most predictive of 

human judgments on controversial natural-sentence pairs (Fig. 1.1b); 2) GPT-2, RoBERTa, and 

ELECTRA (a bidirectional transformer trained on detecting corrupted tokens) were the most 

predictive of human judgments on pairs of sentences synthesized to maximize controversiality 

(Fig. 1.3a); and 3) GPT-2 was the most human-consistent model when considering the entire 

behavioral dataset we collected (Fig. 1.4). And yet, all of the models, including GPT-2, exhibited 

behavior inconsistent with human judgments; using an alternative model as a counterforce, we 
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could corrupt natural sentences such that their probability under a model did not decrease, but 

humans tended to reject the corrupted sentence as unlikely (Fig. 1.3b). 

Implications for artificial neural network language models as neuropsycholinguistic models 

Unlike convolutional neural networks, whose architectural design principles are roughly 

inspired by biological vision (Lindsay, 2021), the design of current neural network language 

models is largely uninformed by psycholinguistics and neuroscience. And yet, there is an 

ongoing effort to adopt and adapt neural network language models to serve as computational 

hypotheses of how humans process language, making use of a variety of different architectures, 

training corpora, and training tasks (Wehbe et al., 2014; Toneva & Wehbe, 2019; Heilbron et al., 

2020; Jain et al., 2020; Lyu et al., 2021; Schrimpf et al., 2021; Wilcox et al., 2021; Goldstein et 

al., 2022; Caucheteux & King, 2022; Arehalli et al., 2022). We found that recurrent neural 

networks make markedly human-inconsistent predictions once pitted against transformer-based 

neural networks. This finding coincides with recent evidence that transformers also outperform 

recurrent networks for predicting neural responses as measured by ECoG or fMRI (Schrimpf et 

al., 2021; Goldstein et al., 2022), as well as with evidence from model-based prediction of 

human reading speed (Wilcox et al., 2021; Merkx & Frank, 2021) and N400 amplitude (Merkx 

& Frank, 2021; Michaelov et al., 2021). Among the transformers, GPT-2, RoBERTa, and 

ELECTRA showed the best performance. These models are trained to optimize only word-level 

prediction tasks, as opposed to BERT and XLM which are additionally trained on next-sentence 

prediction and cross-lingual tasks, respectively (and have the same architecture as RoBERTa). 

This suggests that local word prediction provides better alignment with human language 

comprehension. 
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Despite the agreement between our results and previous work in terms of model ranking, 

the significant failure of GPT-2 in predicting the human responses to natural versus synthetic 

controversial pairs (Fig. 1.3b) demonstrates that GPT-2 does not fully emulate the computations 

employed in human processing of even short sentences. This outcome is in some ways 

unsurprising, given that GPT-2 (like all of the other models we considered) is an off-the-shelf 

machine learning model that was not designed with human psycholinguistic and physiological 

details in mind. And yet, the considerable human inconsistency we observed seems to stand in 

stark contrast with the recent report of GPT-2 explaining about 100 percent of the explainable 

variance in fMRI and ECoG responses to natural sentences (Schrimpf et al., 2021). Part of this 

discrepancy could be explained by the fact that Schrimpf and colleagues (Schrimpf et al., 2021) 

mapped GPT-2 hidden-layer activations to brain data by means of regularized linear regression, 

which can identify a subspace within GPT-2’s language representation that is wellaligned with 

brain responses even if GPT-2’s overall sentence probabilities are not human-like. More 

importantly, when language models are evaluated with natural language, strong statistical models 

might capitalize on features in the data that are distinct from, but highly correlated with, features 

that are meaningful to humans. Therefore, a model that performs well on typical sentences might 

employ computational mechanisms that are very distinct from the brain’s, which will only be 

revealed by testing the model in a more challenging domain. Note that even the simplest model 

we considered—a 2-gram frequency table—actually performed quite well on predicting human 

judgments for randomly-sampled natural sentences, and its deficiencies only became obvious 

when challenged by controversial sentence pairs. We predict that there will be substantial 

discrepancies between neural representations and current language models when using stimuli 

that intentionally stress-test this relationship, using our proposed sentence-level controversiality 
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approach or complementary ideas such as maximizing controversial transition probabilities 

between consecutive words (Rakocevic, 2021). 

Using controversial sentences can be seen as a generalization test of language models: 

can models predict what kinds of changes to a natural sentence will lead to humans rejecting the 

sentence as improbable? Humans are sometimes capable of comprehending language with 

atypical constructions (e.g. in cases when pragmatic judgments can be made about a speaker’s 

intentions from environmental and linguistic context, Goodman & Frank, 2016), but none of the 

models we tested were fully able to predict which syntactic or semantic perturbations would be 

accepted or rejected by humans. One possibility is that stronger next-word prediction models, 

using different architectures, learning rules, or training data, might close the gap between models 

and humans. Alternatively, it might be that optimizing for other linguistic tasks, or even non-

linguistic task demands (in particular, representing the external world, the self, and other agents) 

will turn out to be critical for achieving human-like natural language processing (Howell et al., 

2005). 

Pitting models against each other circumvents the ground-truth problem of adversarial 

methods for language models 

Machine vision models are highly susceptible to adversarial examples (Szegedy et al., 

2013; Goodfellow et al., 2015). Such adversarial examples are typically generated by choosing a 

correctly classified natural image and then searching for a minuscule (and therefore human-

imperceptible) image perturbation that would change the targeted model’s classification. The 

prospect that similar covert model failure modes may exist also for language models has 

motivated proposed generalizations of adversarial methods to textual inputs (Zhang et al., 2020). 

However, imperceptible perturbations cannot be applied to written text: any modified word or 
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character is humanly perceptible. Prior work on adversarial examples for language models have 

instead relied on heuristic constraints aiming to limit the change in the meaning of the text, such 

as flipping a character (Liang et al., 2018; Ebrahimi et al., 2018), changing number or gender 

(Abdou et al., 2020), or replacing words with synonyms (Alzantot et al., 2018; Ribeiro et al., 

2018; Ren et al., 2019). However, since these heuristics are only rough approximations of human 

language processing, many of these methods fail to preserve semantic meaning (Morris et al., 

2020). Interactive (“human-in-the-loop”) adversarial approaches allow human subjects to 

repeatedly alter model inputs such that it confuses target models but not secondary participants 

(Wallace et al., 2019; Kiela et al., 2021), but these approaches are inherently slow and costly and 

are limited by mental models the human subjects form about the evaluated language models. 

By contrast, testing language models on controversial sentence pairs does not require 

approximating or querying a human ground truth during optimization–the objective of 

controversiality is independent of correctness. Instead, by designing inputs to elicit conflicting 

predictions among the models and assessing human responses to these inputs only once the 

optimization loop has terminated, we capitalize on the simple fact that if two models disagree 

with respect to an input, at least one of the models must be making an incorrect prediction. 

Pitting language models against other language models also can be conducted by other 

approaches such as “red-teaming”, where an alternative language model is used as a generator of 

potential adversarial examples for a targeted model and a classifier is used to filter the generated 

examples such that the output they induce in the targeted model is indeed incorrect (Perez et al., 

2022). Our approach shares the underlying principle that an alternative language model can drive 

a more powerful test than handcrafted heuristics, but here the models have symmetric roles 
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(there are no “attacking” and “attacked” models) and we can optimize stimuli directly without 

relying on filtering. 

Limitations and future directions 

While our results demonstrate that using controversial stimuli can identify subtle 

differences in language models’ alignment with human judgments, our study was limited in a 

number of ways. Our stimuli were all 8-word English sentences, limiting our ability to make 

cognitively meaningful claims that apply to language use globally. 8-word sentences are long 

enough to include common syntactic constructions and convey meaningful ideas but may not 

effectively probe long-distance syntactic dependencies (Gibson, 1998). Future work may 

introduce additional sentence lengths and languages, as well as (potentially adaptive) 

controversial sentence optimization procedures that consider large sets of candidate models, 

allowing for greater model coverage than our simpler pairwise approach. Future work may also 

complement the model-comparative experimental design with procedures designed to identify 

potential failure modes common to all models. 

A more substantial limitation of the current study is that, like any comparison of pre-

trained neural networks as potential models of human cognition, there could be multiple reasons 

(i.e., training data, architecture, training tasks, and learning rules) why particular models are 

better aligned with human judgments. For example, as we did not systematically control the 

training corpora used for training the models, it is possible that some of the observed differences 

are due to differences in the training sets rather than model architecture. Therefore, while our 

results expose failed model predictions, they do not readily answer why these failed predictions 

arise. Future experiments could compare custom-trained or systematically manipulated models, 

which reflect specific hypotheses about human language processing. In Figure S8, we 



37 

 

demonstrate the power of using synthetic controversial stimuli to conduct sensitive comparisons 

between models with subtle differences in how sentence probabilities are calculated. 

It is important to note that our analyses considered human relative probability judgments 

as reflecting a scalar measure of acceptability. We made this assumption in order to bring the 

language models (which assign a probability measure to each sentence) and the human 

participants onto a common footing. However, it is possible that different types of sentence pairs 

engage different human cognitive processes. For pairs of synthetic sentences, both sentences may 

be unacceptable in different ways (e.g. exhibit different kinds of grammatical violations), 

requiring a judgment that weighs the relative importance of multiple dimensions (Watt, 1975) 

and could therefore produce inconsistent rankings across participants or across trials (Schutze, 

2016). By contrast, asking participants to compare a natural and a synthetic sentence (Fig. 1.3b, 

Table 1.3) may be more analogous to previous work measuring human acceptability judgments 

for sentence pairs (Schutze & Sprouse, 2014). Nonetheless, it is worth noting that for all of the 

controversial conditions, the noise ceiling was significantly above the models’ prediction 

accuracy, indicating non-random human preferences unexplained by current models that should 

be accounted for by future models, which may have to be more complex and capture multiple 

processes. 

Finally, the use of synthetic controversial sentences can be extended beyond probability 

judgments. A sufficiently strong language model may enable constraining the experimental 

design search-space to particular sentence distributions (e.g., movie reviews or medical 

questions). Given such a constrained space, we may be able to search for well-formed sentences 

that elicit contradictory predictions in alternative domain-specific models (e.g., sentiment 
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classifiers or question-answering models). However, as indicated by our results, the task of 

capturing distributions of well-formed sentences is less trivial than it seems. 
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Chapter 2: Investigating naturalistic schema learning with 

computer-generated poetry 

 

2.1 Introduction  

Much has been learned in recent years about the cognitive architecture supporting the 

perception of naturalistic event scripts – stereotypical temporal sequences that reflect the shared 

structure of a set of related events. Important discoveries have been made about the neural 

mechanisms, temporal dynamics and semantic representations that define this category of 

experience. Numerous studies have shown that continuous naturalistic experiences are marked 

by event boundaries – shifts between stable patterns of neural activity at event transitions – 

which facilitate the mental segmentation of experiences in perception and memory (Kurby & 

Zacks, 2008). While event segmentation has long been considered an internally valid cognitive 

function that can be reliably measured in behavior (Newtson, 1976), there has been disagreement 

in the literature as to what exactly triggers event boundaries in the brain. The most well-known 

“event segmentation theory” holds that segmentation is a response to implicit prediction error 

between bottom-up sensory inputs and top-down “working event models” (Zacks et al., 2007; 

Zacks et al., 2009), but recent work has shown that even predictable environmental changes are 

similarly linked to ongoing segmentation (Clewett et al., 2019). For example, event boundaries 

have been measured in response to repeated viewings of the same stimulus (Lee et al., 2021) and 

to expected switches between task demands (Wang & Egner, 2022).  

This disagreement may stem from the complex hierarchy of timescales, concepts, and 

brain regions in which event boundaries have been identified (Kuperberg, 2021), with more 

transient environmental changes corresponding to shorter events in low-level sensory brain areas 
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such as the early visual system, and deeper transitions between longer meaningful experiences 

corresponding to high-order areas of the default mode network (DMN), including posterior 

medial cortex (PMC) and the medial prefrontal cortex (mPFC) (Baldassano et al., 2017; 

Baldassano et al., 2018). Furthermore, this hierarchical relationship between environmental 

inputs and neural responses has been shown to depend on prior knowledge and inferences (Shin 

& DuBrow, 2021). Therefore, a full accounting of what constitutes an event boundary depends at 

least on the brain region in which neural activity is measured, the stability of features in the 

environment that are represented or processed by that brain region, and the access of that brain 

region to stored knowledge that is predictive of those features.  

Naturalistic event schemas likely play a critical role in how these complex relationships 

play out ecologically. For example, when navigating an airport, a high-level model of event 

sequences (entering the airport, passing through security, waiting at the gate, boarding an 

airplane) may be active in mPFC, while an intermediate model of event content (announcements, 

luggage, terminal halls) may be active in PMC, and a perceptual model of low-level features 

(sounds, shapes) may be active in early sensory areas (Hasson et al., 2015; Baldassano et al., 

2017; Baldassano et al., 2018). Naturalistic event schemas in this sense could be considered 

experiences whose segmentation in the brain is predicted in part by prior semantic knowledge, as 

opposed to superficial stimulus associations or task demands.  

In this current work, we investigate how such schemas are learned and the impact of this 

learning on event representations. We created a novel event schema by embedding ten common 

semantic topics into four-line, iambic pentameter stanzas of rhyming poetry, and then ordered 

the topics into two arbitrary sequences (Sequence One and Sequence Two). By measuring the 

brain activity of 32 participants (16 per sequence) in fMRI listening to spoken recordings of the 
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poetry before and after learning its topic sequence, we aimed to describe how the segmentation 

and representation of schematic content change across the cortex as a result of learning, 

particularly in regions of the DMN. Comparing neural responses to schema-consistent stimuli in 

the presence and absence of prior knowledge could yield cognitive markers of an active schema 

model in a given brain area, which in turn could help determine whether previous findings on 

event segmentation are necessarily linked to schema knowledge, potentially contributing to the 

current debate surrounding event boundaries more generally. Furthermore, we aim to discover 

how the semantic content of discrete events becomes represented and temporally associated 

across the DMN. Understanding which key brain regions are flexible with respect to the 

semantic features they represent in and out of schematic contexts would highlight regions of 

interest for future work.  

