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a b s t r a c t 

A key problem in functional magnetic resonance imaging (fMRI) is to estimate spatial activity patterns from 

noisy high-dimensional signals. Spatial smoothing provides one approach to regularizing such estimates. How- 

ever, standard smoothing methods ignore the fact that correlations in neural activity may fall off at different 

rates in different brain areas, or exhibit discontinuities across anatomical or functional boundaries. Moreover, 

such methods do not exploit the fact that widely separated brain regions may exhibit strong correlations due to 

bilateral symmetry or the network organization of brain regions. To capture this non-stationary spatial correla- 

tion structure, we introduce the brain kernel , a continuous covariance function for whole-brain activity patterns. 

We define the brain kernel in terms of a continuous nonlinear mapping from 3D brain coordinates to a latent 

embedding space, parametrized with a Gaussian process (GP). The brain kernel specifies the prior covariance 

between voxels as a function of the distance between their locations in embedding space. The GP mapping warps 

the brain nonlinearly so that highly correlated voxels are close together in latent space, and uncorrelated voxels 

are far apart. We estimate the brain kernel using resting-state fMRI data, and we develop an exact, scalable in- 

ference method based on block coordinate descent to overcome the challenges of high dimensionality (10-100K 

voxels). Finally, we illustrate the brain kernel’s usefulness with applications to brain decoding and factor analysis 

with multiple task-based fMRI datasets. 
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. Introduction 

An important problem in neuroscience is to characterize the covari-

nce of high-dimensional neural activity. Understanding this covariance

tructure could provide insight into the brain’s functional organization

nd help regularize estimates of encoding or decoding models. Although

dvances have been made in both theory and methodology for estimat-

ng large covariance Bickel and Levina (2008) ; Schäfer et al. (2005) and

recision matrices Hsieh et al. (2013) ; Treister and Turek (2014) ,

ew methods have been designed with the particular challenges of

unctional magnetic resonance imaging (fMRI) data in mind (see

aroquaux et al. (2010) for an exception). 

One of the challenges of modeling the covariance of fMRI data is that

he spatial discretization of the brain may differ across experiments.

MRI measures blood oxygenation level dependent (BOLD) signals in

iscrete spatial regions called “voxels ”. Each voxel represents a tiny cube

f brain tissue. Although brains are typically registered to an anatomical
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emplate in a standard space, such as the volumetric Montreal Neurolog-

cal Institute (MNI) template or the surface-based template used by HCP

an Essen et al. (2013) , these spaces differ in resolution and geometry

rett et al. (2002) . In many cases, brains are aligned onto the “same ” 3D

pace but with different voxel coordinates. A covariance matrix for one

et of voxels cannot be applied to data registered to a different set of

oxels. Thus, modeling the covariance of fMRI data presently requires

 new covariance matrix to be constructed whenever a different set of

oxels is used. 

A second challenge for fMRI covariance estimation is spatial non-

tationarity. Standard spatial smoothing models assume that correla-

ion falls off as a function of the Euclidean distance between voxels.

n real brains, however, correlation patterns depend on relationships to

natomical and functional boundaries, and may exhibit strong depen-

encies over long distances due to bilateral symmetry and the network

rganization of brain regions. 

To address these challenges, we propose the brain kernel , a continu-
us covariance function for whole-brain fMRI data. This function arises 
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t  
rom a generative model of fMRI data, and seeks to describe covariance

f neural signals across the entire brain Stein (2012) . Specifically, the

rain kernel defines, for any finite set of 𝑛 voxel locations in the brain, a

ositive definite 𝑛 × 𝑛 covariance matrix over 𝑛 -dimensional vectors of

eural activity at those locations. The brain kernel improves upon prior

ork by i) capturing fMRI voxel covariance matrices for any registration

eference, and ii) capturing spatial nonstationarity through a nonlinear

atent manifold. 

Our approach uses a Gaussian process to parametrize a continuous

onlinear mapping from 3D brain coordinates to a latent embedding

pace, such that correlations in neural activity fall off as a fixed func-

ion of distance in the latent space. Thus, the nonlinear function seeks

o warp the 3D brain in order to place locations with correlated neural

ctivity at nearby locations in the latent space. Locations with uncor-

elated activity, conversely, are mapped to more distant points in the

atent space, even if they are physically close together in the brain. 

The paper is organized as follows. In Section 2 we provide a brief

verview of Gaussian process models. In Section 3 , we formally intro-

uce the brain kernel model for fMRI data. In Section 4 , we describe an

fficient inference method for fitting the brain kernel, and illustrate the

hallenges and benefits of an exact inference method using simulated

nd real fMRI datasets. In Section 5 , we describe the brain kernel fit to

hole-brain resting-state fMRI data. Finally, in Section 6 , we demon-

trate the usefulness of the inferred brain kernel with applications to

ecoding and factor modeling. 

. Mathematical background 

Before introducing the brain kernel model, we briefly review the

athematical building blocks for Gaussian process models. 

.1. Gaussian processes (GPs) 

Gaussian processes provide a flexible and tractable prior distribution

ver nonlinear functions Rasmussen (2004) . A GP is parametrized by a

ean function 𝑚 ( 𝐱) , which specifies the mean value of the function 𝑓 ( 𝐱)
t input point 𝐱, and a covariance function 𝑘 ( 𝐱 1 , 𝐱 2 ) , which specifies

ov 
(
𝑓 ( 𝐱 1 ) , 𝑓 ( 𝐱 2 ) 

)
, the covariance between the function values 𝑓 ( 𝐱 1 ) and

( 𝐱 2 ) , for any pair of inputs 𝐱 1 and 𝐱 2 . 
Technically a GP is a random process for which the values taken at

ny finite set of input points has a well-defined multivariate Gaussian

istribution. The mean and covariance of that Gaussian are given by

valuating the mean and covariance functions at the corresponding set

f input points. Let ( 𝐱 1 , … , 𝐱 𝑛 ) denote a collection of 𝑛 points in the

nput domain. If a function 𝑓 has a Gaussian process distribution, 𝑓 ∼
 ( 𝑚, 𝑘 ) , then the vector of function values 𝐟 = 

(
𝑓 ( 𝐱 1 ) , … , 𝑓 ( 𝐱 𝑛 ) 

)
⊤ has a

ultivariate Gaussian distribution: 

 ∼  ( 𝐦 , 𝐊 ) , (1)

here 𝐦 = ( 𝑚 ( 𝐱 1 ) , … , 𝑚 ( 𝐱 𝑛 )) ⊤ is the mean vector, and 𝐊 is the ( 𝑛 × 𝑛 )
ovariance matrix whose 𝑖, 𝑗’th element is 𝑘 ( 𝐱 𝑖 , 𝐱 𝑗 ) . 

.2. GP regression 

A common application of GPs is to predict function values at test

oints given a set of training data consisting of observed inputs and

unction values. In GP regression, these predictions come from the con-

itional distribution over unknown function values given the observed

alues. 

Let 𝐗 = ( 𝐱 1 , … , 𝐱 𝑛 ) denote a set of 𝑛 input points and let 𝐟 =
𝑓 ( 𝐱 1 ) , … , 𝑓 ( 𝐱 𝑛 ) 

)
⊤ denote the vector of function values observed at

hese points. Here we assume the observed data is noiseless, and we

ill consider noisy observations in Section 3 . We consider a set of

 

∗ novel input points 𝐗 ∗ = ( 𝐱 𝑛 +1 , … , 𝐱 𝑛 + 𝑛 ∗ ) , for which we would like

o predict the corresponding (unobserved) function values, denoted

 ∗ = 

(
𝑓 ( 𝐱 𝑛 +1 ) , … , 𝑓 ( 𝐱 𝑛 + 𝑛 ∗ ) 

)
⊤. 
2 
The GP gives us the following joint prior distribution over the ob-

erved and unobserved function values: 

 

𝐟 
𝐟 ∗ 

] 

∼  

( [ 

𝐦 

𝐦 ∗ 

] 

, 

[ 

𝐊 𝑛𝑛 𝐊 𝑛 ∗ 

𝐊 ∗ 𝑛 𝐊 ∗∗ 

] ) 

, (2) 

here 𝐦 ∗ = 

(
𝑚 ( 𝐱 𝑛 +1 ) , … , 𝑚 ( 𝐱 𝑛 + 𝑛 ∗ ) 

)
⊤ is the mean for novel test points in

 ∗ , and matrices 𝐊 𝑛 ∗ , 𝐊 ∗ 𝑛 , and 𝐊 ∗∗ are of size ( 𝑛 × 𝑛 ∗ ) , ( 𝑛 ∗ × 𝑛 ) , and

 𝑛 ∗ × 𝑛 ∗ ) , respectively, formed by evaluating the covariance function 𝑘

t the relevant points in 𝐗 and 𝐗 ∗ . 

