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Abstract	

Understanding movies and stories requires maintaining a high-level situation model that abstracts away 
from perceptual details to describe the location, characters, actions, and causal relationships of the 
currently unfolding event. These models are built not only from information present in the current 
narrative, but also from prior knowledge about schematic event scripts, which describe typical event 
sequences encountered throughout a lifetime. We analyzed fMRI data from 44 human subjects 
presented with sixteen three-minute stories, consisting of four schematic events drawn from two 
different scripts (eating at a restaurant or going through the airport). Aside from this shared script 
structure, the stories varied widely in terms of their characters and storylines, and were presented in 
two highly dissimilar formats (audiovisual clips or spoken narration). One group was presented with the 
stories in an intact temporal sequence, while a separate control group was presented with the same 
events in scrambled order. Regions including the posterior medial cortex, medial prefrontal cortex 
(mPFC), and superior frontal gyrus exhibited schematic event patterns that generalized across stories, 
subjects, and modalities. Patterns in mPFC were also sensitive to overall script structure, with 
temporally scrambled events evoking weaker schematic representations. Using a Hidden Markov Model, 
patterns in these regions can predict the script (restaurant vs. airport) of unlabeled data with high 
accuracy, and can be used to temporally align multiple stories with a shared script. These results extend 
work on the perception of controlled, artificial schemas in human and animal experiments to naturalistic 
perception of complex narrative stimuli. 

Significance	Statement	

In almost all situations we encounter in our daily lives, we are able to draw on our schematic knowledge 
about what typically happens in the world to better perceive and mentally represent our ongoing 
experiences.  In contrast to previous studies that investigated schematic cognition using simple, artificial 
associations, we measured brain activity from subjects watching movies and listening to stories 
depicting restaurant or airport experiences. Our results reveal a network of brain regions that is 
sensitive to the shared temporal structure of these naturalistic situations. These regions abstract away 
from the particular details of each story, activating a representation of the general type of situation 
being perceived.   

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/252718doi: bioRxiv preprint first posted online Jan. 24, 2018; 

http://dx.doi.org/10.1101/252718
http://creativecommons.org/licenses/by/4.0/


 2 

Introduction	
Everyday perception involves processing and reacting to a rich, rapidly changing stream of sensory 
information. A large body of work in cognitive psychology has shown that “common sense” 
comprehension requires not just bottom-up feature recognition, but also activation of knowledge 
schemas about the expected structure of the world (Bartlett, 1932; Piaget, 1926; Zacks, Speer, Swallow, 
Braver, & Reynolds, 2007). 

Numerous recent studies, in both humans and animals, have explored how schemas are stored in the 
brain and how they influence ongoing processing. A critical region implicated in many of these studies is 
the medial prefrontal cortex (mPFC). This region shows encoding-related activity predictive of 
subsequent memory for schema-congruent stimuli (van Kesteren et al., 2013), increased activity when 
remembering schematic knowledge (Brod, Lindenberger, Werkle-Bergner, & Shing, 2015), and up-
regulation of intermediate early gene expression when assimilating new information into a schema (Tse 
et al., 2011), and damage to the mPFC results in deficits for schema-related processing (Ghosh, 
Moscovitch, Melo Colella, & Gilboa, 2014). The mPFC is thought to mediate schematic activation in a 
network of regions, including the hippocampus (van Kesteren, Fernández, Norris, & Hermans, 2010; van 
Kesteren, Ruiter, Fernández, & Henson, 2012) and cortical regions such as posterior cingulate and 
angular gyrus (Gilboa & Marlatte, 2017). 

However, the connection between this work and real-world perception has been lacking. The vast 
majority of these neuroscientific studies of schema have used simple, arbitrary relationships such as 
flavor-place associations (Tse et al., 2007, 2011) or associations between artificial stimuli (Brod, 
Lindenberger, & Shing, 2016; Brod et al., 2015). In naturalistic situations, we make use of highly 
elaborated schemas that have been learned and consolidated throughout our lifetimes, which may or 
may not rely on the same neural mechanisms as novel schemas involving simple relational binding. Also, 
most of these studies (Brod et al., 2015; van Kesteren et al., 2010) only compare schematic versus non-
schematic conditions, making it unclear whether these regions actually represent information about 
which schema is active, or are engaged when any schema is active (regardless of content).  

In this study we examine a specific type of naturalistic temporal schema, called a “script.” Schank & 
Abelson (1977) described a script as “a predetermined, stereotyped sequence of actions that defines a 
well-known situation,” and proposed that “most of understanding is script-based.” This central role of 
scripts was echoed by Mandler (1984), who proposed that scripts “are intimately involved in most of our 
daily processing, and an understanding of their structure and how it is used would add materially to our 
understanding of how the mind works.” These theoretical proposals were followed by empirical studies 
of the contents and consistency of scripts across people, which found that subjects largely agreed on 
how to segment activities into events as well as the typical “characters, props, actions, and the order of 
the actions” (Bower, Black, & Turner, 1979). 