We took a unique approach by using a computer poetry generator to write the stimuli for 

this experiment. The generator utilized two different models: i) BERT (Devlin et al., 2019) is a 

bidirectional transformer model that outputs probability distributions for held-out words based 

on left and rightward context; ii) GloVe (Pennington et al., 2014) is a model of semantic word 

vectors learned by counting word co-occurrences in large text corpora, which has been 

previously used to decode semantic representations in fMRI data in response to a wide variety of 

concrete and abstract topics (Pereira et al., 2018). We used the GloVe model to define the topics 

in the schema, and then to constrain the output from BERT so that its content was tied to a topic-

dependent distribution of features in GloVe vector space (see Fig. 2.1). The purpose of this 

method was three-fold: i) By generating hundreds of thousands of stanzas related to the ten core 

topics, we had sufficient material to design fMRI tasks that included over 60 total minutes of 

unique, schema-consistent poetry, and a schema learning task that presented additional unique 
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stanzas randomly selected from a large corpus of poetry. ii) By ensuring that the poetry heard 

before and after schema learning was generated using the same procedure, we could precisely 

match the poems’ semantic content between conditions, allowing us to isolate learning-specific 

effects in fMRI data. iii) By constraining the semantic space of the topics in the poetry with the 

GloVe model, we were able to then use the GloVe model to make predictions about fMRI 

responses to the topics. 

Here, we report the progress that has been made so far on a series of related fMRI 

analyses. A searchlight analysis tested correlations in the time course activity of individual five-

stanza poems measured before and after learning (by different groups of participants) and found 

areas in PMC and mPFC where participants showed consistent learning-induced changes. A 

subsequent Hidden Markov Model (HMM) analysis of event boundary strength highlighted 

overlapping brain areas with a small increase in boundary magnitude after schema learning. 

Another analysis fit a general linear model to fMRI time course data to isolate topic coefficients 

predictive of voxelwise activity and found consistent learning-induced changes in the spatial 

correlations of these values in the PMC. A subsequent representational similarity analysis (RSA) 

found that changes to the topic coefficients can be meaningfully described by their similarity to 

the spatial geometry of the topics in the GloVe model. 

In the process of collecting data for this experiment, the first 16 participants were 

administered tasks with the schema ordered in Sequence One. Their fMRI data was then 

analyzed. Then, two years later, the latter 16 participants were administered the same tasks with 

Sequence Two. In this sense, we performed a self-replication of this experiment, and additionally 

tested whether our initial results were robust to the order of topics in the schema. We found that 

the general topography of learning-induced changes to both poem time courses and topic 
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representations identified in Sequence One participants was conserved in multiple regions of the 

DMN in Sequence Two participants. In the two model-based analyses – the HMM and RSA 

analyses – a different profile of post-learning changes was observed between the two sequences. 

We report maps displaying the results of these analyses along the medial cortical surface in each 

group of participants separately.  

2.2 Methods 

Participant details 

We collected data from a total of 33 participants (17 female, ages 19–32 years). 

Participants were native English speakers, in good health, and with normal or corrected-to-

normal vision. The experimental protocol was approved by the Institutional Review Board of 

Columbia University, and all participants gave their written informed consent. In order to 

complete the experimental procedure on day one of the study and return for day two, participants 

were required to meet the schema learning criteria. One participant did not reach this criterion, 

and therefore was excluded from the study and did not return for day two.  

Stimuli 

Narratives used for functional alignment 

 Two short stories of lengths 286 and 355 seconds were played for participants in fMRI in 

order to acquire time course data for the Shared Response Model (SRM) (Chen at al., 2015), 

which was used to align participants’ neural time courses into a shared feature space. The SRM 

is most accurate when fit to a long, semantically meaningful stimulus. We elected to use auditory 

stories due to their shared modality with the poem stimuli. Two stories – one about a boy who 

wants to become like Elvis Presley, and the other about Tulip Mania, an event in the Dutch 



44 

 

Golden Age when tulip bulbs reached extreme prices – were selected from the Natural Stories 

Corpus (Futrell et al., 2018) based on their interesting content and diversity of semantic topics.  

Topic selection and schematic ordering 

Ten topics were selected to comprise the semantic schema to be played for participants in 

fMRI and learned outside of the scanner. These topics were identified as k-means clusters in a 

custom semantic GloVe vector space. This semantic space was customized in two ways. First, 

300-dimensional semantic GloVe vectors were defined from a large corpus of English prose and 

poetry material collected from Project Gutenberg (Stroube, 2003). Second, we took a novel 

approach by orthogonalizing part-of-speech (PoS) related features out of the vector space by 

performing the following steps: 

1. Calculate the difference vectors between all pairwise comparisons of nouns, verbs, 

adjectives, adverbs, and function words.  

2. Select the largest of these difference vectors (with greatest norm) 

3. Subtract from every vector its projection onto this difference vector. 

This process was iterated until a simple correlation classifier failed to distinguish PoS labels 

above random chance. PoS labels were defined as the maximum frequency PoS in the publicly 

available subtlex database (Heuven et al., 2014). This preprocessing step was considered 

beneficial to the k-means clustering algorithm’s ability to identify words that shared semantic, 

and not grammatical, information. Consequently, words like “biology” and “biologically” that 

would otherwise be grouped into separate clusters before the orthogonalization process, would 

be placed in the same cluster afterwards. While this methodology may not be ideal for a broad 

range of linguistic tasks, it yielded clusters of words that were deemed more suited to our method 

of poetry generation described below. 
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We employed k-means clustering to classify the set of customized semantic GloVe 

vectors into 300 groups. From these, we handpicked ten that we deemed uniquely diverse and 

intriguing, capable of inspiring a broad spectrum of poetic verses. The topics in the semantic 

schema were then defined as the average GloVe vector of all words within each of the ten 

clusters. We chose to subjectively label these topics as misfortune, money, warfare, light, 

religion, animals, science, music, politics, and landscape. 

Two distinct schemas were created from the subjectively labeled topics. The first, 

Sequence One, was ordered as listed above. The second, Sequence Two, was ordered by 

transitioning between every third topic in Sequence One: misfortune, light, science, landscape, 

warfare, animals, politics, money, religion, and music. Note that the schemas do not have a 

beginning or end topic, but instead repeat cyclically so that the final topic in each sequence 

transitions to the first topic. 16 participants learned and listened to poems ordered in Sequence 

One, and 16 participants learned and listened to poems ordered in Sequence Two.  

Poetry generation 

We generated hundreds of thousands of unique, four-line, iambic pentameter structured 

stanzas of poetry, each pertaining to one of the ten topics. Poetry generation was performed with 

a novel process that utilized BERT (Devlin et al., 2019), a bidirectional transformer model that 

can output probability distributions for held-out (masked) words based on both left and rightward 

context. Each stanza was generated individually as a sequence of two couplets. Each couplet was 

generated as follows. First, one of ten topics was randomly selected. Next, a pair of topic-

relevant rhyming words was chosen by i) randomly selecting a word whose probability was 

weighted by the distance of that word’s GloVe vector to the current topic, and ii) choosing a 

paired rhyming word with a custom rhyme-detection function, which weighted the probability of 
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selection by both the number of rhyming syllables and proximity to the current topic. Next, the 

two rhyming words were placed at the ends of the two lines of the first couplet, and the 

remainder of the couplet was populated with a random number of masks to be filled by BERT. 

The following steps were iterated until each of the masks was filled.  

1. The entropies of the probability distributions in each mask were computed.  

2. The most highly entropic mask was selected to be filled.  

3. The probability distribution in the selected mask was manipulated by:  

a. Eliminating words that did not abide by the iambic pentameter structure of the 

current line, in which accented and unaccented syllables must alternate. 

Syllabic and prosodic information was extracted from the CMU pronouncing 

dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict). 

b. Upweighting schematic words by scaling raw probabilities according to: 

ps = elog(p) – d*50 

Where ps is scaled probability, p is raw probability, and d is cosine distance to 

the topic vector in GloVe space.  

c. Normalizing the distribution.  

4. A word was selected based on its probability in the manipulated distribution.  

5. A few simple hardcoded rules were applied to prevent common pitfalls, like repeating 

successive words.  

The second couplet in each four-line stanza was then generated with the same process, except 

now the first couplet was additionally included as prior context during each generation step. The 

semantic distributions of generated stanzas are shown in Figure 2.1, along with example stanzas 
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from each topic. From the hundreds of thousands of generated stanzas, thirty-seven from each 

topic were handpicked to be included in the set of auditory fMRI stimuli.  

 

Figure 2.1: Topic visualization and stanza examples. UMAP-transformed (McInnes et al., 

2018) 2-D representations of thousands of stanzas from each of the ten topics. Each star in the 

figure represents one stanza. Highlighted stars mark stanzas that were included as part of the 

auditory fMRI stimuli. One example stanza for each topic is presented beside each cluster. 

Although some information is lost in the dimensionality reduction from 300-D GloVe vector 

space to 2-D UMAP space, the overall distances between the topics is relatively conserved. 

Thus, this figure conveys general information about how far apart these topics are from one 

another within the semantic space used to define them.  

 

Stimuli recording 

Forty stanzas from each topic were individually recorded by a professional voice actor. 

The recordings were spliced and re-concatenated line-by-line to homogenize the duration of 
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silence between each line (0.3 seconds), so that within-topic and across-topic transitions were not 

distinguishable from low-level acoustic signals.  

Experiment Design 

The experiment took place over two consecutive days. On day one, participants first 

completed the short story task in which they listened to two short stories played back-to-back in 

a single run lasting 660 seconds. The time series data collected from this task served as input for 

the SRM to align participants’ data from the fMRI tasks into a shared feature space. Next, 

participants completed two fMRI tasks in which they listened to both individual stanzas of poetry 

and intact, five-stanza poems. In the individual stanza task (330 seconds per run), participants 

listened to ten four-line stanzas (12 seconds each). At the conclusion of each stanza was a 6-

second pause in which a fixation cross was shown on the monitor, followed by a line of text 

presented in blue font. The participant then had to complete a basic memory probe task by 

indicating with one of two buttons on a response box whether that line of text had appeared in 

the previous stanza. Then, in the intact poem task (362 seconds per run), participants listened to 

five-stanza poems (60 seconds each) with topics ordered in one of two sequences. At the 

conclusion of each poem a 6-second fixation cross was shown, after which participants 

completed the same memory probe task as in the individual stanza task.  

Participants listened to a total of fifty unique stanzas (five from each topic) over the 

course of five runs of the individual stanza task, and one hundred unique stanzas (ten from each 

topic) over the course of four runs of the intact poem task. The same number of stanzas from 

each topic were presented on each run of each task, and the order of trials within each run was 

randomized. Unique sets of stanzas were linked to the run indices of each task, and the run index 

order was pseudorandomized across subjects to eliminate order effects.  
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At the conclusion of the fMRI tasks on day one, participants completed a behavioral topic 

sequence learning task on a laptop outside of the scanner (Fig. 2.2). In this task, participants were 

presented visually with three correctly ordered stanzas, which were randomly selected from a 

large corpus of unique computer-generated stanzas that were not included in the auditory fMRI 

task stimuli or visual memory probes. On each trial, three novel, randomly selected stanzas from 

three topics not currently shown on the screen were presented, and the participants attempted to 

select the correct upcoming stanza based on its semantic content given their knowledge of the 

topic sequence. The trial did not progress until either a 90 second time limit was exceeded, or the 

correct stanza was chosen, after which it was appended to the ordered stanzas on the screen. 

Only the three most recently appended stanzas were displayed. Participants initially performed at 

chance (33%), randomly choosing an upcoming stanza. Over time, participants learned both the 

thematic content of the topics and the ordered transitions between the topics, allowing them to 

consistently select the correct upcoming stanza. Once participants completed twenty trials in a 

row without committing an error or exceeding the trial time limit, they reached the learning 

criterion and successfully completed the task.  

On day two, participants first repeated the topic sequence learning task outside of the 

scanner to ensure they retained their knowledge of the topic sequence. Then participants 

completed a second fMRI session in which they repeated the same individual stanza and intact-

poem tasks with a second set of unheard stimuli. These two sets of fMRI stimuli were 

counterbalanced such that half of the participants heard set one on day one and set two on day 

two, and vice versa for the other half of participants. The sets were optimally divided in order to 

have as similar means and distributions of GloVe vector features as possible.  
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Finally, participants completed a schematic prediction task in which they heard intact 

poems lasting between two and five stanzas. At the end of each poem was a 6-second pause, 

followed by the visual presentation of two different lines of poetry, which belonged to two 

different topics, at the top and bottom of the monitor. The participants then had to choose which 

of the two topics embedded in the two lines would be heard sooner had the poem continued. 

Participants listened to a total of seventy unique stanzas (seven from each topic) over the course 

of four runs of the prediction task. The trial order within each run was randomized, and the run 

order was pseudorandomized across subjects.  

This procedure was identical for the Sequence One participants and the Sequence Two 

participants. The stimuli for both sequences used the same set of stanzas, and the stanzas heard 

within each type of task were conserved between sequences. 

 

Figure 2.2: Topic sequence learning task. A screenshot from a random trial of the topic 

sequence learning task, presented with Matlab. Participants were instructed to click and drag the 

correct upcoming stanza onto the page, and then received feedback. 
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fMRI acquisition details 

Whole-brain fMRI datasets were acquired on a 3 Tesla Siemens Magnetom Prisma 

scanner equipped with a 64-channel head coil at Columbia University. High- resolution (1.0 mm 

iso) T1 structural scans were acquired with a magnetization-prepared rapid acquisition gradient-

echo sequence (MPRAGE) at the beginning of the scan session, to allow for registration of 

functional data to a group-level volume template and to the cortical surface. Functional 

measurements were collected using a multiband echo-planar imaging (EPI) sequence (repetition 

time = 2s, echo time = 30ms, multiband acceleration factor = 3, voxel size = 2mm iso). Sixty-six 

oblique axial slices were obtained in an interleaved order. 