By applying the standard formula for Gaussian conditional distribu-

ions, we obtain the following conditional distribution of 𝐟 ∗ given 𝐟 : 

 ∗ |𝐟 ∼  

(
𝜇( 𝐗 ∗ ) , 𝜎2 ( 𝐗 ∗ ) 

)
, (3) 

here mean and covariance are given by 

( 𝐗 ∗ ) = 𝐊 ∗ 𝑛 𝐊 

−1 
𝑛𝑛 ( 𝐟 − 𝐦 ) + 𝐦 ∗ , (4) 

2 ( 𝐗 ∗ ) = 𝐊 ∗∗ − 𝐊 ∗ 𝑛 𝐊 

−1 
𝑛𝑛 𝐊 𝑛 ∗ . (5) 

P regression uses eq. 4 , the posterior mean of the function given the

raining data, to predict function values at test points 𝐗 ∗ given the train-

ng data { 𝐗 , 𝐟} . 
Although we have assumed so far that the function 𝑓 is scalar-valued,

e can extend the GP regression framework to vector-valued functions

y using a separate GP for each output dimension of 𝑓 . 

. The brain kernel model 

Here we introduce the brain kernel (BK) model, which is a proba-

ilistic model of fMRI measurements at an arbitrary set of 3D spatial

oxel locations. The brain kernel itself is a covariance function for neu-

al activity that arises under this BK model, which we will infer from

egistered fMRI data. 

.1. Nonlinear embedding function 

The first component of the brain kernel model is a nonlinear func-

ion, 𝑓 ∶ ℝ 

3 ⟶ ℝ 

𝑑 , which provides a continuous nonlinear mapping

rom 3D brain coordinates to a 𝑑-dimensional latent embedding space.

he goal of this mapping is to embed brain regions with similar activity

t nearby locations in the embedded space. Typically, we consider 𝑑 > 3 ,
o that the embedding is higher-dimensional than the three physical di-

ensions of the brain. This gives the embedding flexibility to capture

omplex non-smooth dependencies between brain regions. One example

f such a dependency is the functional symmetry of the two hemispheres

i Lollo (1981) ; Kitterle and Kaye (1985) ; Westcott (1973) , which sug-

ests that one might wish to map symmetric points on the two hemi-

pheres to nearby points in the embedded latent space. This would not

e possible with a continuous mapping in three dimensions. But, in four

imensions, one can fold the three-dimensional brain along the fourth

imension, analogous to the way that folding a 2D brain slice along the

id-line would allow for close alignment of symmetric points from the

wo hemispheres. 

Let 𝐱 ∈ ℝ 

3 denote an input vector, specifying the three-dimensional

ocation of a voxel in the brain, and let 𝐳 ∈ ℝ 

𝑑 denote the output of 𝑓 ,

o that 𝐳 = 𝑓 ( 𝐱) is the 𝑑-dimensional embedding location of a voxel at 𝐱.
hus, for a set of voxel locations 𝐗 = ( 𝐱 1 , … , 𝐱 𝑛 ) , the embedded locations

n the latent space are 𝐙 = ( 𝐳 1 , … , 𝐳 𝑛 ) = 

(
𝑓 ( 𝐱 1 ) , … , 𝑓 ( 𝐱 𝑛 ) 

)
. 

To impose smoothness on the embedding function, we place a GP

rior on 𝑓 . We use a linear mean function, 𝑚 ( 𝐱) = 𝐁𝐱, where 𝐁 is a 𝑑 × 3
atrix. This choice ensures that the embedding defaults to a linearly

tretched version of the brain in the absence of likelihood terms. Be-

ause 𝑓 is a vector function with outputs of dimension 𝑑, the mean func-

ion output is also 𝑑-dimensional. For the covariance function, we use
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 Gaussian or “radial basis function ” (RBF) covariance for each output

imension of 𝑓 : 

 𝑓 ( 𝐱 𝑖 , 𝐱 𝑗 ) = 𝑟 exp 
(
− 

1 
2 𝛿2 ||𝐱 𝑖 − 𝐱 𝑗 ||2 2 ). (6)

he hyperparameters governing this covariance function consist of a

arginal variance 𝑟 and a length-scale 𝛿, which control the range and

moothness of 𝑓 , respectively. The GP prior over each output dimension

f 𝑓 can therefore be written as 

 𝑗 ( ⋅) ∼ 𝐺𝑃 ( 𝐛 𝑗 , 𝑘 𝑓 ) , (7)

here 𝑓 𝑗 ( ⋅) denotes the 𝑗th output dimension of the function 𝑓 ( ⋅) , and

 𝑗 is the 𝑗th row of the matrix 𝐁 . The prior is therefore governed by a

et of hyperparameters denoted 𝜃𝑓 = { 𝐁 , 𝑟, 𝛿} . Thus, all output dimen-

ions of the function 𝑓 are assumed a priori independent with the same

ovariance function and differing mean functions. 

This GP prior over the function 𝑓 implies a multivariate normal prior

ver any set of embedded voxel locations 𝐙 . Let 𝐳 𝑗 denote the 𝑗th latent

mbedding of the entire set of brain voxels in the training data. Then

he prior over 𝐳 𝑗 given the true voxel locations 𝐗 is 

 ( 𝐳 𝑗 |𝐗 ) =  ( 𝐛 𝑗 𝐗 , 𝐊 ) , (8)

here 𝐊 ∈ ℝ 

𝑛 ×𝑛 is the covariance matrix with the 𝑖, 𝑗th element given

y 𝑘 ( 𝐱 𝑖 , 𝐱 𝑗 ) (eq. 6 ). 

.2. From embedding space to neural activity 

The second component of the brain kernel model is a probability

istribution over neural activity as a function of locations in embed-

ing space. Our modeling assumption is that neural activity changes

moothly as a function of locations in embedding space, or equivalently,

hat correlations in neural activity decrease smoothly with distance in la-

ent space. We formalize this assumption using the brain kernel, which

rovides a mapping from latent embedding locations to a covariance

atrix for neural activity. 

Let 𝐯 ∈ ℝ 

𝑛 denote a vector of neural activity from 𝑛 voxels

ith positions 𝐗 = ( 𝐱 1 , … , 𝐱 𝑛 ) and latent embedding locations 𝐙 =
𝑓 ( 𝐱 1 ) , … , 𝑓 ( 𝐱 𝑛 ) 

)
. The BK model assumes this neural activity vector has

 multivariate Gaussian distribution with zero mean and covariance de-

ermined by the brain kernel: 

 ∼  (0 , 𝐂 𝑛𝑛 ) , (9)

here 

 𝑛𝑛 = 

⎡ ⎢ ⎢ ⎣ 
𝜅𝐵𝐾 ( 𝐱 1 , 𝐱 1 ) ⋯ 𝜅𝐵𝐾 ( 𝐱 1 , 𝐱 𝑛 ) 

⋮ ⋱ ⋮ 
𝜅𝐵𝐾 ( 𝐱 𝑛 , 𝐱 1 ) ⋯ 𝜅𝐵𝐾 ( 𝐱 𝑛 , 𝐱 𝑛 ) 

⎤ ⎥ ⎥ ⎦ (10)

s the covariance matrix, which results from applying the brain kernel

𝐵𝐾 ( ⋅, ⋅) to every pair of voxel locations ( 𝐱 𝑖 , 𝐱 𝑗 ) in the set 𝐗 . 

