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Abstract

Naturalistic stimuli evoke complex neural responses with spatial and temporal
properties that differ across individuals. Current alignment methods focus on either
spatial hyperalignment (assuming exact temporal correspondence) or temporal
alignment (assuming exact spatial correspondence). Here, we propose a hybrid
model, the Hyper-HMM, that simultaneously aligns both temporal and spatial
features across brains. The model learns to linearly project voxels to a reduced-
dimension latent space, in which timecourses are segmented into corresponding
temporal events. This approach allows tracking of each individual’s mental trajec-
tory through an event sequence and for alignment with other feature spaces such as
stimulus content. Using an fMRI dataset in which students watch videos of class
lectures, we demonstrate that the Hyper-HMM can be used to map all participants
and the semantic content of the videos into a common low-dimensional space, and
that these mappings generalize to held-out data. Our model provides a new window
into individual cognitive dynamics evoked by complex naturalistic stimuli.

1 Introduction

Dynamic, continuous stimuli such as movies, stories, music, or educational videos evoke complex
response patterns throughout the brain that can be captured using functional magnetic resonance
imaging (fMRI). In addition to cognitive processes shared by all participants, these responses reflect
individual differences in perception, learning, and memory. These differences can result in the same
semantic concept being represented at varying points in time or by different spatial patterns of brain
activity. An ongoing challenge is to preserve these heterogeneous dynamics across individuals while
capturing shared cognitive processes underlying human intelligence.
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One line of research has focused on the temporal differences between participants. Previous work
using a Hidden Markov Model (HMM) approach [1] has found that there are differences in the timing
of event representations across development [9] or from repeated exposure to a stimulus [27], and
has measured relationships between event timing and stimulus interpretation in individuals [41]. This
approach requires either making the assumption that the event-specific spatial activity pattern across
voxels is identical across participants, or fitting completely separate models for each participant
(preventing the identification of corresponding events across people).

A separate category of approaches has focused on the spatial differences across participants, learning
a functional alignment across participants that accounts for differences in functional architecture
[6, 16, 19]. However, these approaches assume that all participants’ neural responses are exactly syn-
chronized in time. This assumption may be strongly violated, especially when studying idiosyncratic
cognitive processes such as learning complex educational material.

Another challenge when using naturalistic stimuli is identifying the stimulus features that are driving
neural activity. A common approach is to construct a vector representation of a particular class of
features in the stimulus, and then construct a linear “encoding” or “decoding” model that maps these
vectors onto patterns of brain activity or vice versa [21, 34, 47]. However, these models again face
the same challenges of temporal and spatial alignment; they assume that the neural response to a
stimulus is immediate (or occurs at a short, fixed delay learned by the encoding model) and that all
participants represent stimulus features with the same pattern of brain activity (or are restricted to
modeling a single participant at a time).

Contributions. Here we propose the Hyper-HMM (H-HMM), an extension of the HMM from Bal-
dassano et al. [1] that can simultaneously capture temporal and spatial differences across participants.
The model can also align across entirely different kinds of feature spaces, creating mappings between
neural data and a semantic embedding of the stimulus. We validate our model using simulated data
and by using fMRI data from individuals watching course videos for a Computer Science class [30].
We can successfully map both the human participants and an embedding model of stimulus into a
common latent space of semantic events, and this mapping generalizes to held-out videos in this
dataset. Our novel approach is broadly applicable to any neuroimaging dataset with continuous
naturalistic stimuli, and can provide a new way of characterizing and studying individual differences
in cognitive processes.

2 Background

2.1 Temporal alignment between brains and with stimuli

Although neural responses are assumed to be tightly temporally-locked to the stimulus during
traditional experimental designs with discrete stimuli, this is often not the case for more abstract
cognitive trajectories evoked in naturalistic experiments. Especially in high-level regions, we could
see responses that lag behind the stimulus (if a viewer takes time to comprehend an event), run
ahead of the stimulus (if a viewer can predict upcoming events [27]), or are generated based on
a past stimulus rather than an ongoing stimulus (such as during narrative recall [5]). As a further
complication, these temporal shifts could differ in meaningful ways across people [41]. One approach
for identifying a temporal alignment across datasets is to use Dynamic Time Warping, which stretches
and compresses the temporal axis of each dataset to maximize their alignment [44]. This technique
makes relatively few assumptions about the structure of the temporal alignment, but does require that
the datasets can be matched together at the level of individual timepoints (i.e. that every 1-2 seconds
of the stimulus can be directly mapped to 1-2 seconds of the neural response).