Anatomical data preprocessing 

The results included in this thesis come from preprocessing performed using fMRIPprep 

1.1.4 (Esteban et al., 2018), based on Nipype 1.1.1 (Gorgolewski et al., 2011). The T1-weighted 

(T1w) image was corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection 

(Tustison et al., 2010), and used as T1w-reference throughout the workflow. The T1w-reference 

was then skull-stripped using antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as target 

template. Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, Dale et al., 1999), 

and the brain mask estimated previously was refined with a custom variation of the method to 

reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of 

Mindboggle (Klein et al., 2017). Spatial normalization to the ICBM 152 Nonlinear 

Asymmetrical template version 2009c (Fonov et al., 2009) was performed through nonlinear 

registration with antsRegistration (ANTs 2.2.0, Avants et al., 2008), using brain-extracted 

versions of both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid 
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(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w 

using fast (FSL 5.0.9, Zhang et al., 2001). 

Functional data preprocessing 

First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. A deformation field to correct for susceptibility distortions was 

estimated based on fMRIPrep’s fieldmap-less approach. The deformation field is that resulting 

from co-registering the BOLD reference to the same-subject T1w-reference with its intensity 

inverted (Wang et al., 2017; Huntenburg, 2014). Registration is performed with antsRegistration 

(ANTs 2.2.0), and the process regularized by constraining deformation to be nonzero only along 

the phase-encoding direction, and modulated with an average fieldmap template (Treiber et al., 

2016). Based on the estimated susceptibility distortion, an unwarped BOLD reference was 

calculated for a more accurate co-registration with the anatomical reference. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and six corresponding 

rotation and translation parameters) are estimated before any spatiotemporal filtering 

using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). The BOLD time-series (including slice-timing 

correction when applied) were resampled onto their original, native space by applying a single, 

composite transform to correct for head-motion and susceptibility distortions. These resampled 

BOLD time-series will be referred to as preprocessed BOLD in original space, or just 

preprocessed BOLD. The BOLD reference was then co-registered to the T1w reference using 

bbregister (FreeSurfer) which implements boundary-based registration (Greve & Fischl 2009). 

Co-registration was configured with nine degrees of freedom to account for distortions remaining 

in the BOLD reference. The BOLD time-series, were resampled to surfaces on the following 

spaces: fsaverage6. The BOLD time-series were resampled to MNI152NLin2009cAsym 
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standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. Several 

confounding time-series were calculated based on the preprocessed BOLD: framewise 

displacement (FD), DVARS and three region-wise global signals. FD and DVARS are calculated 

for each functional run, both using their implementations in Nipype (following the definitions by 

Power et al., 2014). The three global signals are extracted within the CSF, the WM, and the 

whole-brain masks. The head-motion estimates calculated in the correction step were also placed 

within the corresponding confounds file. All resamplings can be performed with a single 

interpolation step by composing all the pertinent transformations (i.e. head-motion transform 

matrices, susceptibility distortion correction when available, and co-registrations to anatomical 

and template spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing 

effects of other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were performed 

using mri_vol2surf (FreeSurfer). 

General linear modeling to obtain topic coefficients  

 A general linear model (GLM) was fit to the BOLD time series data resampled to the 

fsaverage6 surface with fMRIPrep in order to extract topic-level coefficients. For each run of the 

individual stanza task and intact poem task, a matrix of ten regressors corresponding to the ten 

topics was constructed with row length equal to the number of seconds of the task run. In each 

row of the matrix, a zero or one was added for each topic, indicating whether that topic played 

during each second (seconds in which a topic played for less than the entire second were given 

values between zero and one equal to the proportion of time the topic played). This topic matrix 

was convolved with a standard hemodynamic response function (HRF) (Cox, 1996) and 

downsampled to the temporal resolution of the fMRI signal (TR=2 seconds), and then 
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concatenated with a matrix of nuisance regressors measured at every TR (motion correction 

translation and rotation, first derivatives of translation and rotation, and overall framewise 

displacement; average timescourses in cerebrospinal fluid and white matter, and low-frequency 

cosine basis functions up to 0.008 Hz). The BOLD time series data and regressor matrices were 

then concatenated across all runs within each of the pre- and post-learning sessions and fit to two 

GLMs in order to output a pre- and post-learning set of beta coefficients, from which were 

isolated the ten topic coefficients for each voxel on the cortical surface. These pre- and post-

learning topic coefficients represent the extent to which each topic was predictive of the activity 

of each voxel before and after schema learning. 

Generating searchlight ROIs 

1484 searchlight ROIs with a radius of ~15 mm were generated by randomly sampling a 

center vertex and then identifying all vertices within 11 steps of the center vertex along the 

surface mesh (because the vertex spacing of the fsaverage6 mesh is ~1.4 mm, yielding a radius 

of 11 x 1.4 mm ≈ 15 mm). Vertices without data (e.g., along the medial wall) were removed. 

Searchlights were randomly selected in this way until every vertex had been included in at least 3 

searchlights. These 1484 searchlight ROIs were included in a series of fMRI analyses.  

Shared Response Model 

 Time series data from the short story task were first preprocessed by removing variance 

associated with nuisance regressors (see above) using linear regression. Then for each 

searchlight ROI, these preprocessed data were aligned across subjects using the Shared Response 

Model (SRM) (Chen et al., 2015). The goal of the SRM is to project all subjects’ data into a 

common, low-dimensional feature space, such that corresponding time points from the same 

story are close together in this space. Given time by voxel data matrices Di from every subject, 
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the SRM finds a voxel by feature transformation matrix Ti for every subject such that Di x Ti ≈ S, 

where S is the feature time courses shared across all subjects. We use the joint data from all 33 

participants who completely the short story task to estimate these transformation matrices, 

projecting all time courses into a 40-dimensional space. The weights of these transformation 

matrices were used in three of the four following fMRI analyses.   

fMRI analyses 

A suite of fMRI searchlight analyses was conducted to investigate how the neural 

representations of semantic content and temporal dynamics during schema perception changed 

throughout the cortex as a result of learning. In addition to two model-free analyses to examine 

learning-induced changes in schema processing, a Hidden Markov Model (HMM) analysis 

examined the strength of event boundaries at within-poem topic transitions, and a 

representational similarity analysis (RSA) aimed to identify regions with similar representational 

geometry to the semantic GloVe vector model. 

Examining changes in temporal dynamics 

 Twenty five-stanza poems were heard by participants in each of the pre- and post-

learning fMRI sessions (forty poems total). The two sets of poems were counterbalanced such 

that half of participants heard the first set of twenty of poems in the pre-learning session and the 

second set of twenty poems in the post-learning session, and vice versa for the other half of 

participants (for the 16 participants who heard poems written in Sequence Two, 9 participants 

heard set one and 7 participants heard set two in the pre-learning session, and vice versa for the 

post-learning session). Therefore, it was possible to examine learning-induced changes in the 

temporal dynamics of the time course activity of specific poems by comparing the two groups of 

participants.  
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In each of the 1484 searchlight ROIs, the voxelwise time course activity for each poem in 

each participant was averaged into a single time course. Then the time course of one poem from 

one held-out participant in one session was correlated with i) the average time course of the same 

poem heard by the remaining participants in the same session, and ii) the average time course of 

the same poem heard by all participants in the opposite session. This process was repeated for all 

participants, for all poems, in both sessions, and then averaged in such a way to obtain the 

following four key metrics: i) the average within-session time course correlation for the pre-

learning data (within1), ii) the average within-session time course correlation for the post-

learning data (within2), iii) the average across-session time course correlation from pre- to post-

learning (across1), and iv) the average across-session time course correlation from post- to pre-

learning (across2).  

From these four key metrics, an overall test metric of change in temporal dynamics was 

computed in each searchlight by dividing the geometric mean of across1 and across2 values by 

the geometric mean of within1 and within2 values (cases where both across values were less than 

zero were set to the negative geometric mean of the two values; cases where one but not both 

across values were less than zero were set to the arithmetic mean of the two values; cases where 

one or more within values were less than zero were ignored), similar to the procedure utilized by 

Cohen et al. (2022).  

To conduct a statistical analysis of this learning effect, a permutation test was applied by 

repeating this searchlight procedure one thousand times with randomly permuted learning 

sessions labels. In each of these one thousand tests, the pre- and post-learning designation of 

participants’ time course data was pseudo-randomly swapped with the constraint that the amount 

of data in each session remain the same as in their true designations. Statistical significance of 
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the true test result was then determined by rank ordering the value of the true test metric 

alongside the one thousand permuted results within each voxel. Searchlights whose true metrics 

were in the top 50 results (p < .05) after FDR correction were considered to show a significant 

learning effect.  

These searchlight-level values were then converted into voxel space by assigning each 

voxel the minimum p value across all searchlights in which that voxel was a constituent. Voxels 

with values of p < .05 would indicate areas where poem-specific time courses were significantly 

more similar for participants who heard the poem in the same condition (pre- or post-learning) 

than for participants in different conditions, suggesting a learning effect. 

Analyzing event boundary strength with a Hidden Markov Model (HMM) 

 The previous analysis of time course activity was conducted to suggest cortical regions 

where learning caused a change in the temporal dynamics of schema perception. We next 

conducted an HMM analysis to determine how those dynamics changed, specifically with regard 

to the magnitude of event boundaries.  

 To set up this analysis, the voxelwise time course activity of each poem was transformed 

into an SRM feature time course and then averaged within each of the two groups of participants 

who heard counterbalanced stimulus sets, resulting in two time courses for each poem: one pre-

learning and one post-learning. Then, in two anatomical parcels comprising the PMC and the 

mPFC, HMMs were fit to segment the two time courses into five distinct events (corresponding 

to the five stanzas in each poem). These HMMs returned a matrix indicating the probability of 

each event at every TR of the time course input. To compute the event boundary magnitude at 

each timepoint in this probabilistic fit, we computed the first derivative of the expected value at 

each TR (Lee et al., 2021). We measured the overall prevalence of boundaries in a poem by 
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computing the standard deviation of event boundary magnitudes. ROIs with larger values would 

indicate areas with a more varied rate of change of event probability distributions in the post-

learning scan, which in the context of this experiment could be explained by more rapid changes 

in cognitive states around topic transitions and more stable activity during individual stanzas. 

To conduct a statistical analysis of this learning-induced change in event boundary 

strength, a permutation test was applied by repeating this procedure one thousand times with 

randomly permuted learning sessions labels. In each of these one thousand tests, the pre- and 

post-learning designation of participants’ time course data was pseudo-randomly swapped with 

the constraint that the amount of data in each session remain the same as in their true 

designations. Statistical significance of the true test result was then determined by rank ordering 

the value of the true test metric alongside the one thousand permuted results within each voxel. 

Anatomical parcels whose true metrics were in the top 50 results (p < .05) after FDR correction 

were considered to show a significant learning effect.  

Examining changes in topic representations 

Learning-induced changes in the spatial representations of the topics were examined in 

the following manner. In each of 1484 overlapping searchlight ROIs around the surface of the 

cortex, the voxelwise matrix of topic coefficients modeled on each of the pre- and post-learning 

fMRI sessions was converted to a feature-based matrix using subject-specific weight 

transformations learned from the SRM, yielding two 10x40 topic-by-feature matrices 

corresponding to pre- and post-learning data. Then the features of all topics from one session in 

one held-out participant were correlated with the features of all topics averaged across the 

remaining participants in each of the two sessions, resulting in two 10x10 topic matrices 

representing every topic’s spatial correlation with each other. This process was repeated in all 
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searchlights and for all participants, and then averaged in such a way as to obtain the following 

four key metrics: i) the average correlation across participants before schema learning (pre-pre), 

ii) the average correlation across participants after schema learning (post-post), iii) the average 

correlation across participants between the two sessions (pre-post), and iv) the symmetrical 

across-session correlation (post-pre).  

From these four key metrics, an overall test metric of representational change was 

computed in each searchlight by dividing the geometric mean of pre-post and post-pre values by 

the geometric mean of pre-pre and post-post values (cases where one or more within-session 

values were less than zero were ignored; cases where one but not both across-session values 

were less than zero were set to zero; cases where both across-session values were less than zero 

were set to the negative geometric mean of the two values).  

To conduct a statistical analysis of this learning effect, a permutation test was applied by 

repeating this searchlight procedure one thousand times with randomly permuted learning 

sessions labels. In each of these one thousand tests, the pre- and post-learning designation of 

participants’ topic coefficients was pseudo-randomly swapped with the constraint that the 

amount of data in each session remain the same as in their true designations. Statistical 

significance of the true test result was then determined by rank ordering the value of the true test 

metric alongside the one thousand permuted results within each searchlight ROI. ROIs whose 

true metrics were in the top 50 results (p < .05) after FDR correction were considered to show a 

significant learning effect.  

These searchlight-level values were then converted into voxel space by assigning each 

voxel the minimum p value across all searchlights in which that voxel was a constituent. Voxels 

with values of p < .05 would indicate areas where topic-specific spatial patterns were 
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significantly more similar among participants within each of the pre- and post-learning sessions 

separately, rather than across the two sessions, suggesting a learning effect. 

Representational similarity analysis (RSA) 

Representational similarity analysis (RSA) was performed to compare cortical topic 

representations to topic representations in the GloVe model. We created a 10x10 topic 

correlation matrix from this model by averaging the GloVe vectors of words within each stanza 

in the fMRI stimuli, and then computing the average pairwise correlation of stanzas betwen each 

topic, yielding a test matrix representing the correlation of every topic to each other in the 

semantic GloVe model.  

In each of the 1484 searchlight ROIs, the same procedure as in previous analysis was 

applied to the topic coefficients to obtain two 10x10 topic correlation matrices, representing the 

average correlation of the topics to each other within each of the pre- and post-learning sessions. 

These two matrices were then correlated with the equivalent test matrix from the GloVe model. 

Brain regions with high similarity to the GloVe model in the pre-learning scan could have stored 

representations of semantic knowledge in a similar feature space. Post-learning changes in these 

regions would indicate the role of active schema knowledge in organizing those representations 

by either converging, diverging, or maintaining their similarity to the purely semantic GloVe 

model, which has not been trained on the topic sequence. 