The brain kernel itself is the bivariate function 𝜅𝐵𝐾 ∶ ℝ 

3 ×ℝ 

3 ⟶ ℝ
rom pairs of 3D voxel locations to a covariance of neural activity at

hose pairs of locations: 

𝐵𝐾 ( 𝐱 𝑖 , 𝐱 𝑗 ) = 𝜌 exp 
(
− 

1 
2 ||𝑓 ( 𝐱 𝑖 ) − 𝑓 ( 𝐱 𝑗 ) ||2 2 ) = 𝜌 exp 

(
− 

1 
2 ||𝐳 𝑖 − 𝐳 𝑗 ||2 2 ), (11) 

here 𝜌 is the marginal variance. The length-scale is omitted here be-

ause 𝐳 is an unknown latent variable that we need to optimize which

bsorbs the unknown length-scale for simplicity. The brain kernel there-

ore specifies a positive semidefinite covariance matrix for neural activ-

ty at any set of 3D voxel locations, which is a function of the embedded

atent locations of those voxels via the nonlinear function 𝑓 . The brain

ernel model transforms the data representation from voxel space to the

atent embedding space, and this transformation explicitly estimates the

ovariance over neural activity ( Fig. 1 ). 
3 
.3. From neural activity to BOLD signal 

Next, we assume that the experimenter does not directly measure

he neural activity vector 𝐯 , but instead receives measurements cor-

upted by independent Gaussian noise. If 𝐲 denotes the vector of fMRI

easurements, we assume 𝑦 𝑖 = 𝑣 𝑖 + 𝜉𝑖 , where 𝑖 is the index for voxels

nd 𝜉𝑖 ∼  (0 , 𝜎2 ) represents measurement noise. The vector 𝐲 denotes

 single measurement of neural activity for all voxels. This induces the

ollowing marginal distribution over fMRI measurements given the em-

edding: |𝑓 ∼  ( 𝟎 , 𝐂 𝑛𝑛 + 𝜎2 𝐼 𝑛 ) . (12)

ote however that the brain kernel generates 𝐂 𝑛𝑛 , the covariance of the

nderlying neural activity 𝐯 , as opposed to the covariance of the noisy

MRI measurements 𝐲; the covariance of these measurements is ( 𝐂 𝑛𝑛 +
2 𝐈 𝑛 ) . For simplicity, we will omit the subscript in 𝐂 𝑛𝑛 in the following

ext and write simply 𝐂 . 

The full set of hyperparameters governing the brain kernel model

re therefore 𝜃 = { 𝐁 , 𝑟, 𝛿, 𝜌, 𝜎2 } , where { 𝐁 , 𝑟, 𝛿} describe the nonlinear

mbedding function, 𝜌 is the marginal variance of neural activity, and
2 is the variance of additive Gaussian noise. 

. Inference methods 

To fit the brain kernel model, we estimate the latent embeddings

f all voxels 𝐙 as well as the model hyperparameters 𝜃 = { 𝐁 , 𝑟, 𝛿, 𝜌, 𝜎2 }
iven a time series of whole-brain fMRI measurements 𝐘 as well

s voxels’ 3D locations 𝐗 . More specifically, 𝐘 = ( 𝐲 1 , … , 𝐲 𝑇 ) ∈ ℝ 

𝑛 ×𝑇 ,

here 𝐲 𝑡 ∈ ℝ 

𝑛 refers to the vector of fMRI measurements at time in-

ex 𝑡 ∈ {1 , … , 𝑇 } . Let 𝐗 = ( 𝐱 1 , … , 𝐱 𝑛 ) ∈ ℝ 

3×𝑛 , where 𝐱 𝑖 ∈ ℝ 

3 and 𝑖 ∈
1 , … , 𝑛 } , denote the set of 𝑛 3D voxel locations for this dataset. Let

 = ( 𝐳 1 , … , 𝐳 𝑛 ) = ( 𝑓 ( 𝐱 1 ) , … , 𝑓 ( 𝐱 𝑛 )) ∈ ℝ 

𝑑×𝑛 , where 𝐳 𝑖 ∈ ℝ 

𝑑 denotes the set

f 𝑛 voxels’ 𝑑-dimensional latent representations. 

We propose two empirical estimators: maximum a posteriori (MAP)

nd penalized least squares (PLS). Briefly, MAP solves the problem us-

ng conventional Bayesian probabilistic inference. Since we have already

efined the distribution to generate fMRI measurements from the latent

mbeddings (eq. 12 ) and the prior for the latent embeddings (eq. 8 ),

e can estimate the latent embeddings 𝐙 using MAP methods. PLS for-

ulates an objective function by minimizing the squared error between

he sample covariance of the data cov ( 𝐘 ) , and the model-defined covari-

nce 𝐂 (eq. 10 ). The goal of both inference methods is to find the latent

mbedding locations 𝐙 and the model hyperparameters such that the

eural activity covariance 𝐂 resembles the sample covariance of 𝐘 as

losely as possible. 

.1. Maximum a posteriori (MAP) estimation 

Estimating large covariance matrices is a fundamental problem in

odern multivariate analysis. One common approach uses maximum

ikelihood methods. We have already defined the data distribution 𝐘
iven the latent embedding 𝐙 in eq. 12 and described the prior over 𝐙
n eq. 8 . 

The joint distribution is then 

 ( 𝐘 , 𝐙 |𝐗 , 𝜃) = 

𝑇 ∏
𝑡 =1 
𝑝 ( 𝐲 𝑡 |𝐙 , 𝜌, 𝜎2 ) 𝑑 ∏

𝑗=1 
𝑝 ( 𝐳 𝑗 |𝐗 , 𝐁 , 𝑟, 𝛿) (13) 

= 

𝑇 ∏
𝑡 =1 

 ( 𝐲 𝑡 |0 , 𝐂 + 𝜎2 𝐈 𝑛 ) 
𝑑 ∏
𝑗=1 

 ( 𝐳 𝑗 |𝐛 𝑗 𝐗 , 𝐊 ) , (14) 

here 𝐂 is a function of 𝐙 and 𝜌. Thus, the loss function for the maximum

 posteriori (MAP) estimator is 

 MAP ( 𝐙 , 𝜃) = − log 𝑝 ( 𝐘 , 𝐙 |𝐗 , 𝜃) 
= tr 

[
( 𝐂 + 𝜎2 𝐈 𝑛 ) −1 𝐒 

]
+ 𝑇 log |𝐂 + 𝜎2 𝐈 𝑛 |

+ tr 
[
( 𝐙 − 𝐁𝐗 ) 𝐊 

−1 ( 𝐙 − 𝐁𝐗 ) ⊤
]
. (15) 
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Fig. 1. The diagram of the brain kernel model. 

A . The nonlinear latent embedding of the 3D 

coordinates into a 𝑑-dimensional latent space 

using a function 𝑓 . This 𝑓 function is sampled 

from a GP prior. B . Given the voxel locations 

and the BOLD activity of these two locations in 

an fMRI dataset (top right), our goal is to con- 

struct the brain kernel with the locations as in- 

puts that matches their covariance of the BOLD 

activity (bottom right). The covariance is equal 

to the Euclidean-based kernel of the voxels’ em- 

bedding in the latent space. 
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a  
 is the sample covariance of measured neural activity, defined as 

 = 

1 
𝑇 − 1 

𝑇 ∑
𝑡 =1 

( 𝐲 𝑡 − ̄𝐲 )( 𝐲 𝑡 − ̄𝐲 ) ⊤, �̄� = 

1 
𝑇 

𝑇 ∑
𝑡 =1 
𝐲 𝑡 . (16) 

inimizing  MAP w.r.t. 𝐙 and 𝜃, we derive the MAP estimators �̂� MAP 
nd 𝜃MAP . 