An alternative approach is to assume that datasets can be segmented into discrete, cognitively-
meaningful events on the timescale of tens of seconds to minutes. The theory that people naturally
perceive and remember continuous stimuli as individual events has been extensively studied in
cognitive psychology [39, 50], and signatures of this event segmentation can also be measured using
neuroimaging [1, 49]. This work therefore suggests that events are a natural unit for representing
cognitive dynamics and for performing temporal alignment, and we can employ Hidden Markov
Models (HMMs) to track these discrete cognitive states [1, 27, 45]. Current HMMs for neuroimaging,
however, assume that the neural signature of an event is a specific spatial pattern of activation across
voxels in a region of interest (ROI) which is identical across all experimental subjects.
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2.2 Spatial hyperalignment between brains

Since the early days of fMRI, researchers have recognized that the specific spatial arrangement of
functional units in the brain differs across individuals, motivating the use of “localizer” tasks to
identify the functional layout of a specific brain [42]. One kind of method for performing multi-
subject analyses is to use responses to a long naturalistic stimulus to learn a linear transformation that
maps between individuals, a method called “hyperalignment” [18]. There are now many variations
and applications of this approach [19, 22], including models that map subjects into a shared lower-
dimensional space [4, 6, 11, 16]. Though these methods can capture spatial variation in functional
responses, they assume perfect temporal alignment across participants in their neural responses.

2.3 Mapping between stimulus features and neural responses

Extensive work has focused on bidirectionally mapping between features of the external world and the
human brain [34, 36]. These can take the form of encoding models that predict brain activity patterns
as a function of stimulus features [21, 31, 33, 43, 47], decoding models that produce estimates of
external stimuli (or internal mental states) given brain activity [20, 32, 35], or hybrid models that
capture structure among both stimulus features and brain activity [23]. These models assume that the
temporal correspondence between the stimulus and neural responses is known, or allow for a small
fixed lag in the neural responses by including time-shifted versions of the stimulus features.

3 Methods overview

3.1 Model description and fitting

The Hyper-HMM (Figure 1) combines the strengths of these existing methods, removing the strong
assumptions of spatial or temporal alignment across individuals and temporal synchronization to the
stimulus. Instead, we require only a much more abstract level of correspondence across datasets,
assuming that: a) all subjects and stimulus models proceed through the same sequence of semantic
states (events); b) each event e can be represented as a low-dimensional vector Ge ∈ RD (where the
latent dimensionality D is a parameter of the model); c) each subject and model can be mapped into
this latent space using a linear transformation Wi (unique to each subject and model); d) in the latent
space, all timepoints during which this subject or model was in event e should be correlated with Ge.

To model both these temporal and spatial assumptions, we employ a chain-structured Hidden Markov
Model in which all n participants transition sequentially through a sequence of event states, as in
Baldassano et al. [1]. For the observation model, we define

p(Xi,t|si,t = e) =
1√
2πσ2

m

e−||z(WiXi,t)−z(Ge)||22/(2σ
2
m) (1)

When a participant or stimulus model i is in state (event) si,t = e, the latent-space mapping of
the spatial voxel pattern or embedding vector (WiXi,t) should be similar to the group-level event
representation Ge. All fMRI and stimulus datasets are therefore linked through their transform
matrices Wi into a common latent semantic space, which reflects between-event similarity structure
shared by all fMRI subjects and with the stimulus features. The z() function represents z-scoring
(standardizing representations to have zero mean and unit variance), so that the Euclidean distance
measure is proportional to the Pearson correlation between WiXi,t and Ge.