Using complex movies and audio narratives, we presented subjects with stories conforming to two 
different scripts that are highly familiar to our subject population: eating at a restaurant, and going 
through the airport. The stories within each script all shared the same high-level sequence of events 
(e.g. entering the restaurant, being seated, ordering, and eating food) but were highly dissimilar in terms 
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of their low-level features (spoken words vs audiovisual movies), genres (e.g. science fiction vs thriller), 
characters, emotional content, and relative lengths of each of the constituent events. Using multiple 
converging analyses, we found that default mode regions, especially posterior medial cortex (PMC), 
mPFC, and superior frontal gyrus (SFG), exhibited sequences of activity patterns that were specific to 
each of the two scripts. These schema-specific event representations generalized across stories, across 
subjects, and across modalities, and were robust enough to be detected in held-out stories even without 
manual labeling of the events. Additionally, a separate control experiment showed that presenting 
events in scrambled order disrupted schematic effects in mPFC, providing evidence that this region is 
sensitive to the overall temporal structure of familiar scripts. 
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Materials	and	Methods	

Subject	details	
We collected data from a total of 45 subjects (22 female, ages 18-38), 32 for the main experiment and 
13 for the control experiment (described below). Subjects were native English speakers, in good health 
and with normal or corrected-to-normal vision. The experimental protocol was approved by the 
Institutional Review Board of Princeton University, and all subjects gave their written informed consent. 
To detect outlier subjects, each subject’s average posterior medial timecourse cortex (as defined below) 
across all stimuli was correlated with the mean timecourse of all other subjects (within the same 
experiment), to ensure that the subject had attended to and understood the narrative (Stephens, 
Silbert, & Hasson, 2010). One subject in the main experiment was excluded due to a correlation value 
that was more than 2.5 standard deviations below the rest of the group (r<0.15). 

Stimuli	
The stimuli were designed to conform to two naturalistic schematic scripts that we expected to be 
familiar to all our subjects: eating at a restaurant, or catching a flight at an airport. Each scenario 
consisted of four events. For the restaurant stories, the events were: entering and being taken to a 
table, sitting with menus, ordering food and waiting for its arrival, and food arriving and being eaten. For 
the airport stories, the events were: entering the airport, going through the security checkpoint, walking 
to and waiting at the gate, and getting onboard the airplane and sitting in a seat. 

Each story was approximately 3 minutes long (Figure 1). To identify schema representations that were 
modality-invariant, we presented 4 audio-visual movies and 4 spoken narratives for each of the two 
schemas. The stories all involved different characters and spanned multiple genres, sharing only the 
same high-level schematic script. The movies were sampled from films in which the restaurant schema 
was depicted (Brazil, Derek, Mr. Bean, Pulp Fiction) or the airport schema was depicted (Due Date, Good 
Luck Chuck, Knight and Day, Non-stop), and were edited for time and to conform as closely as possible 
to the four-stage schema script. The audio narratives were adapted from film scripts with a restaurant 
scene (The Big Bang Theory, The Santa Clause, Shame, My Cousin Vinny) or an airport scene (Friends, 
How I Met Your Mother, Seinfeld, Up in the Air), also edited for length and to match the schematic script. 
All narratives were read by the same professional actor. 

To generate scrambled versions of the stimuli, each story was divided into its 4 schematic events, and 
then these clips were concatenated to create 16 new scrambled stimuli. Like the original stories, each of 
these scrambled stimuli contained all 4 schematic events from one schema and consisted of clips from a 
single modality (audio or audiovisual). Unlike the original stories, the schematic events in these clips 
were presented out of order, and were drawn from 4 different stories. 8 different "highly scrambled" 
permutations of 4 subevents (for which no two neighboring events were in the correct sequence, and at 
most 1 event was in the correct position in the sequence) were used for the 8 stories within each 
schema, as described in Table 1. 

All stimuli are publicly available at <https://figshare.com/articles/Event_Schema_Stimuli/5760306/3>.  
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Schema Modality Clip 1 Clip 2 Clip 3 Clip 4 

Restaurant 

Audiovisual 

Pulp Fiction (2) Brazil (1) Derek (4) Mr. Bean (3) 
Brazil (2) Mr. Bean (4) Pulp Fiction (3) Derek (1) 
Derek (3) Mr. Bean (2) Brazil (4) Pulp Fiction (1) 
Pulp Fiction (4) Derek (2) Mr. Bean (1) Brazil (3) 

Audio 

Santa Clause (2) Shame (4) Big Bang (1) Vinny (3) 
Shame (3) Vinny (1) Santa Clause (4) Big Bang (2) 
Vinny (4) Santa Clause (1) Big Bang (3) Shame (2) 
Big Bang (4) Santa Clause (3) Vinny (2) Shame (1) 

Airport 

Audiovisual 

Non-stop (2) Good Luck (4) Knight (1) Due Date (3) 
Good Luck (3) Due Date (1) Non-stop (4) Knight (2) 
Due Date (4) Non-stop (1) Knight (3) Good Luck (2) 
Knight (4) Non-stop (3) Due Date (2) Good Luck (1) 

Audio 

Up in the Air (2) Friends (1) How I Met (4) Seinfeld (3) 
Friends (2) Seinfeld (4) Up in the Air (3) How I Met (1) 
How I Met (3) Seinfeld (2) Friends (4) Up in the Air (1) 
Up in the Air (4) How I Met (2) Seinfeld (1) Friends (3) 

 

Table 1: Construction of scrambled stimuli. To test the effect of disrupting the overall temporal and 
narrative structure of the schematic events, we recombined the event clips of the same schema and 
modality into new, scrambled stimuli. Each of the 16 rows of the table indicates the four clips that made 
up each of the 16 scrambled stimuli, with the original event number of the clips indicated in 
parentheses. 
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Figure 1: Experimental Stimuli. Subjects (N=31) were presented with 16 narrative stimuli, half audiovisual movies (clips from movies) and half 
audio narratives (based on movie scripts, all read by the same voice actor). The narratives varied widely, but conformed to one of two schemas: 
eating at a restaurant (entering the restaurant, being seated at a table, ordering food from a menu, and eating the food when it arrives) or going 
on a flight (entering the airport, going through security, waiting at the boarding gate, and taking a seat on the plane). The timing of these 
schematic events differed across stories, but all stories were approximately 3 minutes long. 
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Scanning	parameters	and	preprocessing	
Data were collected on a 3T Siemens Prisma scanner with a 64-channel head/neck coil. Functional 
images were obtained with an interleaved multiband EPI sequence (TE = 39 ms, flip angle = 50°, multi-
slice factor = 4, multi-slice shift = 3, FOV = 192 mm x 192 mm, partial Fourier = 6/8, 60 oblique axial 
slices) resulting in a voxel size of 2.0mm isotropic and a TR of 1.5s. The sequences used for the main 
experiment and scrambled control experiment were not identical (due to a sequence incompatibility 
caused by a scanner software upgrade) but had exactly the same parameters, except for a slightly 
different echo spacing (0.93 ms in the main experiment, 0.78ms in the control experiment).  Whole-
brain high-resolution (1.0 mm isotropic) T1-weighted structural mages were acquired with an MPRAGE 
sequence, and field maps were collected for dewarping (40 oblique axial slices, 3.0 mm isotropic). 