.2. Penalized least squares (PLS) estimation 

Another common approach aims at finding an estimator that re-

embles the sample covariance while also satisfying structural assump-

ions about the data Fan et al. (2008, 2016) . In prior work, Fan et al.

an et al. (2016) showed that a generalized thresholding covariance es-

imator can be cast as a penalized least squares (PLS) problem: 

̂
 = argmin 

𝐂 
{ ||𝐒 − 𝐂 || + 𝑅 ( 𝐂 ) } , (17) 

here 𝑅 ( ⋅) is a penalty function that imposes structure on the covari-

nce matrix 𝐂 . Sparsity in 𝐂 is often encoded using a shrinkage penalty.

owever, we abandon sparsity in the brain kernel because the covari-

nce of brain activity may have dense structures. Instead, we regular-

ze the latent subspace of the covariance matrix using the normal prior

n the latent embedding 𝐙 (eq. 8 ), which is a Bayesian regularization

f the log likelihood with the form tr 
[
( 𝐙 − 𝐁𝐗 ) 𝐊 

−1 ( 𝐙 − 𝐁𝐗 ) ⊤
]
. This is

quivalent to an 𝑙 2 -norm penalty on 𝐊 

− 1 2 ( 𝐙 − 𝐁𝐗 ) ⊤. Including the noise

ariance term 𝜎2 , the loss function for the empirical estimator is 

 PLS ( 𝐙 , 𝜃) = ||𝐒 − 𝐂 − 𝜎2 𝐈 𝑛 ||2 2 + tr 
[
( 𝐙 − 𝐁𝐗 ) 𝐊 

−1 ( 𝐙 − 𝐁𝐗 ) ⊤
]
. (18) 

inimizing  PLS w.r.t. 𝐙 and 𝜃, we derive the empirical PLS estimators
̂
 PLS and 𝜃PLS . Here, the least square term estimates the embedding 𝐙
sing the sample covariance, while the second term regularizes 𝐙 with

he kernel matrix 𝐊 and mean values 𝐁𝐗 constructed from 𝐗 . Eq. 18 can

lso be considered as inheriting the log of the GP prior from eq. 15 and

eplacing the data likelihood term with a squared loss. 

.3. Exact inference by block coordinate descent 

Calculating the log posterior (eq. 15 ) for MAP inference has a com-

utational complexity of 𝑂( 𝑛 3 ) , due to the need to compute the inverse

nd the determinant of the covariance matrix. This cost is often imprac-

ical in fMRI settings, where the number of voxels 𝑛 may be on the order

f thousands to hundreds of thousands. 

To optimize 𝐙 and the model hyperparameters, we could use

radient descent or Newton’s method as the optimizer; however,

his approach is computationally impractical. Thus, we need to con-

ider a scalable inference method. Existing scalable inference meth-

ds for large datasets Damianou et al. (2014) ; Hensman et al. (2013) ;

awrence (2007) exploit low-rank approximations to the full Gaussian

rocess. However, these approximations suffer from a loss of accuracy
4 
n covariance estimation. Thus, we develop a block coordinate descent

BCD) algorithm as an exact inference method for the brain kernel model

see Methods, Algorithm 1 ). Coordinate descent has been successfully

lgorithm 1 Block Coordinate Descent Algorithm for the Brain Kernel

odel. 

Input: sample covariance 𝐒 , voxel coordinate 𝐗 

Output: latent variable 𝐙 , linear projection 𝐁 , length-scale 𝛿,

marginal variance 𝑟 

Generate the index set { 𝐼 𝑗 } 𝑘 𝑗=1 given 𝐗 

Randomly initialize 𝐙 
for 𝑡 = 1 , 2 , … do 

Pick 𝐼 ∈ { 𝐼 𝑗 } 𝑘 𝑗=1 , and solve eq.~34 to get an initialization for 𝐙 ( 𝑡 ) 
𝐼 

Find the optimal 𝐙 ( 𝑡 ) 
𝐼 

and 𝐁 ( 𝑡 ) by solving eq.~29 or 31 

Estimate the optimal length-scale 𝛿∗ and the optimal marginal vari-

ance 𝑟 ∗ by solving eq.~43 

Update 𝐊 

−1 
11 

( 𝑡 ) 
and 𝐊 

−1 
12 

( 𝑡 ) 
given 𝛿∗ and 𝑟 ∗ according to eq.~42 

end for 

pplied to solve penalized regression models Wu and Lange (2008) ,

o estimate covariance graphical lasso models Wang (2014) , and to

ompute large-scale sparse inverse covariance matrices Treister and

urek (2014) . Our PLS and MAP estimators are non-convex smooth func-

ions. We apply an iterative block coordinate descent method solved by

he proximal Newton approach Tseng and Yun (2009) . Given such a

calable optimizer, we alternate between optimizing 𝐙 and the hyper-

arameters using either eq. 15 (MAP) or eq. 18 (PLS) as the objective

oss function. More details about the optimization can be found in the

ethods section. 

In practice, we used the PLS estimate to initialize the MAP estimate,

s PLS optimization is faster and requires less memory, but the MAP

stimate is more principled and achieves a higher accuracy. We used

he BCD algorithm to optimize both the PLS and MAP objectives. 

.4. Predicting activity for new voxels 

Although we fit the brain kernel model to data collected with a par-

icular grid of voxels, our framework allows us to apply the model to

MRI measurements collected using different voxel grids. To do so, we

se the fact that the brain kernel is defined using a Gaussian process;

he mean of this GP provides a smooth mapping from 3D voxel space

o the 𝑑-dimensional latent embedding space, which can be evaluated

t any 3D brain locations. We obtain the embedding location of a novel

D voxel location 𝐱 ∗ using the posterior mean of this GP: 

 

∗ = 𝐁𝐱 ∗ + ( 𝐙 − 𝐁𝐗 ) 𝐊 

−1 𝐤 ∗ , (19) 

here 𝐤 ∗ = [ 𝑘 𝑓 ( 𝐱 ∗ , 𝐱 1 ) , ⋯ , 𝑘 𝑓 ( 𝐱 ∗ , 𝐱 𝑛 )] ⊤ represents the vector formed by

valuating the RBF covariance function for the voxel at location 𝐱 ∗ and

ll the observed voxels in 𝐗 . The brain kernel for any arbitrary pair of
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Fig. 2. Recovery of 1D brain from synthetic 

data. A . The true covariance matrix for neu- 

ral activity at 100 evenly-spaced voxels in a 1D 

brain (top), generated by a 1D latent embed- 

ding function sampled from the 1D brain ker- 

nel model (bottom, blue curve). B . Model esti- 

mates. The first column is the inducing-point 

method; the second column is dynamic VIP; 

and the last column is our BCD method. In each 

column, we show the estimated covariance ma- 

trix (top) and the estimated 1D latent embed- 

dings (bottom, red curve). We also show the 

mean squared error (MSE) between the esti- 

mated covariance matrix and the true covari- 

ance matrix. (For interpretation of the refer- 

ences to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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i  
oxel locations in the test set 𝐱 ∗ 
𝑖 

and 𝐱 ∗ 
𝑗 

is therefore given by: 

𝐵𝐾 ( 𝐱 ∗ 𝑖 , 𝐱 
∗ 
𝑗 ) = 𝜌 exp (− 

1 
2 
||𝐳 ∗ 𝑖 − 𝐳 ∗ 𝑗 ||2 2 ) , (20)

ith 𝐳 ∗ 
𝑖 

and 𝐳 ∗ 
𝑗 

the corresponding latent embeddings (eq. 19 ). 

Now given the newly estimated brain kernel and the new voxel lo-

ation 𝐱 ∗ , we could predict its activity via 

 

∗ = 𝐘 

⊤( 𝐂 + 𝜎2 𝐈 ) −1 𝐜 ∗ , (21) 

here 𝐜 ∗ = [ 𝜅𝐵𝐾 ( 𝐱 ∗ , 𝐱 1 ) , ⋯ , 𝜅𝐵𝐾 ( 𝐱 ∗ , 𝐱 𝑛 )] ⊤ ∈ ℝ 

𝑛 ×1 and 𝐲 ∗ ∈ ℝ 

𝑇×1 is the

redicted activity of the new voxel across all measurements. 

.5. Synthetic experiments 

To illustrate the performance of our proposed inference method

o optimize the brain kernel objective function, we began with an

pplication to simulated data, where the ground-truth embedding is

nown. We first compared our block coordinate descent (BCD) method

lgorithm 1 ), which maximizes the exact log evidence (eq. (15) , with

wo variational inference methods that optimize a lower bound on log

vidence: an inducing-point method Lawrence (2007) , and a dynamical

ariational inference method (dynamic VIP 1 ) Damianou et al. (2014) . 