We fit the model by iteratively estimating the temporal alignment si,t for each dataset and then
updating the shared event representations G and the Wi projection matrices. On each iteration, we
project each subject’s data and the stimulus features into the low-dimensional shared space using the
current Wi matrices. We apply the forward-backward algorithm from Baldassano et al. [1] in this
shared space, probabilistically segmenting each timeseries into events corresponding to the patterns
Ge. The resulting probabilities ηi,t,e = p(si,t = e|Xi,Wi, G) can then be used to estimate the
subject-specific voxel representations of each event as Ei,e =

∑
t ηi,t,eXi,t/

∑
t ηi,t,e.

To update the group-level representations G, we stack the event patterns Ei from all subjects and
the stimulus (concatenating along the voxel/embedding dimension for each event, as in [16]) and
then project down onto D principal components. In order to ensure that the fMRI data and stimulus
embedding have an equal vote in the shared event representations, the stimulus event patterns are
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Figure 1: Hyper-HMM alignment across multiple brains and stimulus features. The H-HMM
temporally divides each subject’s brain data Xi into discrete events with subject-specific patterns Ei,
and temporally divides the stimulus embedding XS into event patterns ES . The event patterns from
all subjects and the stimulus are constrained to linearly project (through matrices Wi) to a shared,
low-dimensional representation G.

Figure 2: Measuring learned event representations in the data. a) The model is fit to voxel patterns
(top) and stimulus (bottom) features, successfully learning a temporal alignment into corresponding
events (middle) despite temporal and representational differences between the two datasets. b)
Plotting the first two dimensions of the latent-space projection of event representations for fMRI and
stimulus datasets shows clustering into corresponding events.
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weighted n times as strongly as each fMRI dataset. Finally, we update the transform matrices, Wi,
using a ridge regression predicting G from subject patterns (with α = 10). We repeat this process
(while annealing the HMM observation model variance σm across iterations [1]) until the model’s
log-likelihood stops improving.

After fitting, the model provides a temporal segmentation into events that corresponds across subjects
and between the subjects and the stimulus (Figure 2a). For each event, all subjects’ spatial patterns of
fMRI activity and the stimulus feature representation can be projected to the same region of latent
space, through the learned matrices Wi (Figure 2b).

3.2 Validation with simulated data

We tested the model’s ability to recover ground-truth event structure under varying degrees of noise
using simulated datasets. We used the fmrisim utility [13] in the BrainIAK toolbox [26] to generate a
pure-noise dataset in the angular gyrus with the same number of subjects, runs, and timepoints per
run as in the fMRI data used in our main experiments (see below). We simulated an event-structured
signal by assigning blocks of timepoints to events, with events varying in length between 12 and 18
timepoints across subjects. Within each event there was a constant event pattern signal; these patterns
came from the real fMRI data, averaged in 15-TR increments. By combining the signal and noise
together with varying weights, we produced simulated datasets with realistic spatial and temporal
correlation properties along with ground-truth timing and event patterns within each subject. We used
these datasets to test the model’s ability to recover subject-specific event boundaries and estimate
subject-specific spatial projections that generalized across runs.

For each noise level, we trained the model on only one half of the runs, and then froze the projection
matrices Wi and performed temporal-only alignment on the held-out half of the runs. Ideally, these
projection matrices should produce event representations on these held-out runs that are highly similar
(across subjects and the stimulus embedding) for each event in the latent semantic space. To assess
the degree of event clustering, we computed the sum of squared errors (SSE) between the latent-space
event pattern for each fMRI subject and the mean pattern for this event across all subjects. We
normalized this to yield a “variance explained” measure, dividing it by the SSE between all fMRI
event patterns and the global mean pattern and then taking one minus this ratio. If the event patterns
for all subjects map onto identical latent representations, this value will be 1, and patterns that show
no clustering into events will yield a variance explained of 0. We repeated this process with the
training and testing sets reversed, and averaged the results.

Next, we tested the model’s ability to identify ground-truth event boundaries at each noise level. After
fitting the model to the full dataset, we identified event boundaries for each subject as timepoints at
which the most probable event switched, and computed the fraction of ground-truth boundaries that
matched (within one timepoint) one of these model-derived boundaries.