Cortical surface extraction was performed on the anatomical image, using FreeSurfer 5.3. The Freesurfer 
epidewarp.fsl script was used to compute a voxel shift map to account for B0 distortion. The FreeSurfer 
Functional Analysis Stream (FsFast) was used to preprocess the fMRI data (alignment to the anatomy, 
motion and B0 correction, resampling to fsaverage6 cortical surface and subcortical MNI volume, 4mm 
smoothing). The resampled data (timecourses on the left and right hemispheres, and in the subcortical 
volume) were then read by a custom python script, which implemented the following preprocessing 
steps: removal of nuisance regressors (the 6 degrees of freedom motion correction estimates, and low-
order legendre drift polynomials up to order (1 + duration/150) as in AFNI (Cox, 1996)), z-scoring each 
run to have zero mean and standard deviation of 1, and dividing the runs into the portions 
corresponding to each stimulus. 

All subsequent analyses, described below, were carried out using custom python scripts and the Brain 
Imaging Analysis Kit <http://brainiak.org>. All ROI results can be fully reproduced online by using the 
published Code Ocean capsule <https://doi.org/10.24433/CO.a27d1d90-d227-4600-b876-
051a801c7c20.v2>, which contains the python analysis code, preprocessed ROI data, and computational 
environment used for generating the results. The analysis code is also available on GitHub 
<https://github.com/cbaldassano/Schema-Perception>. 

Region	of	interest	and	searchlight	definition	
Based on prior work on the representation of high-level, cross-modal situation models (Zadbood, Chen, 
Leong, Norman, & Hasson, 2017), we focused our analysis primarily on regions within the default mode 
network. We derived these regions from an established network atlas on the fsaverage6 surface (Yeo et 
al., 2011), by selecting the networks from their 17-network parcellation (networks 15, 16, and 17) that 
made up the full default mode network (Buckner, Andrews-Hanna, & Schacter, 2008) and then merging 
parcels that were spatially contiguous. This yielded six regions of interest (ROIs): angular gyrus (1868 
vertices), superior temporal sulcus (STS, 2118 vertices), superior frontal gyrus (SFG, 2461 vertices), 
medial prefontal cortex (mPFC, 2069 vertices), parahippocampal cortex (PHC, 882 vertices), and 
posterior medial cortex (PMC, 2495 vertices). Additionally, we used the freesurfer subcortical 
parcellation to extract the hippocampus as a region of interest (Hipp, 1289 voxels). 

As a control region, we also defined an auditory cortex region based on correlations with the audio 
envelope of the stimuli. For every story (both movies and narratives), the root mean square amplitude 
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of the audio signal was computed for every second of the stimulus. This was then convolved with a 
standard HRF (from AFNI, Cox, 1996) and downsampled to the temporal resolution of the fMRI signal. All 
audio envelopes were concatenated and then correlated with the concatenated timeseries from all 
stories at each surface vertex. The highest correlations were in the vicinity of Heschl’s gyrus, as 
expected, and an auditory cortex region was defined as all vertices with r > 0.27 in order to yield an ROI 
of comparable size to the other regions (1589 vertices). 

Searchlight ROIs with a radius of approximately 15mm were generated by randomly sampling a center 
vertex, and then identifying all vertices within 11 steps of the center vertex along the surface mesh 
(since the vertex spacing of the fsaverage6 mesh is approximately 1.4mm, yielding a radius of 
11*1.4mm≈15mm). Vertices without data (e.g. along the medial wall) were removed. Searchlights were 
randomly selected in this way until every vertex had been included in at least 3 searchlights. 

For each ROI or each searchlight, data were aligned across subjects using the Shared Response Model  
(SRM) (P.-H. Chen et al., 2015). The goal of SRM is to project all subjects’ data into a common, low-
dimensional feature space, such that corresponding timepoints from the same story are close together 
in this space. Given time by voxel data matrices !"  from every subject, SRM finds a voxel by feature 
transformation matrix #"  for every subject such that !" ∙ #" ≈ &, where & is the feature timecourses 
shared across all subjects. We use data from all stories to estimate these transformation matrices, 
projecting all timecourses into a 100-dimensional space. Note that this projection will inflate the inter-
subject similarity for each story across subjects (since the transformations are chosen to maximize the 
similarity between corresponding timepoints), but will not artificially create similarity between stories, 
and does not use any information about the schema type of the stories. 

Experimental	design	and	statistical	analysis	
After listening to a short unrelated audio clip to verify that the volume level was set correctly, subjects 
were presented with four stories in each of four experimental runs. Each run consisted of interleaved 
video and audio stories, with one story from each modality and schema in each run, and a randomized 
run order across subjects. Every story was preceded by a five second black screen followed by a five-
second countdown video. The title of each story was displayed at the top of the screen throughout the 
story (the screen was otherwise black for the audio narratives). Subjects were informed that they would 
be asked to freely recall the stories after all sixteen had been presented (the recall data is not analyzed 
in this paper). 