We created a simulated dataset using a 1-dimensional brain and 1-

imensional latent embedding function, sampled from the brain kernel

odel ( Fig. 2 ). Here, the latent embedding is a nonlinearly warped ver-

ion of the 1D brain. We considered a set of 100 voxel locations on an

venly spaced 1D grid: 𝐗 = [1 , 2 , … , 100] ⊤. We then sampled the voxels’

atent locations 𝐙 from a GP with mean 𝑚 ( 𝐱) = 0 . 6 𝐱 and RBF covariance

ith length-scale 𝛿 = 10 and marginal variance 𝑟 = 9 : 𝐙 ∼  (0 . 6 𝐗 , 𝐊 ) ,
here 𝐊 𝑖𝑗 = 9 exp (−( 𝑖 − 𝑗) 2 ∕200) . Given this embedding function, the

rain kernel defines a covariance matrix for neural activity at these 100

oxels, denoted 𝐂 , with the 𝑖, 𝑗th entry given by 𝐂 𝑖𝑗 = exp (−( 𝐳 𝑖 − 𝐳 𝑗 ) 2 ∕2)
 Fig. 2 A top). To obtain simulated fMRI measurements, we sampled 750

bservations from a Gaussian distribution with zero mean and covari-

nce 𝐂 + 5 𝐼 , where 𝜎2 = 5 represents the variance of additive measure-

ent noise. 

We compared the different estimators on the task of recovering

he true covariance and latent embedding function from this dataset

 Fig. 2 B). The inducing-point method with six inducing points (column

) performed well at recovering the latent embedding function, although

t was outperformed by our BCD estimator in terms of mean squared er-

or (BCD; column 3). The dynamic VIP estimate with six inducing points
1 https://github.com/SheffieldML/GPmat 

d

 

e  

5 
column 2) converged to a local optimum far from the true latent embed-

ing, yielding a substantially higher error. In contrast, exact inference

sing BCD outperformed both inducing point-based approximate meth-

ds in terms of accuracy at recovering the true latent from simulated

ata. 

Next, we conducted a set of synthetic experiments to examine how

ell different models captured the covariance of simulated fMRI data,

sing voxels on a 1-dimensional, 2-dimensional, or 3-dimensional grid.

e fit these simulated datasets using the brain kernel model optimized

ith (1) BCD, (2) variational inducing-point, and (3) the dynamic VIP

ethod, and two additional models: (4) a linear brain kernel (LBK)

odel, and (5) a GP with RBF covariance function (RBF). Note that the

rst three methods are based on the original brain kernel model but have

ifferent inference methods, while the last two methods represent sim-

lifications of the proposed brain kernel model. The linear brain kernel

odel assumes a purely linear embedding function; it thus allows rotat-

ng and linearly dilating the voxel grid, but does not allow for nonlinear

arping of voxel locations. The covariance function for neural activity

 under the LBK model is given by: 

𝐿𝐵𝐾 ( 𝐱 𝑖 , 𝐱 𝑗 ) = 𝜌 exp 
(
− 

1 
2 ||𝐁𝐱 𝑖 − 𝐁𝐱 𝑗 ||2 2 ), (22)

here 𝐁 is a 𝑑 × 𝑣 linear embedding matrix and 𝑣 is the number of di-

ensions of 𝑥 , e.g., 𝑣 = 2 for a 2-dimensional grid of voxels, and 𝑑 is

he dimension of the latent space. To assess the importance of the struc-

ured latent embedding in covariance estimation, we fit the data with a

tandard GP with RBF covariance function: 

𝑅𝐵𝐹 ( 𝐱 𝑖 , 𝐱 𝑗 ) = 𝜌 exp 
(
− 

1 
2 ||𝐱 𝑖 − 𝐱 𝑗 ||2 2 ∕ 𝑙 2 ), (23)

here 𝑙 is the length-scale for the RBF kernel. This model imposes

moothness using Euclidean distance, without estimating any (linear or

onlinear) transformation of the true voxel locations. To fit the LBK and

BF models, we minimized the following negative log likelihood for hy-

erparameters 𝜃: 

 ( 𝜃) = − log 𝑝 ( 𝐘 |𝐗 , 𝜃) 

= tr 
[
( 𝐂 ( 𝐗 , 𝜃) + 𝜎2 𝐈 𝑛 ) −1 𝐒 

]
+ 𝑇 log |𝐂 ( 𝐗 , 𝜃) + 𝜎2 𝐈 𝑛 |, (24) 

here 𝐂 ( 𝐗 , 𝜃) is the model-generated covariance matrix (given by eq.

2 for the linear brain kernel model with 𝜃 = { 𝐁 , 𝜌} , and by eq. 23 for

he RBF model with 𝜃 = { 𝑙, 𝜌} ), 𝐒 is the sample covariance (eq. 16 ), 𝜎2 

s the noise variance, and 𝑇 is the number of samples in the simulated

ataset. 

For each grid dimension, we simulated ten independent datasets,

ach with different nonlinear embedding functions sampled from the

https://github.com/SheffieldML/GPmat
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Fig. 3. Quantitative comparisons for BCD, inducing-point, dy- 

namic VIP, LBK, and RBF on three simulated datasets with 1D, 

2D, and 3D input voxel locations. A is the held-out voxel exper- 

iment, and B is the held-out sample experiment. Within each 

experiment, we show the normalized test likelihood values for 

each method with three different simulated datasets. 
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rain kernel model. For the 1D experiments, we generated each dataset

ith 500 voxels and 750 samples, and embedded the 1D voxel space

o a 1D latent embedding space. For the 2D experiments, we used a

5 × 25 voxel grid, embedded nonlinearly in a 3D latent embedding

pace, and generated datasets of 1000 samples, where each sample is

 vector of 625 noisy measurements of brain activity at voxel locations.

or the 3D datasets, we used a 10 × 10 × 10 grid of voxels, embedded

onlinearly into a 6D latent space, and we generated 1500 samples per

ataset. 

To compare models, we performed two different cross-validation

ests: (i) prediction on held-out voxels ( Fig. 3 A), and (ii) predictions

n held-out samples ( Fig. 3 B). 

For the first of the two cross-validation tests, we removed ten

andomly-selected voxels 𝐗 

∗ from the simulated 1D datasets and set

hem aside as test data, and we optimized the model parameters on a

raining set of measurements from the remaining 490 voxels. (For exper-

ments with 2D and 3D grids, we set aside 62 and 100 voxels as held-out

ata, and we trained models using the remaining 563 and 900 voxels,

espectively.) For the BK and LBK models, we computed the embedding

ocations 𝐙 ∗ for the test voxels using the GP posterior mean given the

nferred embedding locations 𝐙 (eq. 19 ), and we used these locations to

valuate the covariance of the test voxel activity (eq. 21 ). For the RBF

odel, there is no embedding, so the covariance of the test data depends

nly on the test voxel locations 𝐗 

∗ . We used the resulting predictive co-

ariance to compute the log likelihood of the test data. We found that the

CD-optimized brain kernel model estimate outperformed other meth-

ds, while the LBK and RBF models performed worse, presumably due

o their inability to capture the nonlinear embedding of the simulated

ata ( Fig. 3 A). 

Next, we evaluated cross-validation performance on held-out sam-

les, which were measured at the same set of voxels as the training set.

or these simulations, we randomly selected 75 samples as test data

or the 1D datasets, and used the remaining 675 samples to fit the five

odels. (For 2D and 3D grids, we used a train-test split of 900:100 and

350:150 samples, respectively.) We estimated a covariance function

sing measurements in the training set, and computed a test likelihood

sing this covariance function on the test set. We generated ten random

plits for each dataset and computed the normalized test log likelihood.

n this predictive task, the BCD estimate again outperformed other meth-

ds ( Fig. 3 B). 