3.3 Applying to an fMRI dataset

We used fMRI data collected by Meshulam et al. [30], in which undergraduate students (n=19)
taking an introductory Computer Science course watched some of the course lecture videos in the
scanner. There were five scan sessions throughout the course of the semester, divided into 21 separate
scanning runs, for a total of 197 minutes of data per subject. We hypothesized that variations in
expertise and concept understanding would lead to a relatively large amount of variability in neural
responses across participants, making it ideal for testing our alignment approach. The fMRI data (TR
= 2 seconds, voxel size = 3mm x 3mm x 3mm) was preprocessed using fMRIPrep [14], including
mapping data to the cortical fsaverage6 surface, and then cleaned via linear regression to remove
variance associated with motion, cerebrospinal fluid signals, white matter signals, and low-frequency
drift. The timecourse of activity for each vertex was z-scored for each run.

We derived a semantic embedding of the lecture stimulus by transcribing the spoken dialogue using a
speech recognition model [38] and then obtaining a vector representation of each sentence using a
pre-trained transformer model [40]. Note that we do not make use of any timing information about the
correspondence between fMRI timepoints and stimulus sentences, giving the H-HMM full flexibility
in assigning stimulus timepoints to neural responses in individual subjects.
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Here we focus on data from the angular gyrus and posterior medial cortex (as defined in Baldassano
et al. [2]), given their role in anticipating familiar narrative stimuli and learning schematic structures
[2, 27]. We fit the H-HMM to all 21 fMRI runs, setting the number of events such that the average
event duration was 15 TRs (30 seconds). Each run had a separate set of group-level events G, but the
Wi matrices were constrained to be the same across all runs (i.e. the Wi matrices were computed
via a single regression from all subject/stimulus-specific events to all group-level events). For our
primary analyses, we chose a latent dimensionality of D = 3 for the group-level shared semantic
space (see Figure 7 for an exploration of alternative dimensionalities).

We examined the learned projection matrices Wi in both neural and stimulus space. For fMRI data,
we visualized the first dimension of Wi (which captured the largest share of the variance in semantic
space) by left-multiplying it by the Gram matrix XiX

T
i and then z-scoring. This produced a weighted

average of the subject’s spatial patterns, in which the weights were given by the similarity to the first
dimension of Wi. We performed a similar operation for the stimulus embeddings, measuring the
correlation between individual sentence embeddings and the first column of XSX

T
S WS . Sentences

with particularly high or low correlations were those that were highly correlated or anticorrelated
with this first semantic dimension.

To quantitatively evaluate these projection matrices, we used the variance-explained metric described
in section 3.2, computing this value separately for 1) the clustering of the fMRI representations
around their mean for each event and 2) the match between the stimulus representation and the
mean fMRI representation for each event. As a baseline, we ran the same analysis, but used random
projection matrices Wi in which entries were sampled from a standard normal distribution N(0, 1).
We also repeated this analysis while varying the dimensionality D of the latent semantic space.

Compute resources. Model fitting was performed using a maximum of 24 CPUs per fit. For fitting
to the training data, compute time ranged from 12 - 16 minutes per split half, depending on the size
of the ROI. The temporal-only alignment for the test data required 3 - 6 minutes for each fit.

4 Results

4.1 Simulated data

In our experiments with simulated fMRI data, the H-HMM can effectively learn spatial alignments
across subjects even under relatively high levels of noise (Figure 3a). Additionally, the model can
successfully recover the majority of the ground-truth event boundaries in each subject when the noise
amplitude is up to twice as large as the signal amplitude (Figure 3b). These results demonstrate that
the model and fitting procedure are robust to the noise properties of a typical fMRI dataset.

Figure 3: Model validation in simulated data. a) The model exhibits high alignment in the latent
projections of held-out fMRI events (i.e. high variance explained by the event clustering) until the
noise amplitude is several times larger than the simulated signal. b) The model can successfully
recover ground-truth event boundaries for each subject up to high noise levels; the dotted line indicates
the performance of a null model that randomly selects timepoints as event boundaries.
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Figure 4: Example of learned temporal alignment of fMRI subjects and stimulus features. The H-
HMM learns a segmentation of each neural timeseries and the stimulus embedding into corresponding
events, with shared latent representations across brains and the stimulus. Here we visualize this
temporal segmentation for the first half of one of the scan runs, for three of the subjects and the
stimulus. The timing of transitions between cognitive states and the sharpness of these transitions
vary across individuals. Sentences at the event transitions in the stimulus are shown, illustrating the
semantic content present at the start of each event.