Statistics for all analyses were computed using nonparametric permutation and bootstrap techniques, as 
described in the sections below. 

Event	pattern	correlation	analysis	
First, the 31 subjects in the main experiment were randomly divided into two groups (of 15 and 16 
subjects). For each story, four regressors were created to model the response to the four schematic 
events, along with an additional nuisance regressor to model the initial countdown video. These were 
created by taking the blocks of time corresponding to these five segments and then convolving with the 
hemodynamic response function from AFNI (Cox, 1996). A separate linear regression was performed to 
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fit the average response of each group (in the 100-dimensional SRM space) using the regressors, 
resulting in a 100-dimensional pattern of coefficients for each event of each story in each group. For 
every pair of stories, the pattern vectors for each of their corresponding events were correlated across 
groups (event 1 from group 1 with event 1 from group 2, event 2 from group 1 with event 2 from group 
2, etc., as shown in Figure 2a) and the four resulting correlations were averaged. This yielded a 16 by 16 
matrix of across-group story event similarity. To ensure robustness, the whole process was repeated for 
10 random splits of the 31 subjects, and the resulting similarity matrices were averaged across splits. For 
comparison, the same analysis was also performed without breaking the story into four segments (i.e., 
simply treating each story as a single event). 

We then computed the average story similarity for pairs of different stories from the same schema 
versus pairs of different stories from different schemas. To determine if this difference was statistically 
significant, we randomly permuted the schema labels of the stories to generate a null distribution, and 
converted the true difference into a z value relative to this null distribution (yielding a corresponding p 
value from the survival function of the normal distribution). Additionally, we computed a more 
restrictive version in which only pairs of stories from opposite modalities (movie and audio narration) 
were considered, to ensure that schematic similarity was not driven by modality-specific features. A 
corresponding null distribution was generated similarly, by shuffling the schema labels of the stories 
(but keeping the modality labels intact). This analysis was applied within each of the ROIs and 
searchlights. 

To explore the dimensionality of the schematic patterns, we re-ran the analysis after pre-processing the 
data with a range of different SRM dimensions, from 2 to 100. The resulting curve of z values versus 
dimensionality for each region was then smoothed with the LOWESS (Locally Weighted Scatterplot 
Smoothing) algorithm implemented in the statsmodels python package (using the default parameters). 

To generate the final searchlight map, a z value was computed for each vertex as the average of the z 
values from all searchlights that included that vertex. The map of z values was then converted into map 
of q values using the same false discovery rate correction that is used in AFNI (Cox, 1996). 

To visualize the spatial patterns, the participants were randomly split into two groups and a mean 
timecourse for each story was computed in each group. A regressor was created to model the response 
to all instances of each of the 8 schematic event types (across all stories), which were convolved with a 
hemodynamic response function and fit to each group’s data with a general linear model, as above 
(including the nuisance regressor to model the initial countdown video). Each resulting spatial pattern of 
coefficients was then z-scored and displayed on the cortical surface (masked to include only vertices 
that exhibited a significant schema effect in the searchlight analysis). 

To determine the impact of scrambling the stimulus clips on the schema effect, we performed the same 
pattern correlation analysis described above, but in addition to correlating patterns between the two 
groups of subjects in the main (intact story) experiment, we also computed correlations between one of 
the intact groups and the scrambled control group. Note that SRM cannot be applied here (since the 
stimuli presented to the two groups are different) and so these analyses were conducted in the native 
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vertex space. For assessing a statistically significant difference between the intact-intact and intact-
scrambled correlations, the difference in schema effects in the two conditions (within-schema 
correlations minus across-schema correlations) was compared to a null distribution computed using the 
same permutation procedure described above. 

Schema	classification	analysis	
An alternative analysis for detecting schematic structure was also performed, to determine if the 
schema type of novel stories could be decoded from fMRI data within an ROI, even when the novel 
stories have not been subdivided by hand into four events. The goal of this analysis was to use a labeled 
set of training stories to create a library of what each of the two schematic event sequences looked like 
on average (and measure how variable those patterns were across stories). Then, given held-out data 
from a new testing story, we attempted to divide that story’s timecourse into 4 events that looked like 
one of the 4-event sequences from our schematic event library. To perform this type of analysis in a 
principled way, we used a latent variable model in which every timepoint of the testing story belongs to 
some (unknown) event, and later timepoints must belong to later events than earlier timepoints. 

Specifically, we used the Hidden Markov Model (HMM) variant introduced in Baldassano et al. (2017). 
This model assumes that activity patterns in a region proceed through a sequence of discrete latent 
states (starting with the first event and ending in the last event), and that within each event activity 
patterns are distributed in a Gaussian fashion around a mean event pattern. Given unlabeled timeseries 
data from a new story and a library of possible event sequences, we can infer the probability that each 
timepoint belongs to each of the schematic events. 

Labels from 7 out of the 8 stories from each schema (the training set) were used to construct regressors 
for each of the 8 schematic event types, and then estimate a characteristic pattern for each event type 
using a general linear model (as in the visualization analysis above). We then measured the variance 
around these characteristic patterns within the corresponding events in the training stories. These mean 
and variance parameters were used to instantiate two HMMs, one loaded with the event patterns 
corresponding to the restaurant schema and the other with patterns from the airport schema. Each of 
the two HMMs was fit to each of the two held-out stories (one from each schema). This resulted in a 
(probabilistic) segmentation of the story into four events that matched the four corresponding events of 
the HMM as closely as possible. To evaluate the goodness of fit between the HMM and this story 
segmentation, we computed the four average patterns for the story timepoints assigned to each event, 
and compared them to the four characteristic HMM patterns by measuring the difference in mean 
correlation between corresponding and non-corresponding events. If the story is well-modeled by the 
HMM, the fitting procedure will be able to find four events (in the correct order) whose average spatial 
pattern is very similar to the four characteristic patterns in the HMM. Therefore, we attempted to 
classify which of the held-out stories came from which schema, based on which alignment of HMMs to 
stories provided a higher average match value. 

