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Here we introduce a new python package, img2fmri, to predict group-level fMRI 
responses to individual images. This prediction model uses an artificial deep neural 
network (DNN), as DNNs have been successful at predicting cortical responses in the 
human visual cortex when trained on real world visual categorization tasks. To validate 
our model, we predict fMRI responses to images our model has not previously seen from 
a new dataset. We then show how our frame-by-frame prediction model can be extended 
to a continuous visual stimulus by predicting an fMRI response to Pixar Animation 
Studio’s short film Partly Cloudy. In analyzing the timepoint-timepoint similarity of our 
predicted fMRI response around human-annotated event boundaries in the movie, we 
find that our model outperforms the baseline model in describing the dynamics of the 
real fMRI response around these event boundaries, particularly in the timepoints just 
before and at an event. These analyses suggest that in visual areas of the brain, at least 
some of the temporal dynamics we see in the brain’s processing of continuous, 
naturalistic stimuli can be explained by dynamics in the stimulus itself, since they can be 
predicted from our frame-by-frame model. All code, analyses, tutorials, and installation 
instructions can be found at https://github.com/dpmlab/img2fmri. 

Recent research has shown that continuous and natu-
ralistic visual stimuli, such as narrative movies, can evoke 
brain responses in high-level visual regions that are stable 
for timescales on the order of seconds to tens of seconds.1 

What drives these temporal dynamics in the brain? One 
possible explanation is that high-level sensory regions have 
inherently slower dynamics, which are present even in the 
absence of a stimulus2 and in infants.3 Having slow-chang-
ing representations allows for the accumulation of informa-
tion over time, providing context for interpreting the cur-
rent stimulus based on information from the recent past.4,5 

An alternative explanation for the long-timescale stabil-
ity of high-level sensory regions could be that these tempo-
ral dynamics are, at least in part, due to dynamics inherent 
to the stimulus itself. Recent work by Heusser et al.6 sought 
to quantify the dynamics of content in a narrative movie by 
using topic modeling and hidden Markov models (HMMs) to 
discretize continuous stimulus into events characterized by 
their trajectories through semantic space. They found that 
the movie itself exhibited stable semantic events, suggest-
ing that the event structure in brain responses could be “in-
herited” from the temporal structure of the stimulus, rather 
than arising from slow cortical dynamics. However, this ap-
proach relies on human annotations of stimulus content, 
rather than being directly derived from the stimulus alone. 

Our approach to better understand this long-timescale 
stability in high-level sensory regions is to characterize the 
dynamics in brain responses driven purely by stimulus, us-
ing a frame-by-frame prediction model for visual cortex. 

Here we introduce a new python package, img2fmri, to pre-
dict group-level fMRI responses to individual images. This 
prediction model uses an artificial deep neural network 
(DNN), as DNNs have been successful at predicting cortical 
responses in the human visual cortex when trained on real 
world visual categorization tasks.7 These neural networks 
learn to extract features (e.g. shapes, textures, eyes) from 
naturalistic visual data that allow them to accurately clas-
sify objects, animals, and scenes in the images they 
process,8 and can also be used to extract those predominant 
features from input to subsequently be used in predicting 
cortical responses.9 Research has also shown that the hier-
archy of layers in a trained DNN can predict along a hier-
archy of processing in the brain, where deeper, or higher, 
layers in a DNN best predict higher levels of cortical pro-
cessing.10,11 Our model is built by combining a pretrained 
ResNet-18 DNN with a linear regression model to predict 
fMRI responses to individual images. The mapping from 
DNN to the brain is fit using data from the open source 
BOLD5000 project,12 which includes fMRI responses for 
three subjects viewing 4916 unique images drawn from Im-
ageNet,13 COCO,14 and SUN.15 For each image, we predict 
activity patterns for five visual regions of interest (ROIs) 
for each subject’s brain (defined by the BOLD5000 project): 
an early visual region of voxels near the calcarine sulcus 
sensitive to visual stimuli (EarlyVis), the lateral occipital 
complex (LOC), an object-selective region,16 as well as the 
occipital place area (OPA), retrosplenial cortex (RSC), and 
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Figure 1. Per-category fMRI prediction permutation     
analysis.  
We predict fMRI responses for Twinset images split across five categories, and compare 
these predictions to averaged fMRI responses of 15 human subjects. For each category, 
we generate a null distribution by shuffling the rows of our correlation matrix of pre-
dicted and real fMRI responses and calculating the difference between the diagonal and 
off-diagonal values of each shuffle. We compare this null distribution to our aligned, un-
shuffled matrix, and see that our predictions perform well above chance in four of the 
five categories: animals (* p<0.05), objects (*** p<0.001), scenes (**** p<0.0001), and 
people (** p<0.01). 