4.2 fMRI experiment

We fit the H-HMM to the full fMRI dataset for two brain regions (angular gyrus and posterior medial
cortex) and examined the learned temporal and spatial alignment. An example of the temporal
alignment for the first half of one run is illustrated in Figure 4, showing how each individual’s neural
responses and the stimulus sentences are segmented into a shared set of events. This kind of semantic
event segmentation is made possible by the learned projections Wi that align all subjects and the
stimulus embedding into a common semantic space. A visualization of this alignment for the first
(maximally-informative) semantic dimension is shown in Figure 5. Note that the overall spatial
topography corresponding to this dimension is similar across subjects (e.g. in angular gyrus, the
posterior portion has generally positive weights while the anterior portion has generally negative
weights) but the fine-scale details are different in each subject, reflecting individual variation in how
this semantic dimension is spatially expressed. We can also examine the learned projection of the
sentence embeddings onto this semantic dimension. The poles of this first dimension in angular gyrus
appear to correspond approximately to simple concrete sentences versus abstract statements, and in
posterior medial cortex to future-oriented statements versus present-tense descriptions of program
structure. These axes of semantic variation have been observed in prior fMRI studies: Conca et
al. [10] show differences in activity for concrete vs abstract and future- vs past- and present-tense
sentences, and concrete vs abstract concepts engage different regions of the semantic network [17].

In order to statistically verify that the learned projections to the latent space were meaningful, we
next tested how well the projection matrices Wi fit to one half of the data generalized to the other
half of the data. We identified events in the testing data for both the neural and stimulus data, and
measured the degree of clustering for corresponding events between fMRI subjects and between the
fMRI group-average and the stimulus. An example of the event representations in the latent space
is shown in Figure 6, illustrating that event patterns are projected into event-specific clusters. The
event clustering for the fMRI subjects was substantially above a random-projection baseline in both
regions (p < 0.001). The match between the neural representations and the stimulus representations
was also significantly above baseline in both regions (Angular gyrus p < 0.001; PMC p = 0.0027).
These results demonstrate that the learned mapping to a latent semantic space provides meaningful
alignment between brains and provides a correspondence between brain data and stimulus features.
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Figure 5: Learned projection of voxels and stimulus features, for the first semantic dimension. Fitting
the H-HMM to the entire fMRI dataset produced projection matrices Wi for each subject and for
the stimulus embedding. The voxel patterns (for the first four subjects) and sentences associated
with the maximally-informative learned semantic dimension are visualized for both the angular gyrus
(left) and posterior medial cortex (right). The voxel maps are broadly similar across subjects, but
have distinct fine-scale structures specific to each individual. The scatter plots show the association
between each sentence and the first semantic dimension across the 2,445 sentences in the dataset,
highlighting example sentences that are strongly correlated or anti-correlated with this dimension.

A key parameter of our model is the dimensionality D of the latent semantic space. Intuitively,
performance should suffer if D is too small (preventing proper discrimination between semantically-
different events) or if D is too large (resulting in latent event representations that are largely orthogonal,
which will fail to capture semantically-meaningful relationships and will fail to generalize to new
events). We varied D and again performed our analysis of held-out performance, fitting the model
on half the data and measuring the degree of clustering on testing data here, including both fMRI
and stimulus representations in our variance-explained clustering measure. We observed (Figure 7)
that performance peaked for D = 3, with slightly reduced performance for D = 2 (the minimum
dimensionality for which the HMM can compute pattern correlations) and substantially reduced
performance as D increased to 8. We conclude that D = 3 provides the optimal number of semantic
dimensions events in this dataset, though datasets that are very large or explore a broader set of
semantic topics could require a higher-dimensional latent space.