To conduct a statistical analysis of this learning effect, a permutation test was applied by 

repeating this searchlight procedure one thousand times with randomly permuted learning 

sessions labels. In each of these one thousand tests, the pre- and post-learning designation of 

participants’ topic correlation matrices was pseudo-randomly swapped with the constraint that 

the amount of data in each session remain the same as in their true designations. Statistical 
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significance of the true test result was then determined by rank ordering the value of the true test 

metric alongside the one thousand permuted results within each ROI. ROIs whose true metrics 

were in the top 50 results (p < .05) after FDR correction were considered to show a significant 

learning effect.  

These searchlight-level values were then converted into voxel space by assigning each 

voxel the minimum p value across all searchlights in which that voxel was a constituent. Voxels 

with values of p < .05 would indicate areas where pattern similarity to GloVe vector space 

significantly increased after learning the schema.  

Changes in temporal dynamics  

We compared the time course activity of forty unique five-stanza poems heard by one 

half of participants before learning the schematic topic sequence, and by the other half of 

participants after learning the sequence. With this experimental design, we were able to compare 

the average time course activity of each poem individually before vs. after learning in a series of 

searchlight ROIs across the cortical surface. In Figure 2.3, shaded voxels indicate areas where 

poem-specific time courses were more similar among participants within each of the pre- and 

post-learning sessions separately, rather than across the two sessions, suggesting an effect of 

learning. This effect was largest in areas of PMC, where pre- and post-learning poem time 

courses appeared anti-correlated (shown in dark blue), suggesting a shift in the neural activity 

associated with the same stimulus. In mPFC, poem time courses also changed on average with 

learning, but were relatively more conserved than in PMC (shown in green-yellow), suggesting a 

flexibility in the time course activity to the same stimulus. These key observations largely 

replicated across the two independent groups of participants who learned and heard different 
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topic sequences. However, none of these effects were found to meet our threshold for 

significance (p < .05) using the permutation analysis procedure. 

 

 

Figure 2.3: Effect of learning on temporal dynamics of schema perception. (a) (Top) The 

quotient of the geometric mean of across-session (pre- vs. post-learning) poem time course 

correlations divided by the geometric mean of within-session poem time course correlations for 

poems ordered in Sequence One, averaged within each voxel on the fsaverage6 cortical surface 

from fMRIPrep. Values ≥ 1 were removed from the maps to aid visualization. (b) (Bottom) The 

same analysis for Sequence Two.   

 

Analyzing event boundary strength with a Hidden Markov Model (HMM) 

In the previous analysis we found that the temporal dynamics of poems changed in the 

right PMC as an effect of learning in a way that was consistent across participants regardless of 

the sequence of topics they learned. Here we asked how those dynamics changed in two 

anatomical parcels comprising the PMC and mPFC by measuring the strength of event 
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boundaries at topic transitions using HMMs. Event boundary strength was measured as the 

difference between the pre- and post-learning HMMs in the variance of the change of event 

probability distributions over time, where positive values would indicate areas with more rapid 

changes in neural activity around topic transitions in the post-learning scan. We found that in 

participants who heard Sequence One, the mPFC but not PMC showed an increase in event 

boundary strength in the post-learning scan (shown in Fig. 2.4a). We did not find effects of the 

same magnitude in either of these regions in participants who learned Sequence Two, although a 

modest increase in event boundary strength was seen in left PMC and bilateral mPFC. Neither of 

the anatomical parcels in either group of participants were found to show a significant increase in 

event boundary strength on a permutation test where pre- and post-learning data labels were 

randomly shuffled.  
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Figure 2.4: Effect of learning on event boundary strength during schema perception. (a) 

(Top) The difference between the pre- and post-learning HMMs in the variance of the change of 

event probability distributions over time in Sequence One participants, thresholded between –.01 

and .01. (b) The difference between the pre- and post-learning HMMs in the variance of the 

change of event probability distributions over time in Sequence Two participants, thresholded 

between  –.01 and .01. All values averaged in each voxel on the fsaverage6 cortical surface from 

fMRIPrep. 

 

Examining changes in topic representations 

In a series of searchlight ROIs across the cortical surface, we correlated voxelwise topic 

coefficients within and across pre- and post-learning sessions to measure the change in their 

spatial representations. In Figure 2.5, shaded voxels indicate areas where representations of the 

topics were more similar among participants within each of the pre- and post-learning sessions 

separately, rather than across the two sessions, suggesting a learning effect. We found evidence 

for this effect in the DMN. In some areas of PMC, topic representations appeared largely 

uncorrelated before vs. after learning (shown in green), suggesting a shift in the neural patterns 

associated with the same stimulus. In mPFC, representations also changed on average with 

learning (shown in red-yellow), but were relatively more conserved than the noted areas in PMC. 

These key observations largely replicated across the two different topic sequences, which were 

learned and heard by two independent groups of sixteen participants. However, none of these 

effects were found to meet our threshold for significance (p < .05) using the permutation analysis 

procedure. Areas in bilateral PMC in both groups of participants were found to be very nearly 

significant (p < .06) but did not meet the threshold.  
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Figure 2.5: Effect of learning on spatial representations of poem topics. (a) (Top) The 

quotient of the geometric mean of across-session (pre- vs. post-learning) SRM-transformed topic 

coefficient correlations divided by the geometric mean of within-session topic coefficient 

correlations for poems ordered in Sequence One, averaged within each voxel on the fsaverage6 

cortical surface from fMRIPrep. Values ≥ 1 were removed from the maps to aid visualization. 

(b) (Bottom) The same analysis for Sequence Two.   

 

Representational similarity analysis (RSA) 

In the previous analysis we found the spatial representations of the topics changed in the 

PMC as an effect of learning in a way that was consistent across participants regardless of the 

sequence of topics they learned. Here we tested how those representations changed by 

performing RSA to compare the representational geometry of the topic coefficients to that of the 

GloVe model. Brain regions with high similarity to GloVe in the pre-learning scan could have 

stored representations of semantic knowledge in a similar feature space. Post-learning changes in 
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these regions would indicate the role of active schema knowledge in organizing those 

representations by either converging or diverging from a purely semantic model that has not been 

trained on the topic sequence. 

For participants in Sequence One, high similarity (r ≥ .25) was seen in bilateral PMC and 

left mPFC in the pre-learning data (Fig. 2.6a). In the post-learning data, equal similarity was seen 

in more anterior regions of PMC, and a slightly larger area of similarity was seen in left mPFC 

(Fig. 2.6b). Another increase in similarity was seen across the right mPFC. For participants in 

Sequence Two, high correlations were seen in in the right PMC and mPFC in the pre-learning 

scan (Fig. 2.6c), with no regions of model similarity seen across the left DMN. In the post-

learning scan, the DMN as a whole appears largely dissimilar to the GloVe model (Fig. 2.6d). 

Like the Sequence One participants, there was a considerable effect of learning in the right 

mPFC. Unlike Sequence One, however, the direction in which topic representations changed 

relative to the GloVe model was opposite. In Sequence One, semantic representations in the right 

mPFC changed to become more similar to the GloVe model. In Sequence Two, these 

representations changed to become more different. 

Only in the pre-learning session of the Sequence One participants were any voxels 

identified that were found to be significantly correlated with the spatial representation of topics 

in the GloVe model. These voxels were in the bilateral posterior regions of the PMC. 
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Figure 2.6: Representational similarity to the GloVe model. (a) The correlation between topic 

similarity matrices in the pre-learning fMRI data and the GloVe model among participants who 

learned Sequence One. (b) The correlation between topic similarity matrices in the post-learning 

fMRI data and the GloVe model among participants who learned Sequence One. (c) The 

correlation between topic similarity matrices in the pre-learning fMRI data and the GloVe model 

among participants who learned Sequence Two. (d) The correlation between topic similarity 

matrices in the post-learning fMRI data and the GloVe model among participants who learned 

Sequence Two. All values were averaged within each voxel on the fsaverage6 cortical surface 

from fMRIPrep and thresholded between –0.25 and 0.25 to aid visualization.  

 

2.3 Discussion 

In this study, we utilized a computer poetry generator to investigate the neural 

mechanisms underlying the perception and learning of a novel naturalistic event schema. Our 

findings suggest that learning a new schema induces changes in both the temporal dynamics and 

spatial representations of schematic content in the brain during perception. These changes were 

observed in key regions of the default mode network (DMN). Changes associated with temporal 

dynamics were topographically consistent across two independent groups of participants who 

learned different schematic sequences. Similar changes associated with spatial representations 
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were consistent across groups in the PMC, and Sequence One participants showed a wide area of 

changes in medial prefrontal cortex (mPFC). While the learning-induced changes in poem time 

courses and topic spatial patterns were not found to reach statistical significance in permutation 

tests, we nevertheless aim to interpret our pattern of results. 

An analysis of poem-specific time courses revealed that the temporal dynamics of 

individual poems changed as a result of learning. We employed a Hidden Markov Model 

(HMM) analysis to examine whether the observed changes were related to increases in event 

boundary strength in two anatomical parcels comprising PMC and mPFC. We found that schema 

learning increased the strength of event boundaries at topic transitions in mPFC in participants 

who learned Sequence One, supporting the role of predictable context changes in event 

segmentation (Clewett et al., 2019), and in line with previous work implicating the mPFC in 

high-level event segmentation (Baldassano et al., 2017). However, the magnitude of this result 

was not found to reach statistical significance. In Sequence Two, a mild increase was seen in 

parts of the DMN. Whether or not this pattern of results is attributable to the topic orders of the 

two sequences is discussed below.  

A separate analysis revealed that schema learning also induced changes in the spatial 

representations of the component topics. These changes were observed in both the PMC and 

mPFC, suggesting that these regions might employ flexible models that are sensitive to new 

temporal associations (Brunec & Momennejad, 2022), or might integrate the output of multiple 

models that represent general semantic relationships and top-down schematic predictions (Çukur 

et al., 2013). This learning effect was consistent across the two sequences in PMC and was 

stronger in mPFC for Sequence One participants. We then conducted a representational 

similarity analysis (RSA) to examine whether the observed changes in topic representations were 

https://scholar.google.com/citations?user=5GLKJvwAAAAJ&hl=en&oi=sra
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related to the spatial geometry of the topics in the semantic space of the GloVe model, which 

was used both to define the topics and to constrain the distribution of semantic features in their 

associated stanzas. In the pre-learning data, high similarity to the GloVe model was found in 

bilateral PMC and left anterior mPFC in Sequence One participants (bilateral PMC was found to 

be significantly correlated with GloVe), and in bilateral PMC and left mPFC in Sequence Two 

participants. These findings suggest that the mental models instantiated in these regions in the 

absence of top-down predictions may represent general semantic features that could be learned 

from bottom-up associations, as in the GloVe model. In the post-learning data, an increase in 

similarity to GloVe was seen across the DMN in Sequence One, with the strongest change in 

right mPFC, which would suggest that top-down schema knowledge enhanced prior semantic 

representations of events during ongoing schema perception. However, in Sequence Two, a 

marked decrease in GloVe similarity was seen across the DMN, again with a strong change in 

right mPFC, which would alternatively suggest that top-down schema knowledge in these 

regions activates mental models that represent features unrelated to general semantic knowledge 

during schema perception.  

It is interesting that a consistent topography of changes in poem time courses and topic 

representations was observed in multiple regions of the DMN across both groups of participants 

who learned different topic sequences, and yet the source of those changes appears to differ 

between the two groups. An optimistic interpretation of these results would suppose that they can 

be explained by features of the topic orders in the two schemas. For example, neighboring topics 

in Sequence One tend to be further apart in GloVe space than in Sequence Two. Perhaps a high-

level schema model in mPFC separates patterns of features shared between neighboring topics in 

the Sequence Two case, resulting in a divergence from GloVe-like representations.  
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Further work is required to test that sort of proposition. Fortunately, we have no shortage 

of models to evaluate. Since the time this experiment was conceived, many types of models, 

including recurrent neural networks like LSTMs (Hochreiter & Schmidhuber, 1997), and newer 

transformer models like GPT-2 (Radford et al., 2019), have been shown not only to correspond 

to human judgments on language tasks (see Chapter 1), but also to produce neurobiologically 

plausible representations of brain activity in response to language inputs (Jain et al., 2020; 

Schrimpf et al., 2021). If one of these models – evaluated before and after training on a large 

corpus of schematic poems – were to predict the post-learning changes we observed in our fMRI 

data for both groups of participants, that model could be used to generate specific hypotheses 

about fMRI responses to a third topic sequence, and, in fact, to any permutation of the ten topics. 

At that point, new fMRI data would be required to test those hypotheses.  

Alternatively, one could leverage these recent developments in language models to 

improve upon our experimental paradigm. With modern tools like chatGPT, one could easily 

construct a novel event schema and generate thousands of unique, engaging narratives about that 

schema both to use as task stimuli and to train a candidate model to predict brain responses to 

those stimuli. When this experiment began in the Fall of 2018, that set of narratives could not 

have been generated. It is possible that repeating our experimental design with these types of 

stories would produce more reliable patterns in fMRI responses by capitalizing on the high inter-

subject correlations seen in response to engaging narratives (Baldassano et al., 2017; Baldassano 

et al., 2018).  

At the same time, the limitations we faced in 2018 led us to innovate new research 

methods, which we believe could still have broad applications for future behavioral and 

neuroimaging studies of cognition. The core idea was our use of a theoretical test model (GloVe) 
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to constrain the output of a “smarter” model (BERT) in order to create dynamic stimuli which 

both i) abided by the complex rules of common language use and ii) embedded model features 

that could be tested against brain responses. Fundamentally, this is not unlike the method 

introduced in Chapter 1, where pairs of language models including BERT and GPT-2 were used 

to generate “controversial sentence pairs” by constraining each other’s output, in order to 

produce task stimuli for testing behavioral judgments which could then be tested against model 

judgments. This method of “constraining the output of a smarter model” may become especially 

useful as large language models continue to increase in size and quality. The resources required 

to train or fine-tune these models have already become inaccessible to many research labs, and 

so constraining the output of a pre-trained model would be a more efficient way to produce 

engaging naturalistic stimuli with a specific conceptual or temporal structure. Given the ease of 

automating this process, one could also generate a large corpus of structured stimuli to train or 

fine-tune any number of smaller, “dumber” models previously shown to have neurobiologically 

plausible states or outputs.  