Overall, these simulations demonstrated that the inducing point-

ased GP methods, which are often used due to their scalability, had

igher errors than our exact BCD inference method. In addition, by com-

aring to the linear brain kernel model and the standard GP model with

n RBF kernel, we showed that the ability to capture a nonlinear trans-

ormation of the voxel locations is critical for accurately modeling the

ovariance of simulated brain activity. 
6 
. Inferring the brain kernel from resting-state fMRI data 

Now that we have described the brain kernel model and validated

ur inference method using simulated data, we turn to the problem of

nferring the brain kernel from real data. We fit the brain kernel model

o large-scale publicly-available resting-state fMRI data from the Human

onnectome Project (HCP) Van Essen et al. (2013) . An advantage of this

pproach is the large size of the HCP sample, which mitigates overfitting

nd allows us to learn an embedding function that captures correlation

atterns common to a vast collection of different brains. However, ap-

lying the resulting brain kernel to task-based fMRI datasets assumes

hat the correlations presented in resting-state fMRI data are applica-

le to activation patterns in other brain states. Previous studies have

hown interesting relations between brain activity during a task and at

est. One study showed that coherent spontaneous activity accounted

or variability in event-related BOLD responses Fox et al. (2006) . A

econd study concluded that functional networks used by the brain

n action were continuously and dynamically “active ” even when at

rest ” Smith et al. (2009) . A third study showed that resting-state ac-

ivation patterns had strong statistical similarities to cognitive task acti-

ation patterns Cole et al. (2016) . These provide reasons for optimism,

hough the possibility of changes in correlation across different tasks

ould potentially affect the application of the brain kernel which we

ill show empirically later. 

We examined resting-state fMRI data from 812 subjects collected via

he Human Connectome Project (HCP) Van Essen et al. (2013) . These

ata were acquired in four fMRI runs of approximately 15 minutes each,

wo runs in one session and two in another session, with eyes open

nd relaxed fixation on a projected bright cross-hair on a dark back-

round. A sophisticated preprocessing pipeline was used to align voxels

cross subjects. Detailed information about imaging protocols, image

cquisition, and preprocessing can be found in WU-Minn (2017) . The

esulting dataset consisted of 59,412 voxels in a cortical surface coordi-

ate system. Although the full covariance matrix of these data is of size

59 𝐾 × 59 𝐾, we fit the model using the first 4500 eigenvectors of the

ull matrix provided by HCP. 

We fit the brain kernel with different numbers of latent dimensions

nd computed the test log likelihood with held-out voxels and samples

 Fig. 4 D). We found that test performance plateaued with increasing

imensionality, and selected 𝑑 = 20 dimensions for subsequent analy-

es. We then estimated the brain kernel by fitting the 20-dimensional

atent embedding for each voxel using BCD optimization of eq. 18 and

q. 15 . The resulting function is a matrix of embedding locations of size

59 𝐾 × 20 , where each row contains the embedded location of a sin-

le voxel in the resting-state fMRI dataset. This embedding, in addition

o the hyperparameters (the linear projection matrix 𝐁 and the hyper-

arameters { 𝛾, 𝛿} for 𝐊 ), provides a full parametrization of the brain
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Fig. 4. 3D embeddings and the corresponding 

covariance matrices of the resting-state fMRI 

data. A . The two example regions of interest 

(ROIs) we selected in the left and right pari- 

etal lobes (top) and the full covariance for 

the 3K voxels in these two ROIs (bottom). B . 

The original 3D voxel coordinates (top) and 

the best-fitting RBF kernel (bottom). C . A 3- 

dimensional projection of the estimated 20- 

dimensional brain kernel embedding (top) and 

the corresponding brain kernel covariance ma- 

trix (bottom). D We show the influence of the 

latent dimensionality on the predictive perfor- 

mance for held-out voxels and held-out samples 

with the resting-state fMRI data. 
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Fig. 5. 3D coordinates (A) and their latent embeddings (B) of three regions 

on the left hemisphere. Opposite to Fig. 4 B and C where the ROIs are separate 

in the voxel space but overlap in the latent space, the orange region and the 

green region are closer in the voxel space but distant to each other in the latent 

space, compared to the relation between the green region and the blue region. 

(For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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ernel. The entire fitting process took approximately 1 week on a single

PU, since we needed to optimize the latent embedding location of each

oxel in the HCP dataset so that the covariance in BOLD activity for any

air of voxels was accurately described by the brain kernel. 

Although it is impossible to visualize the 20-dimensional nonlinear

mbedding that defines the brain kernel, we can gain insight into its

hape by plotting low-dimensional projections on subsets of voxels. To

isualize the brain kernel, we selected two symmetric ROIs in the left

nd right parietal lobes ( Fig. 4 A, top). Taken together, these two ROIs

ontain 3K voxels. We visualize the sample covariance of these voxels

 Fig. 4 A, bottom). This covariance contains four identifiable blocks: two

iagonal blocks that correspond to the covariance of voxels within each

OI, and two off-diagonal blocks that correspond to cross-ROI covari-

nce. The off-diagonal blocks reveal that the two ROIs have reasonably

trong correlations despite being spatially distant in the brain. 

The original 3D voxel coordinates ( Fig. 4 B, top) and the covariance

iven by the best-fitting RBF kernel (eq. 23; Fig. 4 B, bottom) show that

he RBF kernel model fails to capture the off-diagonal blocks of the sam-

le covariance, corresponding to covariance between voxels in opposite

emispheres, due to the fact that the RBF kernel depends only on the

uclidean distance between voxels. In contrast, a 3-dimensional projec-

ion of the estimated 20-dimensional brain kernel embedding ( Fig. 4 C,

op) and the corresponding brain kernel covariance ( Fig. 4 C, bottom)

ppear to capture this cross-ROI structure in the covariance matrix. The

D projection corresponds to the first three principal components of the

0-dimensional latent embeddings, and shows that paired voxels from

pposite hemispheres are embedded close to each other under the brain

ernel. 

Conversely, some voxels that are physically close together in the

rain are embedded far apart in the embedding space. As an example,

e presented a visualization of some selected 3D coordinates ( Fig. 5 A)

nd their corresponding 3D latents ( Fig. 5 B) of three regions on the left

emisphere (color coded). We can see the green region is closer to the

range region in the 3D voxel space, while it’s closer to the blue region

n the latent space. The blue region covers mostly the visual area. The

reen region contains motor functions including eye movement and ori-

ntation. The red region corresponds to higher mental functions such as

lanning and emotion. This could explain the stronger functional con-

ectivity between green and blue in the latent space. 

Overall, this nonlinear embedding allows the brain kernel to more

ccurately capture the covariance of the real data. 

. Applications 

To illustrate the usefulness of the brain kernel, we applied it to two

ifferent fMRI data analysis problems: decoding and factor modeling
7 
 Fig. 6 ). For both analyses, we used the latent embedding function fit to

esting state data (as described in Section 5 ), and tuned two hyperpa-

ameters governing the amplitude and length-scale of the brain kernel,

hich allowed it to adapt to the statistics of each task dataset of inter-

st. We refer to this as tuning of the brain kernel covariance for use in

pplications. We describe these applications in detail below. 

.1. Brain decoding 

In this section, we illustrate how the brain kernel can be applied to

MRI classification (or ”decoding ”) tasks. 

.1.1. HCP tasks 

We first examined the task fMRI datasets in the HCP database.

e explored the working memory task, the gambling task

elgado et al. (2000) , the language processing task Binder et al. (2011) ,

he motor task Buckner et al. (2011) , the emotion processing task

ariri et al. (2006) , the relational processing task Smith et al. (2007) ,

nd the social cognition task (more details found in Barch et al. (2013) ;

U-Minn (2017) ). We will elaborate on the working memory and

ambling tasks and finally summarize the result with all datasets. 

Working memory task 

We obtained the working memory task fMRI measurements from the

CP Barch et al. (2013) . The stimuli consisted of four types of pictures:

laces, tools, faces, and body parts. Stimuli were presented for 2 s on

ach trial followed by a 500-ms inter-trial interval (ITI). Each task block

onsisted of ten trials of 2.5 s each. Each run contained 8 task blocks, half
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Fig. 6. Schematic figure illustrating two applications of the 

brain kernel to task fMRI data. After fitting the brain kernel to 

resting-state data, we applied it to task fMRI data with 𝑛 vox- 

els by evaluating the brain kernel at the 3D voxel locations. 

