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Supplementary Figure 1: Weightmaps Learned by Voxelwise Correlation
Rather than using our regularized connectivity approach, here the weight

of each voxel for its connectivity with a seed ROI is simply set to the correla-
tion between that voxel’s timecourse and the seed ROI timecourse (constrast
with main paper Fig. 2b). Although this approach can successfully detect
that LOC and TOS are preferentially connected to posterior PPA, it fails to
show significant effects for RSC and cIPL (LOC: t17 = 6.02, p < 0.01; TOS:
t17 = 7.03, p < 0.01; RSC: t17 = 0.22, p = 0.83; cIPL: t17 = −1.81, p = 0.09;
two-tailed t-test after z-transform). Error bars represent s.e.m. across sub-
jects, ** p < 0.01.
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Supplementary Figure 2: Predictive performance of the connectivity model
with varying regularization strength.

After learning a map of connectivity weights over PPA for each seed re-
gion (LOC, TOS, RSC, and cIPL) using one run, we measured how well the
weighted average of PPA timecourses predicted the mean seed timecourse on
the held-out runs. The X-axis (log scale) indicates the strength of spatial reg-
ularization applied; at the left side of the graph voxel weights are estimated
independently, while the right endpoint corresponds to the traditional con-
nectivity model in which only constant weight maps are learned. Intermedi-
ate regularization values (colored) produce better significantly generalization
accuracy than those at the endpoints of the graph. This improvement occurs
for a wide range of regularization strengths λ (LOC: 10−0.07 < λ < 106.58;
TOS: 100.64 < λ < 105.63; RSC: 10−0.07 < λ < 106.34; cIPL: 101.36 < λ <
106.10; t17 > 1.74, p < 0.05 one-tailed t-test, uncorrected). The error bars
indicate the standard deviation across subjects (controlling for performance
as λ→∞).
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Supplementary Figure 3: Weightmap Correlations along Other PPA Axes
(a) The weightmaps for all areas show little correlation with the inferior

to superior axis (LOC: t17 = −1.71, p = 0.11; TOS: t17 = 0.63, p = 0.54;
RSC: t17 = 1.87, p = 0.08; cIPL: t17 = −1.03, p = 0.32; two-tailed t-test
after z-transform). (b) Along the medial to lateral axis, cIPL is connected
preferentially to the medial side of PPA, but other regions show no signifi-
cant biases (LOC: t17 = −1.73, p = 0.10; TOS: t17 = 0.55, p = 0.59; RSC:
t17 = −1.95, p = 0.07; cIPL: t17 = −3.55, p < 0.01; two-tailed t-test after
z-transform). Error bars represent s.e.m. across subjects, ** p < 0.01.
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Supplementary Figure 4: Robustness of Connectivity Result to Task and
Regularization Parameter.

(a) Using only “resting” timepoints between stimulus blocks yields similar
results as when using all timepoints (FDR < 0.01, cluster size > 300mm3).
(b) Rather than selecting an optimal regularization parameter using leave-
one-run-in cross validation, we can optimize our regularization using leave-
one-run-out cross validation, resulting in a smaller value of λ = 0.54. This
does not change the overall pattern of connectivity (FDR < 0.01, cluster size >
300mm3). (c-d) Results for each set of subjects in the two experiments are
similar to the whole-group results. These maps are thresholded at p = 0.01
(uncorrected) to show the trends in these smaller sample sizes.
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Supplementary Figure 5: Fraction of Variance Explained in Searchlight Anal-
ysis.

The fraction of variance explained for each searchlight seed by PPA was
calculated for both (a) the ROI-level method (using a spatially constant
connectivity map over each PPA hemisphere, i.e. λ→∞) and (b) the voxel-
level method. The fraction of variance explained by each voxel was computed
as the average value of all searchlights including that voxel. Both methods
show similar trends, with regions near LOC, TOS, and RSC having a large
amount of shared variance with PPA, and other regions less related to PPA.
The connectivity is substantially stronger overall for the voxel-level method,
consistent with our results for the individual ROIs (main paper Fig. 2a).
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Supplementary Figure 6: LOC/TOS vs. RSC/cIPL Connectivity
The data from Figure 6 is shown here across the entire inflated surface

(FDR < 0.05, cluster size > 1000mm3). The Talairach coordinates of the cor-
tical Default Mode Network (DMN) regions identified by Fox et al. (2005)
are indicated with white dots. Voxels showing the same connectivity pattern
as anterior PPA (RSC/cIPL connectivity greater than LOC/TOS connectiv-
ity) overlap closely with the DMN regions, showing that our RSC and cIPL
regions are key components of this network.
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