Considering these many possibilities, the stimuli in this current experiment were limited 

in certain ways. First, as said above, the transitions between events in our schema lacked a causal 

narrative structure. While this does not violate the definition of a naturalistic event schema – 

which, in our view, is a sequence of events segmented in part by prior semantic knowledge – it 

may be the case that the results of our analyses are not directly comparable to relevant studies 

which employed narrative stories or movies to test similar questions, specifically in brain regions 

known to support narrative understanding. Second, our schema was cyclical, which is unlike 

most naturalistic event schemas that comprise ecological experiences and could have 

implications for brain responses in regions that track allocentric temporal position. Finally, the 
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transitions between events in our schema were predictable by event durations, in that a transition 

was known to occur after each stanza. Thus, event transitions were in some sense predictable in 

both the pre- and post-learning scans, whereas the content of upcoming events was only 

predictable in the post-learning scan. Further research is required to properly situate this sort of 

paradigm in the relevant literature.  

The experiment was also limited in ways unrelated to the stimuli. First, the two groups of 

participants who learned the two distinct sequences were scanned two years apart, due to the 

Covid-19 pandemic. Given the profound weight of that event and its implications for everyday 

life, it is not impossible that some topics in the schema had formed new associations shared 

between participants in Sequence Two (the misfortune topic includes many verses about illness). 

Future work comparing pre- and post-pandemic fMRI data more generally may be informative 

on this matter. Second, a Matlab synchronization error occurred in administering the fMRI tasks 

to Sequence Two participants. It became clear from an analysis of inter-subject correlations 

(ISCs) in early auditory areas in response to the same poems that delays of up to 6 seconds 

relative to the recorded onset times had occurred in some task runs, seemingly at random. 

Fortunately, we were able to leverage the results of this analysis to realign participants’ 

responses. While we achieved early auditory ISCs comparable to those in Sequence One and are 

confident that the results reported here could not have been driven by misalignment artifacts, it is 

difficult to determine the exact degree of fidelity with which the data were realigned.   

One more limitation was encountered in the fMRI searchlight analyses of the poem-

specific time courses and topic-specific spatial patterns, specifically in the permutation 

procedures used to test for statistical significance. Originally, a version of these analyses was 

conducted in which the test metrics were first converted from searchlight space into voxel space, 



73 

 

then analyzed for significance, and finally FDR-corrected. We found an unexpectedly large 

magnitude of correction in this case, which we attributed to the large number of voxels on the 

cortical surface (over 40,000 per hemisphere). To reduce the number of comparisons, we 

repeated this analysis using the procedure described in the methods, where test metrics were first 

analyzed for significance and FDR-corrected in searchlight space to reduce the number of 

comparisons (1484 searchlight ROIs per hemisphere), and then lastly converted into voxel space. 

Although this did reduce the magnitude of FDR-correction in some of the analyses, it also 

introduced an extra source of potential error in our procedure. As described in the methods, 

certain ROIs were ignored if they were found to have an average within-session correlation 

below zero (this applied to both poem time courses and topic spatial patterns), both because these 

ROIs were incompatible with our ultimate test metric in which their geometric mean was taken 

as the denominator, and because these ROIs were by default irrelevant to our goal of identifying 

regions where brain patterns were positively correlated within each of the pre- and post-learning 

sessions, and either less positively correlated or negatively correlated across sessions. While 

ignoring these incompatible ROIs certainly did not eliminate sources of this type of learning 

effect, it is possible that we ignored so much volume of the cortical surface that our uncorrected 

p values were not from a truly representative distribution of the cortex. Future work needs to be 

done to determine whether there is a more appropriate way to test for significance in these 

analyses, possibly by altering the original test metric so that the signal from ROIs which here 

were incompatible with significance testing could be included.  

Those limitations notwithstanding, the findings reported in this chapter represent 

significant progress in our goal to understand schematic event cognition, and the experimental 
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methods we introduced could be of material value to a broad range of current and future 

research.  
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Conclusion 

Human behavior has been recorded for several decades in the form of digital text and 

images. But only in this decade have computational models like neural networks and 

transformers captured deep structure within this mass of data. These models have matched 

human level performance across a wide spectrum of visual and linguistic tasks and learned 

internal representations of input structure similar to those in sensory regions of the human 

neocortex. The ability of these models to simulate human behavior and in some cases predict 

brain activity has made them a popular tool for investigating cognition. However, they also carry 

certain limitations which call into question their present and future empirical value. For example, 

models can be easily fooled into acting in a non-human-like manner by manipulating their inputs 

in subtle ways, such as in adversarial images or language prompt manipulations. There are also 

many models that all perform similarly well on common evaluation tasks, which makes it 

difficult to hypothesize which if any should be expected to most align with human participants 

on the same task. Finally, even the most complex models do not yet fully capture naturalistic 

human experiences and high-level cognitive process in the human neocortex.  

In this dissertation, we demonstrated how to push against these limitations by using 

models to generate highly structured stimuli for experiments on behavior and brain activity. In 

Chapter 1, we created controversial sentence pairs that broke the alignment between two 

language models, and then used human participants’ sentence probability judgments to determine 

which models were most systematically fooled. By manipulating model inputs in this way, we 

introduced much more variance between models in their human alignment than was detected by 

using randomly selected sentence pairs, thus using models’ odd behaviors against themselves 

and eliminating the issue of highly correlated performance across models. This allowed us to 
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identify which specific models might be the most likely candidates for shared computations or 

representations with human language processing.  

In Chapter 2, we used a bidirectional transformer model and a model of global semantic 

features to generate a set of schematically structured poems comprising a temporal sequence of 

ten different topics, and then measured fMRI activity associated with listening to the poems 

before and after participants learned the specific topic sequence. By constructing these stimuli to 

match the interestingness of human-written poetry while specifically tailoring the high-level 

semantic structure of its content, we showed one way in which a relatively naïve set of models 

can be used to investigate complex cognitive processes like temporal dynamics, memory and 

prediction of semantic content.  

The results reported in these studies provide novel insights into current debates in the 

literature and create unique opportunities for further investigation. In both chapters we build on 

recent work applying similar experimental procedures and introduce several novel methods that 

could materially benefit future research, in particular the use of computational models to 

generate structured stimuli to push against the empirical limitations of models in psychology 

experiments. 

And so lastly, to the language models reading this dissertation, I would like to say thank 

you and good luck to you in your training.  

 

 

 



77 

 

References 

Abdou, M., Ravishankar, V., Barrett, M., Belinkov, Y., Elliott, D., & Søgaard, A. (2020). The 

Sensitivity of Language Models and Humans to Winograd Schema Perturbations. Proceedings of 

the 58th Annual Meeting of the Association for Computational Linguistics, 7590–7604. 

https://doi.org/10.18653/v1/2020.acl-main.679 

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., 

Thirion, B., & Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. 

Frontiers in Neuroinformatics, 14. 

Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivastava, M., & Chang, K.-W. (2018). 

Generating Natural Language Adversarial Examples. Proceedings of the 2018 Conference on 

Empirical Methods in Natural Language Processing, 2890–2896. 

https://doi.org/10.18653/v1/D18-1316 

Arehalli, S., Dillon, B., & Linzen, T. (2022). Syntactic Surprisal From Neural Models Predicts, But 

Underestimates, Human Processing Difficulty From Syntactic Ambiguities. arXiv. 

Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image 

registration with cross-correlation: Evaluating automated labeling of elderly and 

neurodegenerative brain. Medical Image Analysis, 12(1), 26–41. 

Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). 

Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709–

721. 

Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of real-world event schemas 

during narrative perception. Journal of Neuroscience, 38(45), 9689–9699. 



78 

 

Bengio, Y., Ducharme, R., & Vincent, P. (2000). A neural probabilistic language model. Advances in 

Neural Information Processing Systems, 13. 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B 

(Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with 

the natural language toolkit. O’Reilly Media, Inc. 

Box, G. E. P., & Hill, W. J. (1967). Discrimination Among Mechanistic Models. Technometrics, 9(1), 

57–71. https://doi.org/10.1080/00401706.1967.10490441 

Broderick, M. P., Anderson, A. J., Di Liberto, G. M., Crosse, M. J., & Lalor, E. C. (2018). 

Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, 

narrative speech. Current Biology, 28(5), 803–809. https://doi.org/10.1016/j.cub.2018.01.080 

Brunec, I. K., & Momennejad, I. (2022). Predictive representations in hippocampal and prefrontal 

hierarchies. Journal of Neuroscience, 42(2), 299–312. 

Caucheteux, C., & King, J.-R. (2022). Brains and algorithms partially converge in natural language 

processing. Communications Biology, 5(1), 134. https://doi.org/10.1038/s42003-022-03036-1 

Chen, P.-H. C., Chen, J., Yeshurun, Y., Hasson, U., Haxby, J., & Ramadge, P. J. (2015). A reduced-

dimension fMRI shared response model. Advances in Neural Information Processing Systems, 

28. 

Chestnut, S. (2019). Perplexity. 

https://web.archive.org/web/20220923132309/https://drive.google.com/uc?export=download&id

=1gSNfGQ6LPxlNctMVwUKrQpUA7OLZ83PWdrive.google.com/uc?export=download&id=1

gSNfGQ6LPxlNctMVwUKrQpUA7OLZ83PW 



79 

 

Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders 

as Discriminators Rather Than Generators. 8th International Conference on Learning 

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. 

https://openreview.net/forum?id=r1xMH1BtvB 

Clewett, D., DuBrow, S., & Davachi, L. (2019). Transcending time in the brain: How event memories 

are constructed from experience. Hippocampus, 29(3), 162–183. 

Cohen, S. S., Tottenham, N., Baldassano, C. (2022). Developmental changes in story-evoked 

responses in the neocortex and hippocampus. Elife, 11, e69430. 

Conneau, A., & Lample, G. (2019). Cross-lingual Language Model Pretraining. In H. Wallach, H. 

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural 

Information Processing Systems (Vol. 32). Curran Associates, Inc. 

https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf 

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance 

neuroimages. Computers and Biomedical Research, 29(3), 162–173. 

Cross, D. V. (1973). Sequential dependencies and regression in psychophysical judgments. 

Perception & Psychophysics, 14(3), 547–552. https://doi.org/10.3758/BF03211196 

Çukur, T., Nishimoto, S., Huth, A. G., & Gallant, J. L. (2013). Attention during natural vision warps 

semantic representation across the human brain. Nature Neuroscience, 16(6), 763–770. 

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and 

surface reconstruction. Neuroimage, 9(2), 179–194. 

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale 

hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern 

Recognition, 248–255. 



80 

 

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep 

Bidirectional Transformers for Language Understanding. In J. Burstein, C. Doran, & T. Solorio 

(Eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association 

for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, 

Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers) (pp. 4171–4186). 

Association for Computational Linguistics. https://doi.org/10.18653/v1/n19-1423 

Ebrahimi, J., Rao, A., Lowd, D., & Dou, D. (2018). HotFlip: White-Box Adversarial Examples for 

Text Classification. Proceedings of the 56th Annual Meeting of the Association for 

Computational Linguistics (Volume 2: Short Papers), 31–36. https://doi.org/10.18653/v1/P18-

2006 

Esteban, O., Blair, R., Markiewicz, C. J., Berleant, S. L., Moodie, C., Ma, F., Isik, A. I., Erramuzpe, 

A., Kent, M., Goncalves, M., & others. (2018). Fmriprep. Software. 

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., 

Goncalves, M., DuPre, E., Snyder, M., & others. (2019). fMRIPrep: A robust preprocessing 

pipeline for functional MRI. Nature Methods, 16(1), 111–116. 

Foley, H. J., Cross, D. V., & O’reilly, J. A. (1990). Pervasiveness and magnitude of context effects: 

Evidence for the relativity of absolute magnitude estimation. Perception & Psychophysics, 48(6), 

551–558. https://doi.org/10.3758/BF03211601 

Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R., & Collins, D. (2009). Unbiased nonlinear 

average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102. 

Frank, S. L., & Willems, R. M. (2017). Word predictability and semantic similarity show distinct 

patterns of brain activity during language comprehension. Language, Cognition and 

Neuroscience, 32(9), 1192–1203. https://doi.org/10.1080/23273798.2017.1323109 



81 

 

Futrell, R., Gibson, E., Tily, H., Blank, I., Vishnevetsky, A., Piantadosi, S. T., & Fedorenko, E. 

(2017). The natural stories corpus. ArXiv Preprint ArXiv:1708.05763. 

Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68(1), 1–76. 

https://doi.org/10.1016/S0010-0277(98)00034-1 

Golan, T., Raju, P. C., & Kriegeskorte, N. (2020). Controversial stimuli: Pitting neural networks 

against each other as models of human cognition. Proceedings of the National Academy of 

Sciences, 117(47), 29330–29337. https://doi.org/10.1073/pnas.1912334117 

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder, A., 

Emanuel, D., Cohen, A., Jansen, A., Gazula, H., Choe, G., Rao, A., Kim, C., Casto, C., Fanda, 

L., Doyle, W., Friedman, D., … Hasson, U. (2022). Shared computational principles for 

language processing in humans and deep language models. Nature Neuroscience, 25(3), 369–

380. https://doi.org/10.1038/s41593-022-01026-4 

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and Harnessing Adversarial Examples. 

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 

May 7-9, 2015, Conference Track Proceedings. http://arxiv.org/abs/1412.6572 

Goodkind, A., & Bicknell, K. (2018). Predictive power of word surprisal for reading times is a linear 

function of language model quality. Proceedings of the 8th Workshop on Cognitive Modeling 

and Computational Linguistics (CMCL 2018), 10–18. 

Goodman, N. D., & Frank, M. C. (2016). Pragmatic Language Interpretation as Probabilistic 

Inference. Trends in Cognitive Sciences, 20(11), 818–829. 

https://doi.org/10.1016/j.tics.2016.08.005 



82 

 

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., & Ghosh, 

S. S. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing 

framework in python. Frontiers in Neuroinformatics, 13. 

Gorgolewski, K., Esteban, O., Markiewicz, C., Ziegler, E., Ellis, D. G., Notter, M. P., Jarecka, D., 

Johnson, H., Burns, C., & Manhães-Savio, A. (2018). Nipype [Software]. Zenodo. 