parahippocampal place area (PPA), three scene-selective 
regions.17 

To validate our model, we predict fMRI responses to im-
ages our model has not previously seen from the Twinset 
dataset.18 Our model can significantly predict fMRI re-
sponses at the group level for most categories in this 
dataset (Fig 1), and can significantly predict responses in 
every individual subject (Fig 2) († p<0.10, * p<0.05, ** 
p<0.01, *** p<0.001, **** p<0.0001). 

We then show how our frame-by-frame prediction model 
can be extended to a continuous visual stimulus by predict-
ing an fMRI response to Pixar Animation Studio’s short film 
Partly Cloudy. Here we compare the timepoint-timepoint 
similarity from our predicted frame-by-frame response to 
the timepoint-timepoint similarity in the actual group-av-
eraged fMRI response, using data from the 33 adults in 
Richardson et al.19 For comparison, we also attempted to 
predict brain dynamics using a baseline model based only 
on the low-level luminance of the visual stimulus. In ana-
lyzing the timepoint-timepoint similarity of our predicted 
fMRI response around human-annotated event boundaries 
in the movie (Fig 3), we find that our model outperforms 
the luminance model in describing the dynamics of the real 
fMRI response around these event boundaries, particularly 
in the timepoints just before an event, and at an event itself 
(* p<0.05, ** p<0.01). These analyses suggest that in visual 
areas of the brain, at least some of the temporal dynamics 
we see in the brain’s processing of continuous, naturalis-
tic stimuli can be explained by dynamics in the stimulus it-

Figure 2. Per-participant fMRI prediction permutation     
analysis.  
We predict fMRI responses for Twinset images, and compare these predictions to fMRI 
responses of 15 human subjects. For each human subject, we generate a null distribution 
by shuffling the rows of our correlation matrix of predicted and real fMRI responses and 
calculating the difference between the diagonal and off-diagonal values of each shuffle. 
We compare this null distribution to our aligned, unshuffled matrix, and see that our 
predictions perform well above chance in all subjects (** p<0.01, *** p<0.001). 

self, since they can be predicted from our frame-by-frame 
model. 

All analyses, notebooks, and code can be found at 
https://github.com/dpmlab/img2fmri. The README in this 
repository outlines installation steps of background soft-
ware, with the primary requirements being Python 3.9 or 
higher, PyTorch, and neuroimaging softwares AFNI and 
FSL. We also include a Dockerfile and Docker image (via 
Docker Hub) for a pre-installed container. Our package is 
being released under the MIT license, and is also released as 
a pip/PyPI package, with API documentation available on 
ReadTheDocs. 

To use the model and view these analyses, we encourage 
readers to explore our overview.ipynb in the previously 
linked GitHub repository. For more information on the 
training of our model using the open source BOLD5000 
dataset and pretrained ResNet-18 DNN, we have included 
a notebook model_training.ipynb within our model_training 
folder that outlines the model training process and offers 
suggestions for extending the model to predict fMRI re-
sponses from other feature-detecting models, and to other 
brain ROIs. Users can report any issues via GitHub issues, 
as outlined in CONTRIBUTING.rst, or by emailing the authors 
at mbb2176@columbia.edu. 
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Figure 3. Boundary triggered average analysis for      Partly Cloudy .  
We compare both the dynamics of our predicted response to Partly Cloudy and also the dynamics of a low-level luminance model to the dynamics of the averaged human fMRI re-
sponse to the film, and take the difference around human-annotated boundaries to evaluate where our fMRI predictions better model the temporal dynamics seen in the human re-
sponse to the film. We see that in the two TRs prior to an event boundary, and at the event boundary itself, our predicted brain response more closely models the event structure we 
see in the real fMRI response than the model based purely on the luminance of image frames (* p<0.05, ** p<0.01). For full explanation, code, and additional analyses, please see our 
accompanying Jupyter notebook: overview.ipynb. 
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