5 Limitations, Future Work, and Conclusions

The Hyper-HMM makes several assumptions about the cognitive structure of naturalistic datasets that
could be relaxed in future work. First, it assumes that all subjects and the stimulus proceed through
the same linear sequence of cognitive states. This is a reasonable assumption for data collected during
tasks such as watching or recalling movies with linear narratives [5]; but may be less accurate for tasks
such as recalling a series of unrelated short videos [28]. Second, we assume that neural dynamics
are relatively constant within cognitive states, with sharp jumps between states; this model would
fail to capture dynamics in brain regions with brief responses occurring only at event boundaries,
such as the hippocampus [3, 9]. We also assume that brain responses in different people as well as
stimulus embeddings are all linearly projectable to a common semantic space. Future work could
extend this projection to be non-linear, as has been explored for characterizing relationships between
brain regions within individuals [15, 37].
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Figure 6: Learned projections Wi successfully generalize to held-out data. The H-HMM was
trained on half of the experimental runs, and then the Wi matrices were fixed and temporal-only
event alignment was performed on the held-out test data. The left panels show an example of these
representations for three events in one held-out scanning run, showing that different events are
projected to different parts of semantic space and that the stimulus events are well-aligned with the
fMRI events. The right panels show the degree of clustering across all held-out events, measured
separately for the clustering between fMRI subjects and for the match between fMRI data and the
stimulus events. For both measures and both ROIs, clustering is significantly better than a random-
projection baseline, indicating that our learned projection matrices generalize across experimental
runs. ** p < 0.01, *** p < 0.001, computed as the fraction of null values greater than each result.
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Figure 7: Clustering performance when varying the dimensionality of the shared semantic space.
Rather than using D = 3 as in all previous analyses, we tested the sensitivity of our results to
the dimensionality of the shared latent space. For each choice of D, we computed the degree of
clustering (among both fMRI events and stimulus events) in the latent space, and compared it to a
random-projection baseline. We found above-baseline performance across a range of D values, but
clustering for held-out data is best for D = 3.

Although our results and model-fitting have focused primarily on brain-stimulus alignment, our model
can be expanded to alignment of cross-modal, or even cross-species, information in the brain. Current
neuroimaging techniques each exhibit tradeoffs between spatial resolution and temporal resolution,
and there have been several proposed approaches for combining information across experiments in
which brain responses to the same stimulus were measured in different neuroimaging modalities
[7, 8, 24]. The H-HMM could provide a new avenue for integrating the strengths of modalities
with different spatial and temporal properties, even if measured in different groups of experimental
subjects. Analogously, brain alignment across species, in particular between humans and primates,
have provided insights into common representational processes [12, 25, 48], and the H-HMM could
be applied to map cross-species representations into a common latent space.

The Hyper-HMM provides a highly-flexible framework for identifying and aligning event represen-
tations across people and to features of a stimulus. Our experiments demonstrate that fitting this
model to an fMRI dataset is computationally and statistically feasible, and can learn meaningful
mappings of brain responses and stimulus features into a stable semantic space. This model has
broad applications to the rapidly-expanding field of studies using continuous naturalistic stimuli to
study dynamic cognition [29, 46], including the characterization of individual differences in brain
responses and the identification of representational properties of high-level brain regions.
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Appendix

Running the H-HMM code

Refer to README.md for a detailed explanation describing how to reproduce the main fMRI
experiments, including the preprocessing steps for the fMRI data.

Algorithm for fitting H-HMM

Algorithm 1 describes the H-HMM’s fits to a single fMRI run. Fitting to all scan sessions is performed
similarly, except that the forward-backward function is applied to each run separately. For full details
see the README.md file in the attached code directory.

Algorithm 1 HyperHMM algorithm
Parameter: L = event length
Parameter: D = latent dimension
n = number of subjects
T = number of timepoints
Vi = number of voxels/features in subject/model i
Xi = data for subject/model i (Vi × T )

K ← round(T/L)
Wi ← ND×Vi

(0, 1) ∀i ∈ 1..n
Ge ← meani[meant[WiXi]] ∀e ∈ 1..K
σ ← 4
while log-likelihood is improving do

for all subjects i do
ηi ← forward_backward(log_probs(WiXi, G, σ))
Ei,e ←

∑
t ηi,t,eXi,t/

∑
t ηi,t,e ∀e ∈ 1..K

end for
G← PCA([Ei]1..n, D)
Wi ← [ridge(Ei, G)] ∀i ∈ 1..n
σ ← σ ∗ 0.98

end while
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