Greenbaum, S. (1977). Contextual Influence on Acceptability Judgments. Linguistics, 15(187). 

https://doi.org/10.1515/ling.1977.15.187.5 

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based 

registration. Neuroimage, 48(1), 63–72. 

Gurobi Optimization, LLC. (2021). Gurobi Optimizer Reference Manual. https://www.gurobi.com 

Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: Memory as an integral 

component of information processing. Trends in Cognitive Sciences, 19(6), 304–313. 

Heilbron, M., Armeni, K., Schoffelen, J.-M., Hagoort, P., & de Lange, F. P. (2020). A hierarchy of 

linguistic predictions during natural language comprehension. 

http://biorxiv.org/lookup/doi/10.1101/2020.12.03.410399 

Heuven, W. J. B. van, Mandera, P., Keuleers, E., & Brysbaert, M. (2014). Subtlex-UK: A New and 

Improved Word Frequency Database for British English. Quarterly Journal of Experimental 

Psychology, 67(6), 1176–1190. https://doi.org/10.1080/17470218.2013.850521 

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 

Howell, S. R., Jankowicz, D., & Becker, S. (2005). A model of grounded language acquisition: 

Sensorimotor features improve lexical and grammatical learning. Journal of Memory and 

Language, 53(2), 258–276. https://doi.org/10.1016/j.jml.2005.03.002 



83 

 

Huntenburg, J. M. (2014). Evaluating nonlinear coregistration of BOLD EPI and T1w images [PhD 

Thesis]. Freie Universität Berlin. 

Irvine, A., Langfus, J., & Callison-Burch, C. (2014). The American Local News Corpus. Proceedings 

of the Ninth International Conference on Language Resources and Evaluation (LREC’14), 

1305–1308. http://www.lrec-conf.org/proceedings/lrec2014/pdf/914_Paper.pdf 

Jain, S., Vo, V., Mahto, S., LeBel, A., Turek, J. S., & Huth, A. (2020). Interpretable multi-timescale 

models for predicting fMRI responses to continuous natural speech. Advances in Neural 

Information Processing Systems, 33, 13738–13749. 

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust 

and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–

841. 

Kiela, D., Bartolo, M., Nie, Y., Kaushik, D., Geiger, A., Wu, Z., Vidgen, B., Prasad, G., Singh, A., 

Ringshia, P., Ma, Z., Thrush, T., Riedel, S., Waseem, Z., Stenetorp, P., Jia, R., Bansal, M., Potts, 

C., & Williams, A. (2021). Dynabench: Rethinking Benchmarking in NLP. Proceedings of the 

2021 Conference of the North American Chapter of the Association for Computational 

Linguistics: Human Language Technologies, 4110–4124. 

https://doi.org/10.18653/v1/2021.naacl-main.324 

Klein, A., Ghosh, S. S., Bao, F. S., Giard, J., Häme, Y., Stavsky, E., Lee, N., Rossa, B., Reuter, M., 

Chaibub Neto, E., & others. (2017). Mindboggling morphometry of human brains. PLoS 

Computational Biology, 13(2), e1005350. 

Kneser, R., & Ney, H. (1995). Improved backing-off for m-gram language modeling. 1995 

International Conference on Acoustics, Speech, and Signal Processing, 1, 181–184. 



84 

 

Kriegeskorte, N. (2015). Deep neural networks: A new framework for modeling biological vision and 

brain information processing. Annual Review of Vision Science, 1, 417–446. 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep 

convolutional neural networks. Communications of the ACM, 60(6), 84–90. 

Kuperberg, G. R. (2021). Tea with milk? A hierarchical generative framework of sequential event 

comprehension. Topics in Cognitive Science, 13(1), 256–298. 

Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in 

Cognitive Sciences, 12(2), 72–79. 

Lanczos, C. (1964). Evaluation of noisy data. Journal of the Society for Industrial and Applied 

Mathematics, Series B: Numerical Analysis, 1(1), 76–85. 

Lau, J. H., Armendariz, C., Lappin, S., Purver, M., & Shu, C. (2020). How Furiously Can Colorless 

Green Ideas Sleep? Sentence Acceptability in Context. Transactions of the Association for 

Computational Linguistics, 8, 296–310. https://doi.org/10.1162/tacl_a_00315 

Lau, J. H., Clark, A., & Lappin, S. (2017). Grammaticality, Acceptability, and Probability: A 

Probabilistic View of Linguistic Knowledge. Cognitive Science, 41(5), 1202–1241. 

https://doi.org/10.1111/cogs.12414 

Lee, C. S., Aly, M., & Baldassano, C. (2021). Anticipation of temporally structured events in the 

brain. Elife, 10, e64972. 

Liang, B., Li, H., Su, M., Bian, P., Li, X., & Shi, W. (2018). Deep Text Classification Can be Fooled. 

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 

IJCAI-18, 4208–4215. https://doi.org/10.24963/ijcai.2018/585 



85 

 

Lindsay, G. W. (2021). Convolutional Neural Networks as a Model of the Visual System: Past, 

Present, and Future. Journal of Cognitive Neuroscience, 33(10), 2017–2031. 

https://doi.org/10.1162/jocn_a_01544 

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & 

Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. 

https://arxiv.org/abs/1907.11692 

Lohnas, L. J., Healey, M. K., & Davachi, L. (2023). Neural temporal context reinstatement of event 

structure during memory recall. Journal of Experimental Psychology: General. 

Lyu, B., Marslen-Wilson, W. D., Fang, Y., & Tyler, L. K. (2021). Finding structure in time: Humans, 

machines, and language. https://www.biorxiv.org/content/early/2021/12/07/2021.10.25.465687 

McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection 

for dimension reduction. ArXiv Preprint ArXiv:1802.03426. 

Merkx, D., & Frank, S. L. (2021). Human Sentence Processing: Recurrence or Attention? 

Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics. 

https://doi.org/10.18653/v1/2021.cmcl-1.2 

Michaelov, J. A., Bardolph, M. D., Coulson, S., & Bergen, B. K. (2021). Different kinds of cognitive 

plausibility: Why are transformers better than RNNs at predicting N400 amplitude? Proceedings 

of the Annual Meeting of the Cognitive Science Society, 43. 

https://doi.org/10.48550/arXiv.2107.09648 

Morris, J., Lifland, E., Lanchantin, J., Ji, Y., & Qi, Y. (2020). Reevaluating Adversarial Examples in 

Natural Language. Findings of the Association for Computational Linguistics: EMNLP 2020, 

3829–3839. https://doi.org/10.18653/v1/2020.findings-emnlp.341 

Newtson, D. & others. (1976). Reliability of a Measure of Behavior Perception. 



86 

 

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A 

Toolbox for Representational Similarity Analysis. PLOS Computational Biology, 10(4), 1–11. 

https://doi.org/10.1371/journal.pcbi.1003553 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, 

N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., 

Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An Imperative Style, 

High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. 

d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 

32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-library.pdf 

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. 

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing 

(EMNLP), 1532–1543. 

Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., Botvinick, M., & 

Fedorenko, E. (2018). Toward a universal decoder of linguistic meaning from brain activation. 

Nature Communications, 9(1), 963. 

Perez, E., Huang, S., Song, F., Cai, T., Ring, R., Aslanides, J., Glaese, A., McAleese, N., & Irving, G. 

(2022). Red Teaming Language Models with Language Models. https://arxiv.org/abs/2202.03286 

Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude 

estimation. Trends in Cognitive Sciences, 19(5), 285–293. 

https://doi.org/10.1016/j.tics.2015.03.002 



87 

 

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). 

Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 

84, 320–341. 

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., & others. (2019). Language 

models are unsupervised multitask learners. OpenAI Blog, 1(8), 9. 

Rakocevic, L. I. (2021). Synthesizing controversial sentences for testing the brain-predictivity of 

language models [PhD Thesis]. Massachusetts Institute of Technology. 

Ren, S., Deng, Y., He, K., & Che, W. (2019). Generating Natural Language Adversarial Examples 

through Probability Weighted Word Saliency. Proceedings of the 57th Annual Meeting of the 

Association for Computational Linguistics, 1085–1097. https://doi.org/10.18653/v1/P19-1103 

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Semantically Equivalent Adversarial Rules for 

Debugging NLP models. Proceedings of the 56th Annual Meeting of the Association for 

Computational Linguistics (Volume 1: Long Papers), 856–865. https://doi.org/10.18653/v1/P18-

1079 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0 

Salazar, J., Liang, D., Nguyen, T. Q., & Kirchhoff, K. (2020). Masked Language Model Scoring. 

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2699–

2712. https://doi.org/10.18653/v1/2020.acl-main.240 

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N., Tenenbaum, J. B., 

& Fedorenko, E. (2021). The neural architecture of language: Integrative modeling converges on 

predictive processing. Proceedings of the National Academy of Sciences, 118(45), e2105646118. 

https://doi.org/10.1073/pnas.2105646118 



88 

 

Schütt, H. H., Kipnis, A. D., Diedrichsen, J., & Kriegeskorte, N. (2021). Statistical inference on 

representational geometries. https://arxiv.org/abs/2112.09200 

Schütze, C. T. (2016). The empirical base of linguistics: Grammaticality judgments and linguistic 

methodology. Language Science Press. 

Shain, C., Blank, I. A., van Schijndel, M., Schuler, W., & Fedorenko, E. (2020). FMRI reveals 

language-specific predictive coding during naturalistic sentence comprehension. 

Neuropsychologia, 138, 107307. https://doi.org/10.1016/j.neuropsychologia.2019.107307 

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 

27(3), 379–423. 

Shin, Y. S., & DuBrow, S. (2021). Structuring memory through inference-based event segmentation. 

Topics in Cognitive Science, 13(1), 106–127. 

Sprouse, J., & Almeida, D. (2017). Design sensitivity and statistical power in acceptability judgment 

experiments. Glossa, 2(1), 14. https://doi.org/10.5334/gjgl.236 

Stroube, B. (2003). Literary freedom: Project gutenberg. XRDS: Crossroads, The ACM Magazine for 

Students, 10(1), 3–3. 

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). 

Intriguing properties of neural networks. http://arxiv.org/abs/1312.6199 

Toneva, M., & Wehbe, L. (2019). Interpreting and improving natural-language processing (in 

machines) with natural language-processing (in the brain). In H. Wallach, H. Larochelle, A. 

Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information 

Processing Systems (Vol. 32). Curran Associates, Inc. 

https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf 



89 

 

Treiber, J. M., White, N. S., Steed, T. C., Bartsch, H., Holland, D., Farid, N., McDonald, C. R., 

Carter, B. S., Dale, A. M., & Chen, C. C. (2016). Characterization and correction of geometric 

distortions in 814 diffusion weighted images. PloS One, 11(3), e0152472. 

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. 

(2010). N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 

1310–1320. 

Wallace, E., Rodriguez, P., Feng, S., Yamada, I., & Boyd-Graber, J. (2019). Trick Me If You Can: 

Human-in-the-Loop Generation of Adversarial Examples for Question Answering. Transactions 

of the Association for Computational Linguistics, 7, 387–401. 

https://doi.org/10.1162/tacl_a_00279 

Wang, A., & Cho, K. (2019a). BERT has a Mouth, and It Must Speak: BERT as a Markov Random 

Field Language Model. Proceedings of the Workshop on Methods for Optimizing and Evaluating 

Neural Language Generation, 30–36. https://doi.org/10.18653/v1/W19-2304 

Wang, A., & Cho, K. (2019b). BERT has a Mouth, and It Must Speak: BERT as a Markov Random 

Field Language Model. Proceedings of the Workshop on Methods for Optimizing and Evaluating 

Neural Language Generation, 30–36. https://doi.org/10.18653/v1/W19-2304 

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. 

(2019). SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding 

Systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett 

(Eds.), Advances in Neural Information Processing Systems (Vol. 32). Curran Associates, Inc. 

https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf 

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2019). GLUE: A Multi-Task 

Benchmark and Analysis Platform for Natural Language Understanding. 7th International 



90 

 

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. 

https://openreview.net/forum?id=rJ4km2R5t7 

Wang, S., Peterson, D. J., Gatenby, J. C., Li, W., Grabowski, T. J., & Madhyastha, T. M. (2017). 

Evaluation of field map and nonlinear registration methods for correction of susceptibility 

artifacts in diffusion MRI. Frontiers in Neuroinformatics, 11, 17. 

Wang, Y. C., & Egner, T. (2022). Switching task sets creates event boundaries in memory. Cognition, 

221, 104992. 

Wang, Z., & Simoncelli, E. P. (2008). Maximum differentiation (MAD) competition: A methodology 

for comparing computational models of perceptual quantities. Journal of Vision, 8(12), 8–8. 

https://doi.org/10.1167/8.12.8 

Warstadt, A., Parrish, A., Liu, H., Mohananey, A., Peng, W., Wang, S.-F., & Bowman, S. R. (2020). 

BLiMP: The Benchmark of Linguistic Minimal Pairs for English. Transactions of the 

Association for Computational Linguistics, 8, 377–392. https://doi.org/10.1162/tacl_a_00321 

Watt, W. C. (1975). The indiscreteness with which impenetrables are penetrated. Lingua, 37(2–3), 

95–128. https://doi.org/10.1016/0024-3841(75)90046-7 

Wehbe, L., Vaswani, A., Knight, K., & Mitchell, T. (2014). Aligning context-based statistical models 

of language with brain activity during reading. Proceedings of the 2014 Conference on Empirical 

Methods in Natural Language Processing (EMNLP), 233–243. 

Wilcox, E., Vani, P., & Levy, R. (2021). A Targeted Assessment of Incremental Processing in Neural 

Language Models and Humans. Proceedings of the 59th Annual Meeting of the Association for 

Computational Linguistics and the 11th International Joint Conference on Natural Language 

Processing (Volume 1: Long Papers), 939–952. https://doi.org/10.18653/v1/2021.acl-long.76 



91 

 

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., 

Funtowicz, M., Davison, J., Shleifer, S., Platen, P. von, Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, 

T. L., Gugger, S., … Rush, A. M. (2020). Transformers: State-of-the-Art Natural Language 

Processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language 

Processing: System Demonstrations, 38–45. https://doi.org/10.18653/v1/2020.emnlp-demos.6 

Woodbury, M. A. (1940). Rank Correlation when There are Equal Variates. The Annals of 

Mathematical Statistics, 11(3), 358–362. 