The analysis described above was repeated for all possible choices of the two held-out stories. To obtain 
confidence intervals, we performed bootstrap sampling over subjects to produce 100 resampled 
datasets and ran the full analysis on each bootstrap sample. Note that, in order to keep data from 
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different subjects independent (as is required for bootstrap sampling), we performed the fitting of the 
SRM after resampling. 

To ensure that our classification performance was not biased by using training and testing data from the 
same run, we also ran an alternative version of this analysis in which the stories from 3 of the 4 runs 
were used as training data, and then the learned models were used to classify pairs of opposite-schema 
stories in the held-out run. 

Unsupervised	alignment	analysis	
Finally, we sought to investigate whether the response to schematically-related narratives was 
consistent enough to automatically identify related events across stories, without relying on any human 
annotations. In contrast to the classification analysis above, fitting the HMM in this scenario requires not 
only inferring a (probabilistic) segmentation of each story into a series of shared events, but also 
estimating the shared event patterns themselves. This is accomplished by alternating between 
estimating the event patterns and inferring story segmentations until convergence, as described 
previously (Baldassano et al., 2017). The model therefore enforces that all stories must exhibit the same 
set of event patterns in the same order, but allows the durations of the events to vary across stories. 
The number of latent events used (a hyperparameter of the HMM) was varied from 2 to 6 in steps of 1. 

We then compared this model-predicted alignment to the hand-annotated event labels (defined as the 
maximum regressor of the event regressors described above). For any two stories, we found the set of 
pairs of timepoints (one from each story) that were predicted to be from the same event in the model 
(assigning each timepoint to its most probable event), and compared it to the set of timepoint pairs that 
had the same hand-annotated event label. We computed the intersection over union (the number of 
pairs in both sets divided by the number of pairs in either set) as a measure of how well the model 
correspondence matched the annotation correspondence. This similarity measure was averaged over all 
pairs of stories within a schema and results for both schemas were averaged. We generated a null 
distribution by replacing the model-defined event segmentation with a random segmentation, in which 
the event boundary timepoints were uniformly sampled from the set of all timepoints (without 
replacement), and performing the same analysis. 	
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Results	
Our goal was to identify brain regions that represent the structure of real-life event schemas (e.g. eating 
at a restaurant) as they unfold over time (e.g. entering the restaurant, being seated, ordering, and 
eating food), irrespective of their low-level features, genres, characters, emotional content, and relative 
lengths of each of the constituent events. We therefore compared the activity patterns evoked by the 
schematic events of a story with those evoked by all other stories. We hypothesized that regions with 
schematic representations should show similarity between corresponding events of different stories 
with a shared schema but not stories with different schemas (Figure 2a). 

Using both ROI analysis and a searchlight analysis, we found robust within-versus-between schema 
differences throughout the default mode network (Figure 2b), including the angular gyrus (p=0.009), STS 
(p=0.010), SFG (p < 0.001), mPFC (p < 0.001), PHC (p=0.005), and PMC (p=0.001). A borderline difference 
was also present in the hippocampus (p=0.066), and there was no significant difference in auditory 
cortex (p=0.137). The effect in auditory cortex was significantly smaller than that in angular gyrus 
(p=0.025), STS (p=0.043), mPFC (p=0.009), PHC (p=0.023), and PMC (p=0.002). 

A more stringent requirement of schematic representation is that it should generalize across modalities. 
To test whether these effects were being driven solely by within-modality similarities (e.g. evoked by the 
visual objects or words associated with the schematic events), we repeated the same analysis but 
restricted our comparisons to pairs of story from different modalities (e.g. a spoken narration of a 
restaurant scene vs a movie clip of a restaurant scene). The pattern of significant effects was the same, 
including the angular gyrus (p=0.006), STS (p=0.030), SFG (p<0.001), mPFC (p=0.005), PHC (p=0.003), and 
PMC (p=0.002), with nonsignificant effects in the hippocampus (p=0.073) and auditory cortex (p=0.100). 
The searchlight analyses (performed both with all story pairs and with only across-modality story pairs) 
confirmed that the strongest effects occurred in these default mode ROIs, with weaker effects also 
evident in lateral prefrontal cortex and the insula. 

To further explore the properties of the schematic spatial patterns driving these results, we repeated 
our analyses after projecting subjects’ data to a lower-dimensional shared space (Figure 2-1). This 
analysis revealed that schema effects were weaker in spaces with fewer than 10 dimensions, suggesting 
that the patterns we are measuring with fMRI reflect multiple distinct aspects of the stimuli and cannot 
be explained by a low-dimensional signal such as overall arousal or attention. Visualizing the 
characteristic spatial patterns for each of the 8 schematic events in two independent groups of subjects 
(Figure 3), we can observe that the spatial patterns are qualitatively both consistent across groups and 
distinct across schemas. The maps contain reliable spatial structure at a scale of approximately 1-2cm. 