This results in a 𝑛 × 𝑛 prior covariance matrix for the task data, 

denoted 𝐂 . We then used the covariance 𝐂 as the prior covari- 

ance for two modeling tasks: (1) brain decoding and (2) factor 

analysis. Two unknown parameters 𝐰 and 𝐋 are both random 

variables with a Gaussian prior whose covariance is 𝐂 . Thus, 

we effectively imposed assumptions on the structure of 𝐰 and 

𝐋 via 𝐂 . 
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or a 2-back working memory task and half for a 0-back working mem-

ry task, along with 4 fixation blocks. Two runs were collected for each

ubject, with 405 volumes per run or approximately 5 minutes. Because

he task fMRI was from the same HCP project as the resting-state fMRI,

hey shared the same coordinate system and preprocessing pipeline. The

ask fMRI was aligned with the MNI template with the same 59,412 vox-

ls as the resting-state fMRI data. Instead of analyzing the whole-brain

ata for brain decoding, we worked with functional ROIs. For each pre-

ented type of pictures, we took the group-average task contrast for the

-back vs 0-back working memory task and kept all voxel coordinates

hose z-statistics were at least -1.96 or +1.96 standard deviations away

rom the mean, indicating that the voxels were statistically significant

n the contrast map. We repeated the same thresholding procedure for

ll objects and took a union set of all coordinates to formulate the func-

ional ROIs for the working memory task. We didn’t select the ROIs using

he contrast among objects, therefore the resulting ROIs contained no

iscriminative information with respect to the decoding task. 

The experiment required observers to perform a working memory

ask using four different types of objects. We tested the ability to decode

hese objects from fMRI data by fitting a binary linear classifier for each

air of objects. We used Bayesian linear regression classifiers to solve

ix binary classification problems. A Bayesian linear regression classifier

as the form, 

 = sign ( 𝐱𝐰 + 𝜖) , (25) 

here 𝐱 is a vector of all voxels for one fMRI measurement or sample,

 is a ±1 label indicating the binary object category for that sample, 𝐰
s a vector of regression coefficients, and 𝜖 is independent zero-mean

aussian noise with variance 𝜎2 . To regularize the estimate of 𝐰 , we as-

umed a zero-mean Gaussian prior with covariance 𝐂 , i.e., 𝐰 ∼  (0 , 𝐂 ) .
e considered three different choices of prior covariance: (1) a ridge

rior, which corresponds to a diagonal covariance with a positive con-

tant along the diagonal; (2) a radial basis function (RBF) covariance

eq. 23 ), which imposes smoothness based on the voxels’ 3D locations

n the brain, and (3) the brain kernel defined as 

𝐵𝐾 ( 𝐱 𝑖 , 𝐱 𝑗 ) = 𝜌 exp 
(
− 

1 
2 ||𝑓 ( 𝐱 𝑖 ) − 𝑓 ( 𝐱 𝑗 ) ||2 2 ∕ 𝑙 2 ), (26) 

here 𝑓 is the nonlinear embedding function fitted in Section 5 and

s fixed for decoding. { 𝜌, 𝑙} are tuneable hyperparameters that we op-

imized when tuning the brain kernel to the task data of interest. The

omputational cost of this tuning is the same as the cost for optimizing

he standard kernels such as the RBF covariance, which has an equiv-

lent pair of hyperparameters. This optimization is fast (e.g., 80 s for

,000 voxels on a CPU), and there is no difference in computational

ost between the brain kernel and the RBF smoothing prior. 

We trained the classifier with these three priors on one run and calcu-

ated accuracy performance on the second run, then repeated the same
8 
rocedure with test and training sets reversed. When we trained the

odel, we randomly split the training run into five folds and selected

he optimal hyperparameters in the covariance functions via 5-fold cross

alidation. After cross validation, we applied the optimal hyperparam-

ters to the test run for each prior model. We repeated this 5-fold cross

alidation experiment ten times to reduce variability. We used linear

egression to train the classifier, so the ±1 labels were treated as contin-

ous target values, and test accuracy was evaluated by taking the sign

f the prediction. We plotted averaged accuracy across both runs and all

epeats for the three priors for ten randomly-selected subjects ( Fig. 7 A).

he RBF prior outperformed the ridge prior, but the brain kernel prior

utperformed both of the other priors, indicating that smoothing in a

onlinear embedding space defined by correlations of fMRI signals pro-

ided additional benefits in regularizing weights for a classification task.

oreover, the framework of the brain kernel for regularization allows

s to visualize the inferred decoding weights overlaid on a 3D brain

 Fig. 7 B). 

Gambling task 

We next examined fMRI data in a gambling task from the HCP

arch et al. (2013) , adapted from a prior study Delgado et al. (2000) .

articipants were asked to play a card-guessing game. They were shown

 mystery card with a number that could range from 1 to 9. They needed

o guess whether it was more or less than 5 by pressing on of two buttons.

f they made the correct guess, the card showed a green up arrow with

$1 ” for rewards; if they guessed wrongly, the card showed a red down

rrow with “-$0.5 ” for losses; if the true value was 5, they got a neu-

ral response without win or loss. Participants had 1,500 ms to guess,

nd the feedback was presented for 1000 ms, followed by a 1000-ms

nter-trial interval (ITI). Each task block consisted of eight trials that

ere either mostly reward or mostly loss. Two runs were collected for

ach subject. Each run contained two mostly reward and two mostly

oss blocks, interleaved with four fixation blocks. There were 253 vol-

mes per run, which lasted approximately 3 minutes. The task fMRI

as aligned to the MNI template and had the same 59,412 voxels as the

esting-state fMRI data. Instead of analyzing the whole-brain data for

rain decoding, we worked with functional ROIs which were selected

sing the same approach as described in the working memory task. 

We formulated the task as a binary classification problem separating

eward trials and punishment trials. We used the same Bayesian linear

egression classifiers as described in the working memory section. We

rained the classifier with three priors on one run and calculated the ac-

uracy performance on the second run, then switched the training and

est runs. This procedure was repeated ten times. The ±1 labels were

reated as continuous target values during training, and the test accu-

acy was evaluated by taking the sign of the prediction. We computed

he averaged accuracies across two runs and 10 repetitions for the three

riors for 15 subjects ( Fig. 8 A). For 11 out of 15 subjects, the brain ker-
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Fig. 7. A . Accuracy performance on the work- 

ing memory task. The x-axis indicates sub- 

ject identifiers. The y-axis is accuracy perfor- 

mance. We compared our brain kernel with 

a ridge prior and a smooth RBF kernel, color 

coded. The error bars indicate standard errors. 

B . Visualization of an example set of decoding 

weights. Blue indicates negative values and yel- 

low indicates positive values. (For interpreta- 

tion of the references to colour in this figure 

legend, the reader is referred to the web ver- 

sion of this article.) 

Fig. 8. A . Accuracy performance on the gam- 

bling task. The x-axis indicates subject identi- 

fiers. The y-axis is accuracy performance. We 

compared our brain kernel with a ridge prior 

and a smooth RBF kernel, color coded. B . 

Visualization of an example set of decoding 

weights. Blue indicates negative values and yel- 

low indicates positive values. (For interpreta- 

tion of the references to colour in this figure 

legend, the reader is referred to the web ver- 

sion of this article.) 
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el improved accuracy over both the ridge prior and the smooth RBF

rior. For two of the remaining four subjects, the brain kernel outper-

ormed the ridge prior. The discrimination problem with the gambling

ata was more difficult than the working memory task. Many activations

ccurred in the visual cortex and the prefrontal cortex for working mem-

ry, whereas critical activations for the reward task might be localized

o the striatum, which was not included in the cortical data used here.

owever, with the cortical brain kernel, we were still able to improve

he predictive ability of the Bayesian decoding model. 

All HCP tasks 

We’ve elaborated on the working memory and gambling tasks above.

e also achieved the classification accuracy performance for all other
 f  

9 
asks (presented in Appendix B.1). Here we summarize the averaged

ccuracy over all subjects for each task in Fig. 9 . Consistent with the

bove results, we succeeded in achieving the best performance with the

orking memory and gambling tasks using the brain kernel. For other

asks, the brain kernel performed mildly better than the ridge prior and

he smoothing prior estimates. The overall performance of these HCP

ask fMRI datasets indicates that the brain kernel is a better choice than

he smoothing and the ridge priors. 