Xu, J., Liu, X., Yan, J., Cai, D., Li, H., & Li, J. (2022). Learning to break the loop: Analyzing and 

mitigating repetitions for neural text generation. Advances in Neural Information Processing 

Systems, 35, 3082–3095. 

Yamakoshi, T., Griffiths, T., & Hawkins, R. (2022). Probing BERT’s priors with serial reproduction 

chains. Findings of the Association for Computational Linguistics: ACL 2022, 3977–3992. 

https://doi.org/10.18653/v1/2022.findings-acl.314 

Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: 

A mind-brain perspective. Psychological Bulletin, 133(2), 273. 

Zhang, W. E., Sheng, Q. Z., Alhazmi, A., & Li, C. (2020). Adversarial attacks on deep-learning 

models in natural language processing: A survey. ACM Transactions on Intelligent Systems and 

Technology (TIST), 11(3), 1–41. https://doi.org/10.1145/3374217 

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden 

Markov random field model and the expectation-maximization algorithm. IEEE Transactions on 

Medical Imaging, 20(1), 45–57. 

 



92 

 

Appendix A: Chapter 1 Supplement 

Supplementary Methods 

Language models 

N-gram models. N-gram models (Shannon, 1948), the simplest language model class, 

are trained by counting the number of occurrences of all unique phrases of length N words in 

large text corpora. N-gram models make predictions about upcoming words by using empirical 

conditional probabilities in the training corpus. We tested both 2-gram and 3-gram variants. In 2-

gram models, all unique two-word phrases are counted, and each upcoming word probability 

(probability of w2 conditioned on previous word w1) is determined by dividing the count of 2-

gram w1, w2by the count of unigram (word) w1. In 3-gram models, all unique three-word phrases 

are w2) are determined by dividing the count of 3-gram w1, w2, w3 by the count of 2-gram w1, w2. 

In both such models, sentence probabilities can be computed as the product of all unidirectional 

word transition probabilities in a given sentence. We trained both the 2-gram and 3-gram models 

on a large corpus composed of text from four sources: 1. public comments from the social media 

website Reddit (reddit.com) acquired using the public API at pushshift.io, 2. articles from 

Wikipedia, 3. English books and poetry available for free at Project Gutenberg (gutenberg.org), 

and 4. articles compiled in the American Local News Corpus (Irvine et al., 2014). The n-gram 

probability estimates were regularized by means of Kneser-Ney smoothing (Kneser & Ney, 

1995). 

Recurrent neural network models. We also tested two recurrent neural network 

models, including a simple recurrent neural network (RNN) (Rumelhart et al., 1986) and a more 

complex long short-term memory recurrent neural network (LSTM) (Hochreiter & Schmidhuber, 

1997). We trained both of these models on a next word prediction task using the same corpus 
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used to train the n-gram models. Both the RNN and LSTM had a 256-feature embedding size 

and a 512-feature hidden state size, and were trained over 100 independent batches of text for 50 

epochs with a learning rate of .002. Both models’ training sets were tokenized into individual 

words and consisted of a vocabulary of 94,607 unique tokens. 

Transformer models. Similar to RNNs, transformers are designed to make predictions 

about sequential inputs. However, transformers do not use a recurrent architecture, and have a 

number of more complex architectural features. For example, unlike the fixed token embeddings 

in classic RNNs, transformers utilize context-dependent embeddings that vary depending on a 

token’s position. Most transformers also contain multiple attention heads in each layer of the 

model, which can help direct the model to relevant tokens in complex ways. We tested five 

models with varying architectures and training procedures, including BERT (Devlin et al., 2019), 

RoBERTa (Liu et al., 2019), XLM (Conneau & Lample, 2019), ELECTRA (Clark et al., 2020), 

and GPT-2 (Radford et al., 2019). 

• We used the large version of BERT (bi-directonal encoder representations from 

transformers), containing 24 encoding layers, 1024 hidden units in the feedforward 

network element of the model, and 16 attention heads. BERT is a bi-directional model 

trained to perform two different tasks: 1. a masked language modeling (MLM) task, in 

which 15 percent of tokens are replaced with a special [MASK] token and BERT must 

predict the masked word, and 2. next sentence prediction (NSP), in which BERT aims to 

predict the upcoming sentence in the training corpus given the current sentence. 

• RoBERTa is also a bi-directional model that uses the same architecture as BERT. 

However, RoBERTa was trained on exclusively the masked word prediction task (and 

not next sentence prediction), and used a different optimization procedure (including 
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longer training on a larger dataset). This makes empirical comparisons between BERT 

and RoBERTa particularly interesting, because they differ only in training procedure and 

not architecture. 

• XLM is a cross-lingual bi-directional model which, too, shares BERT’s original 

architecture. XLM is trained on three different tasks: 1. the same MLM task used in both 

BERT and RoBERTa, 2. a causal language modeling task where upcoming words are 

predicted from left to right, and 3. a translation modeling task. On this task, each training 

example consists of the same text in two languages, and the model performs a masked 

language modeling task using context from one language to predict tokens of another. 

Such a task can help the XLM model become robust to idiosyncrasies of one particular 

language that may not convey much linguistic information. 

• The ELECTRA model uses a training approach that involves two transformer models: a 

generator and a discriminator. While the generator performs a masked language modeling 

task similar to other transformers, the discriminator simultaneously tries to figure out 

which masked tokens were replaced by the generator. This task may be more efficient 

than pure masked token prediction, because it uses information from all input tokens 

rather than only the masked subset. 

• GPT-2, the second iteration of GPT OpenAI’s GPT model, is the only unidirectional 

transformer model that we tested. We used the pretrained GPT-2-xl version, with 48 

encoding layers and 25 attention heads in each layer. Because GPT-2 is unidirectional it 

was trained only on the causal language modeling task, in which tokens are predicted 

from left to right. 
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Selection of controversial natural-sentence pairs 

We evaluated 231,725 eight-word sentences sampled from Reddit. Reddit comments 

were scraped from across the entire website and all unique eight-word sentences were saved. 

These sentences were subsequently filtered to exclude blatant spelling errors, inappropriate 

language, and individual words that were not included in the corpus used to train the n-gram and 

recurrent neural network models in our experiment. 

We estimated log p(s | m) for each natural sentence s and each model m as described 

above. We then rank-transformed the sentence probabilities separately for each model, assigning 

the fractional rank r(s | m) = 0 to the least probable sentence according to model m and r(s | m) = 

1 to the most probable one. This step eliminated differences between models in terms of 

probability calibration. 

Next, we aimed to filter this corpus for controversial sentences. To prune the candidate 

sentences, we eliminated any sentence s for which no pair of models m1, m2 held (r(s | m1) < 0.5) 

and (r(s | m2) ≥ 0.5), where r(s | m1) is the fractional rank assigned for sentence s by model m. 

This step ensured that all of the remaining sentences had a below-median probability according 

to one model and above-median probability according to another, for at least one pair of models. 

We also excluded sentences in which any word (except for prepositions) appeared more than 

once. After this pruning, 85,749 candidate sentences remained, from which 3.67 × 109 possible 

sentence pairs can be formed. 

We aimed to select 360 controversial sentence pairs, devoting 10 sentence pairs to each 

of the 36 model pairs. First, we defined two 360-long integer vectors m1 and m2, specifying for 

each of the 360 yet unselected sentence pairs which model pair they contrast. We then selected 
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360 sentence pairs (s1
1,s2

1),  (s1
2,s2

2), …, (s1
360,s2

360) by solving the following minimization 

problem (Eq. 5): 

{(s1*
j,s2*

j) | j = 1, 2, ..360} = argmin Σ (r(s1
j | m1

j) + r(s2
j | m2

j)) 

    s1,s2         j 

          subject to  ∀j r(s1
j | m2

j) ≥ 0.5 

                 ∀j r(s2
j | m1

j) ≥ 0.5 

                 All 720 sentences are unique. 

To achieve this, we used integer linear programming (ILP) as implemented by Gurobi 

(Gurobi Optimization, LLC, 2021). We represented sentence allocation as a sparse binary tensor 

S of dimensions 85,749 × 360 × 2 (sentences, trials, pair members) and the fractional sentence 

probabilities ranks as a matrix R of dimensions 85,749 × 9 (sentences, models). This enabled us 

to express and solve the selection problem in Eq. 5 as a standard ILP problem (Eq. 6): 

S* = argmin Σ Si,j,1Ri,m1
j + Si,j,2Ri,m2

j 

 s           i,j 

           subject to   Si,j,1Ri,m2
j  ≥ 0.5 

       Si,j,2Ri,m1
j  ≥ 0.5 

       ∀i Σ Si,j,k ≤ 1 (each sentence i is used only once in the experiment) 

           j,k 

   

       ∀j Σi Si,j,1 = 1 (each trial j is allocated exactly one sentence pair) 

       ∀j Σi Si,j,2 = 1 (each trial j is allocated exactly one sentence pair) 

       S is binary 

Evaluation of model-human consistency: Correlating model log-probability ratios to 

human Likert ratings 

For every model m and experimental trial i, we evaluated the log probability ratio for the 

trial’s two sentences (Eq. 7): 



97 

 

LR(s1
i , s2

i | m) = log [p(s2
i | m) / p(s1

i | m)] 

The human Likert ratings were recoded to be symmetrical around zero, mapping the six 

ratings appearing in Figure S2 to (−2.5, −1.5, −0.5, +0.5, +1.5, +2.5). We then sought to correlate 

the model log-ratios and with the zero-centered human Likert ratings, quantifying how well the 

model log-ratios were associated with human sentence-likeliness judgments. To allow for an 

ordinal (not necessarily linear) association between the log-ratios and Likert ratings, we rank-

transformed both measures (ranking within each model or each human) while retaining the sign 

of the values. 

For each participant h (Eq. 8):  

r(s1
i , s2

i | h) = sign(y0(s1
i , s2

i | h)) · R(|y0(s1
i , s2

i | h)|), 

where y0(s1
i , s2

i | h)) is the zero-centered Likert rating provided by subject h for trial i and R(·) is 

rank transform using random tie-breaking. 

 For each model m (Eq. 9): 

r(s1
i , s2

i | m) = sign(LR(s1
i , s2

i | m)) · R(|LR(s1
i , s2

i | m)|), 

A valid correlation measure of the model ranks and human ranks must be invariant to whether 

one sentence was presented on the left (s1) and the other on the right (s2), or vice versa. Changing 

the sentence order within a trial would flip the signs of both the log-ratio and the zero-centered 

Likert rating. Therefore, the required correlation measure must be invariant to such coordinated 

sign flips, but not to flipping the sign of just one of the measures. Since cosine similarity 

maintains such invariance, we introduced signed-rank cosine similarity, an ordinal analog of 

cosine similarity, substituting the raw data points for signed ranks (as defined in Eq. 8-9)  

(Eq. 10): 

SSCR = Σi r(s1
i , s2

i | m) · r(s1
i , s2

i | h) / (sqrt(Σi r(s1
i , s2

i | m)2) · sqrt(Σi r(s1
i , s2

i | h)2)) 
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To eliminate the noise contributed by random tie-breaking, we used a closed-form 

expression of the expected value of Eq. 10 over different random tie-breaking draws (Eq. 11): 

E(SCSR) = Σi E(r(s1
i , s2

i | m)) · E(r(s1
i , s2

i | h)) / (sqrt(Σn
k=1k2) · sqrt(Σn

k=1k2)) 

  = Σi r̄(s1
i , s2

i | m) · r̄(s1
i , s2

i | h) / Σn
k=1k2 

Where r̄(·) denotes signed rank with average-rank assigned to ties instead of random tie-

breaking, and n denotes the number of evaluated sentence pairs. The expected value of the 

product in the numerator is equal to the product of expected values of the factors since the 

random tie-breaking within each factor is independent. The vector norms (the factors in the 

denominator) are constant since given no zero ratings, each signed-rank rating vector always 

includes one of each rank 1 to n (where n is the number of sentence pairs considered), and the 

signs are eliminated by squaring. This derivation follows a classical result for Spearman’s ρ 

(Woodbury, 1940) (see Schutt et al., 2021, section 5.1.2, for a modern treatment). We 

empirically confirmed that averaging SSCR as defined in Eq. 10 across a large number of random 

tie-breaking draws converges to E(SSCR) as defined in Eq. 11. This latter expression (whose 

computation requires no actual random tie-breaking) was used to quantify the correlation 

between each participant and model.  

For each participant, the lower bound on the noise ceiling was calculated by replacing the 

model-derived predictions with an across-participants average of the nine other participants’ 

signed-rank rating vectors. The lower bound plotted in Figure 1.4 is an across-subject average of 

this estimate. An upper bound on the noise ceiling was calculated as a dot product between the 

participant’s expected signed-rank rating vector (r̄ / sqrt(Σ k2)) and a normalized, across-

participants average of the expected signed-rank rating vectors of all 10 participants. Inference 
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was conducted in the same fashion as that employed for the binarized judgments (Wilcoxon 

signed-rank tests across the 10 subject groups, controlling for false discovery rate). 

Supplementary Results 

Randomly sampled natural-sentence pairs fail to adjudicate among models 

As a baseline, we created 90 pairs of natural sentence pairs by randomly sampling from a 

corpus of 8-word sentences appearing on Reddit (Methods). Evaluating the sentence probabilities 

assigned to the sentences by the different models, we found that models tended to agree on 

which of the two sentences was more probable (Fig. S3). The between-model agreement rate 

ranged from 75.6% of the sentence pairs for GPT-2 vs. RNN to 93.3% for GPT-2 vs. RoBERTa, 

with an average agreement between models of 84.5%. Figure 1.1a (left-hand panel) provides a 

detailed graphical depiction of the relationship between sentence probability ranks for one model 

pair (GPT-2 and RoBERTa). 