In the analyses above we divided each schema into four events (e.g. entering the restaurant, being 
seated, ordering, and eating food), and then measured the mean similarity of the patterns evoked by 
each event. An alternative analysis was conducted in which a single average pattern was used for each 
story (rather than a pattern for each event). This showed effects that were in the same direction 
(stronger within- than across-schema correlations), but substantially weaker (all p>0.12), suggesting that 
the representations in these regions are distinct for each of the stages of the schematic script.   
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Figure 2: Event pattern correlations between stories. (a) For each pair of stories, we compute the mean 
pattern correlation (in a region of interest) between the 4 corresponding events. We then binned these 
correlations depending on whether the two stories were drawn from the same schema or different 
schemas. (b) We found that, throughout the default mode network, stories from the same schema 
showed significantly higher event similarity compared to stories from different schemas. This result was 
not driven solely by modality-specific stimulus features, since it appears even when considering only 
pairs of stories from different modalities (audiovisual movie and audio narrative). Note that auditory 
regions were not strongly related to high-level schemas, despite the presence of audio information in all 
stories. Surface map thresholded at FDR < 0.05; * p<0.05, ** p<0.01, by permutation test. Extended data 
are presented in Figure 2-1. 
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Figure 3: Visualization of schematic patterns. The spatial pattern associated with each of the schematic 
events was computed for two independent groups of subjects. Visualizing these patterns on the cortical 
surface (with warm colors indicating regions with above-average activity, and cool colors indicating 
regions with below-average activity, masked to show only those voxels that exhibited schema-related 
effects in Figure 2b) we observe that the spatial patterns are highly reliable across the split halves, and 
the patterns are visually distinct between the two schemas. 
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These results indicate that default-mode regions represent schematic events in a way that generalizes 
across narratives. However, building schematic representations of specific events does not necessarily 
imply that these regions are tracking the full temporal script associated with restaurant or airport 
experiences. In order to determine whether these regions are sensitive to the longest-timescale 
structure across the narratives, we ran a control experiment with a separate group of subjects. Rather 
than viewing or listening to the intact stories, these subjects were presented with scrambled versions of 
the stories in which the schematic events were presented out of order and drawn from multiple stories 
within the same schema and modality (see Table 1). As before, we computed the spatial activity 
patterns evoked by the events of each story and compared them across stories to determine whether 
events of the same schematic type exhibited similar patterns. Note that the same stimulus events were 
being compared in both cases (e.g. the spatial pattern for the third event of Brazil in one group was 
correlated with the pattern for the third event of Brazil in the second group); however, the context in 
which those events had been presented to the subjects was different in the intact and scrambled 
groups. Therefore, brain regions that responded purely to the content of the current event should be 
unaffected by the scrambling, while brain regions sensitive to the overarching schematic context should 
show disrupted activity patterns and decreased schema effects. 

As shown in Figure 4, we found that the scrambling significantly disrupted the schema effects in mPFC 
(p=0.028), and a post-hoc searchlight analysis within mPFC identified the ventral portion as the primary 
subregion impacted by the scrambling. Individual schematic events are therefore not sufficient to evoke 
strong schema-related activity patterns in mPFC without a coherent temporal script. Interestingly, none 
of the other regions showed a significant disruption of their schema effect with scrambling (all p>0.11), 
with some regions (such as angular gyrus and SFG) actually showing non-significant trends in the 
opposite direction (with disruption of a coherent narrative structure causing more schematic event 
representations). 
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Figure 4: Effect of scrambling events on schematic correlations. A separate control group of 13 subjects 
was shown the same clips as in the main experiment, with the same schematically-blocked structure, 
but drawn randomly from different stories and in a random order.  We compared the magnitude of the 
schema effect for story pair correlations between subjects in the main experiment (as in Figure 2) to the 
effect for correlations between subjects in the main experiment and the control experiment. Scrambling 
the event clips did not significantly disrupt schematic patterns in posterior regions of the cortex, but did 
significantly reduce the similarity between schematic events in mPFC, specifically in the ventral portion 
of mPFC (inset). This result shows that schematic patterns in mPFC are significantly enhanced by having 
intact, predictable script structure on the timescale of multiple minutes. Surface map thresholded at 
FDR < 0.05 within mPFC; * p<0.05 by permutation test. 
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We additionally performed a more stringent analysis to determine if a story’s schema (for intact stories 
in the main experiment) could be predicted from brain activity without labeling its temporal structure. 
Successfully predicting the schema of a held-out, unlabeled timeseries requires not just that the 
correctly-segmented event patterns are similar to the correct schema (as in the prior analysis), but also 
that there is no segmentation of the timeseries that yields event patterns similar to the incorrect 
schema. Using event annotations from 7 out of the 8 stories from each schema, we constructed 
characteristic activity patterns for each of the events from each schema. Using a Hidden Markov Model 
(Baldassano et al., 2017), we then attempted to segment the held-out stories into schematic events, 
with activity patterns matching the characteristic schema patterns from each schema. This allowed us to 
predict the schema type of the held-out, unlabeled story, based on which set of characteristic patterns 
best matched its evoked activity. 

Even in this highly challenging classification task, we found significantly above-chance performance 
(Figure 5) in SFG (75% accuracy, p<0.001), mPFC (83% p<0.001), and PMC (69%, p<0.001). The other 
ROIs yielded lower, nonsignificant levels of performance (angular gyrus: 58%, p=0.142; auditory cortex: 
57%, p=0.176; STS: 58%, p=0.209; hippocampus: 55%, p=0.305; PHC: 58%, p=0.149). Performing the 
analysis using an alternative cross-validation procedure (in which all stories from the same run were 
held out) yielded similar results (see Figure 5-1). 
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Figure 5: Schema classification of a new story. (a) Using the labeled event from 7 of the 8 stories (from 
each schema), we computed the average spatial activity pattern for each of the 4 events (from each 
schema), and used these as the latent event representations in two hidden markov models (HMMs). We 
then used the HMMs to find the best possible alignment of the held-out stories to each schema (without 
being given any event annotations), and predicted the schema of the held-out stories based on which of 
these alignments was better. (b) Superior frontal gyrus, medial prefrontal cortex, and posterior medial 
cortex all and medial prefrontal cortex showed classification rates well above chance, indicating that 
these regions exhibit robust schema-related patterns that can be identified in novel stories even without 
explicit event labels. ** p<0.01 by bootstrap test, shaded regions indicate bootstrap confidence 
distributions. Extended data are presented in Figure 5-1. 
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Finally, we employed data-driven methods to identify shared structure among stories within a schema, 
without the use of any prior knowledge of the schema’s temporal event structure (unlike the prior 
analysis, which used labeled annotations during training). Unlabeled timecourses from all eight stories 
within a schema were fit by an HMM, which sought to segment all stories into a sequence of events, 
such that the average activity patterns within each event were similar across stories (Figure 6a). We 
varied the number of latent events from 2 to 6, and measured how well the data-driven correspondence 
matched the hand-labeled schematic structure.    