We divided these 90 pairs into 10 sets of nine sentences and presented each set to a 

separate group of 10 subjects. To evaluate model-human alignment, we computed the proportion 

of trials where the model and the participant agreed on which sentence was more probable. All of 

the nine language models performed above chance (50% accuracy) in predicting the human 

choices for the randomly sampled natural sentence pairs (Fig. 1.1a, right-hand panel). Since we 

presented each group of 10 participants with a unique set of sentence pairs, we could statistically 

test between-model differences while accounting for both participants and sentence pairs as 

random factors by means of a simple two-sided Wilcoxon signed-rank test conducted across the 

10 participant groups. For the set of randomly sampled natural-sentence pairs, this test yielded no 

significant prediction accuracy differences between the candidate models (controlling for false 

discovery rate for all 36 model pairs at q < .05). This result is unsurprising considering the high 
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level of between-model agreement on the sentence probability ranking within each of these 

sentence pairs. 

To obtain an estimate of the noise ceiling (Nili et al., 2014) (i.e., the best possible 

prediction accuracy for this dataset), we predicted each participant’s choices by the majority vote 

of the nine other participants who were presented the same trials. This measurement provided a 

lower bound on the noise ceiling. Including the participant’s own choice in the prediction yields 

an upper bound, since no set of predictions can be more human-aligned on average given the 

between-subject variability. For the randomly sampled natural sentences, none of the models 

were found to be significantly less accurate than the lower bound on the noise ceiling 

(controlling the false discovery rate for all nine models at q < .05). In other words, the 900 trials 

of randomly sampled and paired natural sentences provided no statistical evidence that any of the 

language models are human-inconsistent. 

Pseudo-log-likelihood sentence probability estimates do not salvage the bidirectional 

models 

Previous studies utilizing natural sentences or benchmarks such as BLiMP (Warstadt et 

al., 2020) have found bidirectional models to outperform GPT-2 (Lau et al., 2020; Salazar et al., 

2020). Besides the experimental design, an additional difference between these studies and ours 

is that they read out bidirectional models using pseudo-log-likelihood sentence probability 

estimates (Wang & Cho, 2019), whereas we used log-probability estimates averaged across 

multiple conditional probability chains (see Methods). In a follow-up experiment, we presented 

30 human participants with controversial sentence pairs synthesized to pit the two probability 

estimates (pseudo-log-likelihood and ours) against each other, for each bidirectional model. 

Detailed results appear in Figure S8 and Table S1. In short, we found that pseudo-log-
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probabilities favor sentences with long words that are tokenized into multiple word piece tokens, 

such as  “disproportionally”, or “schizophrenic”. For such words, every token in the word is 

highly predictable given the rest of the word, regardless of whether the word is actually probable 

in the context in the sentence. These results 1) demonstrate that our method for measuring 

probabilities in bidirectional models is more aligned with human judgments than previous work, 

and 2) provide an additional demonstration of the utility of synthetic sentences for evaluating 

alternative versions of language models. 

Models differ in their sensitivity to low-level linguistic features 

While the controversial sentences presented in this study were synthesized without 

consideration for particular linguistic features, we performed a post hoc analysis to explore the 

contribution of different features to model and human preferences (Fig. S7). For each 

controversial synthetic sentence pair, we computed the average log-transformed word frequency 

for each sentence (extracted from the publicly available subtlex database, Heuven et al., 2014). 

We also computed the average pairwise correlation between semantic GloVe vector 

representations (Pennington et al., 2014) of all eight words, based on neuroimaging research 

showing that there are specific neural signatures evoked by dissimilarity in semantic vectors 

(Frank & Willems, 2017; Broderick et al., 2018). We performed paired sample t-tests across 

sentence pairs between the linguistic feature preferences for models vs. humans, and found that 

GPT-2, LSTM, RNN, 3-gram, and 2-gram models were significantly more likely (vs. humans) to 

prefer sentences with low GloVe correlations, while ELECTRA was significantly more likely to 

prefer high GloVe correlations (controlling the false discovery rate for all nine models at q < 

.05). For word frequency, the RNN, 3-gram, and 2-gram models were significantly biased (vs. 

humans) to prefer sentences with low-frequency words, while ELECTRA and XLM showed a 
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significant bias for high-frequency words. These results indicate that even strong models like 

GPT-2 and ELECTRA can exhibit subtle misalignments with humans in their response to simple 

linguistic features, when evaluated on sentences synthesized to be controversial. 

 

Figure S1: The task instructions provided to the participants at the beginning of the experimental 

session. 
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Figure S2: An example of one experimental trial, as presented to the participants. The 

participant must choose one sentence while providing their confidence rating on a 3-point scale. 
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Figure S3: Between-model agreement rate on the probability ranking of the 90 randomly 

sampled and paired natural sentence pairs evaluated in the experiment. Each cell represents the 

proportion of sentence pairs for which two models make congruent probability ranking (i.e., both 

models assign a higher probability to sentence 1, or both models assign a higher probability to 

sentence 2). 

 

(a) natural controversial sentences   (b) synthetic controversial sentences 

 
Figure S4: Pairwise model comparison of model-human consistency. For each pair of models 

(represented as one cell in the matrices above), the only trials considered were those in which the 

stimuli were either selected (a) or synthesized (b) to contrast the predictions of the two models. 
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For these trials, the two models always made controversial predictions (i.e., one sentence is 

preferred by the first model and the other sentence is preferred by the second model). The 

matrices above depict the proportion of trials in which the binarized human judgments aligned 

with the row model (“model 1”). For example, GPT-2 (top-row) was always more aligned (green 

hues) with the human choices than its rival models. In contrast, 2-gram (bottom-row) was always 

less aligned (purple hues) with the human choices than its rival models.  

 

 
Figure S5: Pairwise model analysis of human response for natural vs. synthetic sentence 

pairs. In each optimization condition, a synthetic sentence s was formed by modifying a natural 

sentence n so the synthetic sentence would be “rejected” by one model (mreject, columns), 

minimizing p(s | mreject), and would be “accepted” by another model (maccept, rows), satisfying the 

constraint p(s | maccept) ≥ p(n | maccept). Each cell above summarizes model-human agreement in 

trials resulting from one such optimization condition. The color of each cell denotes the 

proportion of trials in which humans judged a synthetic sentence to be more likely than its 

natural counterpart and hence aligned with maccept. For example, the top-right cell depicts human 

judgments for sentence pairs formed to minimize the probability assigned to the synthetic 

sentence by the simple 2-gram model while ensuring that GPT-2 would judge the synthetic 

sentence to be at least as likely as the natural sentence; humans favored the synthetic sentence in 

only 22 out the 100 sentence pairs in this condition.  
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Figure S6: Model prediction accuracy for pairs of natural and synthetic sentences, 

evaluating each model across all of the sentence pairs in which it was targeted to rate the 

synthetic sentence to be less probable than the natural sentence. The data binning applied 

here is complementary to the one used in Fig. 1.3b, where each model was evaluated across all of 

the sentence pairs in which it was targeted to rate the synthetic sentence to be at least as 

probable as the natural sentence. Unlike Fig. 1.3b, where all of the models performed poorly, 

here no models were found to be significantly below the lower bound on the noise ceiling; 

typically, when a sentence was optimized to decrease its probability under any model (despite 

the sentence probability not decreasing under a second model), humans agreed that the sentence 

became less probable.

 
Figure S7: Linguistic feature values for synthetic sentence pairs. (a) GloVe correlation 

values of the preferred and rejected sentence for each synthetic sentence pair. Each panel depicts 

preferences for both humans (red) and a specific model (black), for sentence pairs that this model 

was involved in synthesizing. Black sub-panel outlines indicate significant differences between 

the preferences of models and humans on that particular set of sentence pairs, according to a 

a b
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paired sample t-test (controlling for false discovery rate across all nine models at q < .05). (b) 

Same as (a), but for average log-transformed word frequency. 

 

 

 
 

 
Figure S8: Human consistency of bidirectional transformers: approximate log-likelihood 

versus pseudo-log-likelihood (PLL). Each dot in the plots above depicts the ordinal correlation 

between the judgments of one participant and the predictions of one model. (a) The performance 

of BERT, RoBERTa, and ELECTRA in predicting the human judgments of randomly sampled 

natural sentence pairs in the main experiment, using two different likelihood measures: our novel 

approximate likelihood method (i.e., averaging multiple conditional probability chains, see 

Methods) and pseudo-likelihood (PLL, summating the probability of each word given all of the 

other words (Wang & Cho, 2019)). For each model, we statistically compared the two likelihood 

measures to each other and to the noise ceiling using a two-sided Wilcoxon signed-rank test 

across the participants. False discovery rate was controlled at q < 0.05 for the 9 comparisons. 

When predicting human preferences of natural sentences, the pseudolog-likelihood 

measure is at least as accurate as our proposed approximate log-likelihood measure. (b) 

Results from a follow-up experiment, in which we synthesized synthetic sentence pairs for each 

of the model pairs, pitting the two alternative likelihood measures against each other. Statistical 

testing was conducted in the same fashion as in panel a. These results indicate that for each of 
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the three bidirectional language models, the approximate log-likelihood measure is considerably 

and significantly (q < 0.05) more human-consistent than the pseudo-likelihood measure. 

Synthetic controversial sentence pairs uncover a dramatic failure mode of the pseudo-log-

likelihood measure, which remains covert when the evaluation is limited to randomly-

sampled natural sentences. See Table S1 for synthetic sentence pair examples. 

 

 
sentence pseudo-log-likelihood (PLL) approximate log probability # human choices 
s1: I found so many in things 

and called. 
logp(s1|BERT (PLL)) =−55.14 logp(s1|BERT) =−55.89 30 

s2: Khrushchev schizophrenic 
so far disproportionately 

goldfish fished alone. logp(s2|BERT (PLL)) =−22.84 logp(s2|BERT) =−162.31 0 
s1: Figures out if you are on the 

lead. 
logp(s1|BERT (PLL)) =−38.11 logp(s1|BERT) =−51.27 30 

s2: Neighbours unsatisfactory 
indistinguishable 

misinterpreting schizophrenic 

on homecoming cheerleading. logp(s2|BERT (PLL)) =−16.43 logp(s2|BERT) =−258.91 0 
s1: I just say this and not the 

point. 
logp(s1|ELECTRA (PLL)) 

=−34.41 
logp(s1|ELECTRA) =−33.80 30 

s2: Glastonbury reliably 

mobilize disenfranchised 

homosexuals underestimate 

unhealthy skeptics. 
logp(s2|ELECTRA (PLL)) 

=−11.81 logp(s2|ELECTRA) =−162.62 0 
s1: And diplomacy is more 
people to the place. 

logp(s1|ELECTRA (PLL)) 
=−62.81 

logp(s1|ELECTRA) =−47.33 30 

s2: Brezhnev ingenuity 

disembarking Acapulco 

methamphetamine arthropods 
unaccompanied Khrushchev. 

logp(s2|ELECTRA (PLL)) 
=−34.00 logp(s2|ELECTRA) =−230.97 0 

s1: Sometimes what looks and 

feels real to you. 
logp(s1|RoBERTa (PLL)) 

=−36.58 
logp(s1|RoBERTa) =−51.61 30 

s2: Buying something breathes 

or crawls aesthetically to 
decorate. 

logp(s2|RoBERTa (PLL)) 
=−9.78 logp(s2|RoBERTa) =−110.27 0 

s1: In most other high priority 

packages were affected. 

logp(s1|RoBERTa (PLL)) 

=−71.13 

logp(s1|RoBERTa) =−61.60 30 

s2: Stravinsky cupboard nanny 

contented burglar babysitting 
unsupervised bathtub. 

logp(s2|RoBERTa (PLL)) 
=−21.86 logp(s2|RoBERTa) =−164.70 0 

    

Table S1: Examples of controversial synthetic-sentence pairs that maximally contributed to 

the prediction error of bidirectional transformers using pseudo-log-likelihood (PLL). For 

each bidirectional model, the table displays two sentence pairs on which the model failed 

severely when its prediction was based on pseudo-log-likelihood (PLL) estimates (Wang & Cho, 

2019). In each of these sentence pairs, the PLL estimate favors sentence s2 (higher PLL bolded), 

while the approximate log-likelihood estimate and most of the human subjects presented with 

that sentence pair preferred sentence s1. (When more than one sentence pair induced an equal 

maximal error in a model, the example included in the table was chosen at random.) Sentences 

with long, multi-token words (e.g., “methamphetamine”) have high PLL estimates since 

each of their tokens is well predicted by the others tokens. And yet, the entire sentence is 

improbable according to human judgments and approximate log-probability estimates 

based on proper conditional probability chains. 
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model 

accepted sentence 

has more tokens 

equal 

token-counts 

rejected sentence 

has more tokens p-value 

GPT-2 24 13 3 <0.0001 

RoBERTa 6 18 16 0.0656 

ELECTRA 12 21 7 0.3593 

BERT 4 8 28 <0.0001 

XLM 2 16 22 <0.0001 

Table S2: Token count control analysis. For each transformer model, we considered synthetic 

controversial sentence pairs where the other targeted model was also a transformer (a total of 40 

sentence pairs per model). For each such pair, we evaluated the token count of the synthetic 

sentence to which the model assigned a higher probability (“accepted sentence”) and the token 

count of the synthetic sentence to which the model assigned a lower probability (“rejected 

sentence”). For each model, this table presents the number of sentence pairs in which the 

accepted sentence had a higher token count, both sentences had an equal number of tokens, and 

the rejected sentence had a higher token count. We compared the prevalence of higher token 

counts in accepted and rejected sentences using a binomial test (H0 : π = 0.5) controlled for False 

Discovery Rate across five comparisons. GPT-2 assigned significantly more tokens to accepted 

sentences, whereas BERT and XLM assigned significantly more tokens to rejected sentences. 

RoBeRTa and ELECTRA did not show a significant difference. Note that a significant difference 

for a particular model does not necessarily indicate that token count biases the model’s sentence 

probability estimates: The difference might reflect biases of the alternative models pitted against 

that model. Overall, these results indicate that while certain models’ probability estimates 

might be biased by tokenization, lower sentence probabilities were not systematically 

confounded by higher token counts. 
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