We found the SFG, mPFC, and PMC were all able to produce above-chance story alignments (Figure 6b), 
with the match peaking around 4 events (the number of schematic events the stimuli were constructed 
to have).  Note that the correspondence was optimized simply to align the fMRI timeseries of different 
narratives and was not guaranteed to share any similarity with the hand-labeled annotations. As shown 
in an example alignment derived from the SFG data with four events (Figure 6c), the HMM is able to find 
correspondences across stories despite large variability in their specific content. These results indicate 
that schematic scripts are not only detectable in these regions (using the supervised analyses presented 
above) but are in fact a dominant organizing principle of their dynamic representations which can be 
discovered from an unsupervised alignment across stories. 
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Figure 6: Unsupervised alignment of events across stories. (a) For each set of 8 stories within the same schema, we trained an HMM to identify 
a sequence of shared latent event patterns that was common across all the stories (without using any hand-labeled events). This 
correspondence can then be compared to the hand-labeled correspondence between stories. (b) We can recover the schematic structure shared 
across stories using only fMRI data, without event labeling, from all three ROIs showing strong schema representations in the previous analyses 
(SFG, mPFC, and PMC). This match is closest when the number of latent events in the model is similar to the true number of events (4). Dotted 
line indicates p<0.01 by permutation test, Bonferroni corrected for 5 tests. (c) For example, the data-driven correspondence between timepoints 
of “How I Met Your Mother” and “Up in the Air” (from SFG, with 4 events) captures the shared schematic events (entering the airport, going 
through security, waiting at the boarding gate, and taking a seat on the plane) despite large differences in the details of the narratives.
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Discussion	
Our results provide the first evidence that naturalistic perception activates dynamic information about 
the temporal structure of real-world scripts in mPFC, as well as a broader network including SFG and 
PMC. All three of these regions exhibited cross-subject, cross-modal shared representations of 
schematic events that could be used to classify the script type of held-out stories. Timecourses in these 
regions can be used to produce unsupervised alignments of stories with shared scripts, indicating that 
schematic representations are a primary driver of their ongoing representations. Additionally, the 
schematic representations in mPFC were disrupted when the events were presented outside the context 
of an intact temporal script, providing evidence that this region is involved in the selecting and 
maintaining script information on long timescales (on the order of multiple minutes). We also found 
weaker, less consistent evidence for schematic representations in the angular gyrus, hippocampus, STS, 
and PHC. 

Prior work has shown that high-level regions including posterior medial cortex exhibit activity patterns 
that generalize across audio and video versions of the same story (Zadbood et al., 2017); this work 
extends this generalization to a further level of abstraction, showing similarities between distinct stories 
with very different content but a shared schematic skeleton. Our HMM-based classification approach 
(Baldassano et al., 2017) allows us to predict the schematic category of held-out stories with varying 
event timings purely from fMRI data, extending traditional decoding analyses into the temporal domain. 

Brain	regions	associated	with	schematic	representations			
There has been very little prior work investigating the neural mechanisms of real-world script-based 
perception. Work on simpler types of schematic representations have consistently implicated mPFC, 
based on encoding activity (Brod et al., 2016; van Kesteren et al., 2013, 2010), recall activity (Brod et al., 
2015), gene expression (Tse et al., 2011), and lesion studies (Warren, Jones, Duff, & Tranel, 2014). Our 
results connect this large body of work with naturalistic scripts, suggesting that the same underlying 
neural mechanisms may be at play in both cases. Although the precise location of these mPFC results 
varies across studies, our peak effects fall squarely within an ROI (Yeo et al., 2011) belonging to the 
default mode network (Buckner et al., 2008), which has direct anatomical connections to posterior 
medial cortex (Greicius, Supekar, Menon, & Dougherty, 2009). 

Schematic representations in mPFC are thought to interact with a network of posterior cortical regions, 
including posterior cingulate (van Buuren et al., 2014) and angular gyrus (Gilboa & Marlatte, 2017). Our 
results show strongly schematic responses in PMC and (less consistent) effects in angular gyrus, even in 
the absence of schema effects in mPFC, providing evidence that these regions intrinsically represent 
schematic information during perception. These regions are known to be sensitive to the structure of 
real-life events over relatively long timescales (minutes) (Baldassano et al., 2017; Hasson, Chen, & 
Honey, 2015), and are involved during a spoken replay of a narrative (J. Chen et al., 2017; Zadbood et al., 
2017) suggesting that they encode and simulate sequences of actions in the world. 

Finally, some studies have argued for schema formation within the hippocampus (McKenzie et al., 
2014), while others have found that the hippocampus is most coupled to the cortex in the absence of a 
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schema (van Kesteren et al., 2010). We found relatively weak effects in the hippocampus in all of our 
analyses. It is possible that extensively-learned scripts (such as the ones we used) are consolidated 
entirely into the cortex and are no longer mediated by the hippocampus (Norman & O’Reilly, 2003), or 
that hippocampal patterns would become schema-specific if subjects’ attention were explicitly directed 
to the schematic structure of the stories (Aly & Turk-Browne, 2016). Another possibility is that 
extensively-learned script representations are supported by highly sparse activity (possibly only present 
in a subregion of the hippocampus) that is not easily detectable using fMRI, or that requires specialized 
scanning sequences. 

Sensitivity	to	script	structure	in	mPFC	
Temporally scrambling natural stimuli has been a common approach to assess the sensitivity of brain 
regions to temporal structure at different timescales (Aly, Chen, Turk-Browne, & Hasson, 2018; Hasson 
et al., 2015; Lerner, Honey, Silbert, & Hasson, 2011; van Kesteren et al., 2010). In order to understand 
how the overall script context influenced event patterns, we scrambled our stimuli at the very coarse 
timescale of events (averaging 45 seconds long), and then compared the responses to the scrambled 
stimuli to those of the intact stimuli for pairs of stories from the same or different schemas. Our finding 
that only mPFC was sensitive to structure at this very long timescale is consistent with prior work 
showing that scrambling stories at the paragraph level (approximately 30 seconds) disrupted responses 
in mPFC, but that responses in other high-level regions such as PMC (after being temporally 
“unscrambled”) looked similar to those evoked by intact stories (Lerner et al., 2011). These results 
further support the view that mPFC is one of the few regions that track past context over long enough 
timescales to support the long-term temporal dependencies encoded in full naturalistic scripts. 

Building	specific	events	from	general	scripts	
In a previous study (Baldassano et al., 2017), we found that brain activity in posterior default mode 
regions jumps rapidly to a new, stable pattern at the start of a new event. This result raises a question: 
how can activity settle so quickly into a representation of the new event, when there has been very little 
time to accumulate information about the content of the event? Our results suggest a possible 
explanation of this phenomenon. If schematic script information is rapidly activated at the beginning of 
an event, and this information plays a critical role in setting the representations in these regions, then a 
substantial portion of the event representations can appear quickly at the beginning of an event. This 
proposal is similar to theories of visual perception, in which object associations are rapidly activated in 
mPFC and then used to influence representations in perceptual regions (Bar, 2007). This account is also 
consistent with our dimensionality analysis, which indicated that the event representations which were 
shared across subjects and drove the schema effects were relatively high-dimensional (spanning 
approximately a 10-dimensional space), suggesting that scripts can activate multiple distinct features of 
presented or inferred aspects of an event. In future work, approaches such as semantic modeling 
(Vodrahalli et al., 2017) may be able to disentangle the contribution of both schematic and specific 
content to the instantiation of event representations. 
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Open	questions	
Although proposed models of schematic perception and memory have focused on mPFC and the medial 
temporal lobe (van Kesteren et al., 2012), our results raise the possibility that SFG and PMC could also 
play critical roles in representing the shared schematic structure of individual events. Schematic 
representations are present in these regions even in the absence of script representations in mPFC, 
suggesting that schematic representations in these regions may not be driven by top-down activation of 
scripts in mPFC but instead serve as the bottom-up building blocks for a complete narrative script. 
Further experiments will be required to identify the distinct functional contributions of these regions to 
perceptual and memory tasks, and to identify when and how they interact to produce schematic 
representations. 

Another critical dimension is how representations in these regions develop over a lifetime (Brod, 
Werkle-Bergner, & Shing, 2013), since mPFC and its connections mature slowly throughout the first 
decade of life (Sowell, 2004; Supekar et al., 2010) and real-world event scripts can only be acquired after 
many exposures to events with shared structure. Both developmental studies and computational 
models of script learning could be used to understand how scripts develop in complexity, and whether 
perceptual representations become more script-based over time (Brod et al., 2013).  

Finally, both this study and prior work on real-world scripts (Bower et al., 1979) have examined only a 
small fraction of the full library of scripts that adults have acquired over their lives, and have focused 
primarily on narrative perception. Additionally, individual scripts should not be studied only in isolation, 
since many real-world situations involve multiple simultaneously-active scripts (Schank & Abelson, 
1977). New methodological approaches for studying perception in immersive real or virtual 
environments (Ladouce, Donaldson, Dudchenko, & Ietswaart, 2017) may allow us to sample more 
broadly from the ever-changing mix of regularities present in our daily lives.  
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Extended	Data	
 

 

Figure 2-1: Dimensionality of event patterns. In order to estimate the underlying dimensionality of the 
spatial event patterns, the Shared Response Model (SRM) was used to project the group functional data 
into lower-dimensional spaces. With only two dimensions (the smallest possible dimensionality for 
which correlations can be computed) no regions show a schema effect significant at p<0.01 and only SFG 
shows an effect significant at p<0.05, indicating that a simple low-dimensional signal (such as global 
attentional modulation) is not sufficient to explain the results reported in Figure 2 (which used an SRM 
dimension of 100). Since the effects for all regions asymptote around 10 dimensions, we estimate that, 
across subjects, the fMRI signals of schematic event patterns span a roughly 10-dimensional space. 
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Figure 5-1: Schema classification, holding out stories from one run. Rather than classifying all pairs of 
opposite-schema stories, we can train the schema models on all but one run and then attempt to 
classify pairs of opposite-schema stories in the held-out run. As in Figure 5, classification accuracies 
above chance were observed in SFG (74% accuracy, p=0.024), mPFC (79%, p=0.004), and PMC (80%, 
p<0.001). Angular gyrus also exhibited above-chance accuracy (75%, p<0.001), while other regions were 
not significantly above chance (auditory cortex: 50%, p=0.483; STS: 45%, p=0.635; hippocampus: 50%, 
p=0.502; PHC:58%, p=0.209). 
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