.1.2. Visual recognition task 

Next, we examined the problem of decoding faces and objects from

MRI measurements during a visual recognition task. Just to remind, the
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Fig. 9. Accuracy performance averaged over all subjects for all task fMRI 

datasets in the HCP database. The x-axis indicates the task. The y-axis is ac- 

curacy performance. 

Fig. 10. Examples of the stimuli for 7 categories (except for scrambled control 

images) Haxby et al. (2001) . 
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Fig. 11. Accuracy performance on the visual recognition task. The x-axis indi- 

cates subject IDs. The y-axis is accuracy performance. We compared our brain 

kernel with a ridge prior and a smooth RBF kernel, color coded. 
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rain kernel was estimated using the resting-state fMRI from HCP, and

e applied it to a popular fMRI dataset from a study of human ventral

emporal cortex Haxby et al. (2001) for the decoding task. We extended

he application beyond HCP, i.e., constructing the brain kernel on HCP

nd then trying on a completely different dataset. Therefore, we were

ooking at cross-dataset generalization, not just cross-task generaliza-

ion within HCP. In this visual recognition experiment, six subjects were

sked to recognize eight different types of objects (bottles, houses, cats,

cissors, chairs, faces, shoes, and scrambled control images, examples in

ig. 10 ). Each subject participated 12 scanning runs. In each run, the

ubjects viewed images of eight object categories, with 11 whole-brain

easurements per category. Each subject’s fMRI data was preprocessed

sing the fMRIprep package 2 Esteban et al. (2017) and aligned to the

NI template. Both voxels in this dataset and voxels in the HCP database

ere all aligned in the same MNI space, allowing us to use eq. 19 to get

he brain kernel covariance for the present dataset. Instead of analyzing

he whole-brain data, we extracted ROIs with 1,645 voxels in the ventral

emporal cortex, which is thought to be involved in object recognition.

he ROI mask was obtained from Nilearn Abraham et al. (2014) . 

We assessed performance by training Bayesian linear regression clas-

ifiers to discriminate between pairs of objects, e.g., face vs. bottle, for

ach of the 28 possible binary classifications among the eight objects

 Fig. 10 ). We trained the weights 𝐰 for each model using linear regres-

ion from fMRI measurements 𝐱 to binary labels 𝑦 ∈ {−1 , +1} , and as-

essed accuracy on the test set using predicted labels �̂� = sign ( 𝐱𝐰 ) . Here,

e split the training and test sets by subjects. In this visual recognition

ataset, we had six subjects but only 11 × 2 × 12 = 264 measurements

n a 1,645-voxel space for each subject in a binary decoding task. The

umber of training measurements was not sufficiently large to train a
2 https://github.com/poldracklab/fmriprep 

a

𝐗

10 
ood classifier with a reasonable generalization performance. Therefore,

ifferent from the HCP tasks, we chose to do inter-subject analyses by

sing 5 subjects for training and one subject for test. We repeated this

eave-one-subject-out manner for six times with each subject being used

s the test set once and obtained the result in Fig. 11 . 

The averaged accuracy performance across four repeated runs for six

ubjects shows that the brain kernel performed comparably to the ridge

nd smoothing priors with better accuracy performance for 5 out of 6

ubjects ( Fig. 11 ). This indicates that the brain kernel can provide func-

ional and structural support for most subjects and visual recognition

asks in this dataset. The improvement was statistically modest overall

ased on the standard errors, which could be a result of several factors:

isalignment of the coordinate space to the HCP coordinate space used

o estimate the brain kernel; mismatch between the resting-state covari-

nce used to construct the brain kernel and covariance present during

he visual recognition task; or the object recognition tasks may rely on

ne-grained spatial response topographies that are poorly aligned across

ndividuals. 

.2. Factor modeling 

In this section, we illustrate a second type of application of the brain

ernel. Instead of using it to regularize decoding weights, as in the pre-

ious section, we used it as a spatial prior for Bayesian factor analysis. 

.2.1. Sherlock movie watching task 

We examined the Sherlock fMRI dataset, in which participants were

canned while they watched the British television program “Sherlock ”

or 50 min Chen et al. (2017) . The fMRI data comprised 1,973 TRs (Rep-

tition Time), where each TR was 1.5 s of the movie. Before performing

ny analysis, the fMRI data were preprocessed and aligned to MNI space

sing the techniques described in the prior work Chen et al. (2017) .

e examined the brain data averaged across all subjects to smooth out

ndividual variability. We identified 11 ROIs previously implicated in

rocessing naturalistic stimuli, comprising the default mode network

DMN-A, DMN-B), the ventral and dorsal language areas, and the pri-

ary auditory and visual cortices Simony et al. (2016) . 

For each ROI, we performed a standard factor analysis (FA) to fac-

orize the voxel-by-time fMRI data into a latent source matrix and a

actor matrix. Thus fMRI images can be considered as being generated

y a covariate-dependent superposition of latent sources. Some follow-

ng analyses, such as decoding and encoding tasks, can be performed

ith the factor matrix. The number of latent sources is much fewer than

he number of time points, thus providing a parsimonious description

f neural activity patterns that avoids many of the pitfalls of traditional

oxel-based approaches. Similar FA based models have been proposed

n Gershman et al. (2011) ; Manning et al. (2014) . Here, we performed

 Bayesian factor analysis of the form 

 = 𝐋𝐅 + 𝜖, (27) 

https://github.com/poldracklab/fmriprep
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Fig. 12. Co-smoothing evaluation. The blue region is the data used for training; 

the pink region contains voxels that are used to infer the factor matrix during 

the inference period; and the yellow region is used for test. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

w  

𝐋  

p  

t  

G  

u  

a  

p  

i  

k  

t  

d

 

p  

c  

o  

t  

d  

s  

o  

c  

t  

t  

b  

(  

t  

t  

t  

o

 

s  

t  

v  

p  

a  

p  

o  

w  

m  

s  

fi

 

e  

g  

R  

k  

a

6

 

s  

1  

W  

t  

f  

t  

k  

a  

d

7

 

t  

f  

i  

t  

t

m  

v  

r  

p  

p  

a  

b  

c

 

3  

fi  

a  

o  

t  

s

 

t  

c  

m  

s  

t  

a  

c

 

p  

s  

p  

d  

R  

t  

i  

p  

n  

a  

d

 

f  

t  

t  

a  

i  

o  

l  

t  

w  

fi  

t  

m  

t  

e  

F  

p  
here 𝐗 ∈ ℝ 

𝑁×𝑇 is the fMRI image with 𝑁 voxels and 𝑇 time points,

 ∈ ℝ 

𝑁×𝐾 is the latent source matrix encoding the canonical spatial

attern (over voxels) associated with each latent source. 𝐅 ∈ ℝ 

𝐾×𝑇 is

he factor matrix containing the timeseries for 𝐾 latent sources. 𝜖 is a

aussian noise with 𝜖 ∼  (0 , 𝜎2 ) . We assumed that the 𝑖 th factor (col-

mn) is from a standard normal distribution, i.e., 𝑝 ( 𝐅 𝑖 ) =  (0 , 𝐈 ) . We

lso assumed that the 𝑗th latent source (column) is from a Gaussian

rior 𝑝 ( 𝐋 𝑗 ) =  (0 , 𝐂 ) where 𝐂 is the covariance matrix. Like the decod-

ng tasks, we used a ridge prior, a smooth RBF kernel, and the brain

ernel in the place of the covariance matrix 𝐂 . With different priors,

he latent sources 𝐋 showed different characteristics imposed by these

istinct regularizations. 

Our goal was to infer the latent variables 𝐋 and 𝐅 , and the hyper-

arameters for 𝐂 and 𝜎2 , denoted as 𝜃. To quantify performance, we

ompared data explanation under the three prior with the same number

f latent sources which was set to 10. In practice, we first standardized

he fMRI image 𝐗 , then tuned the hyperparameters using the marginal

istribution of 𝐗 , and finally inferred the factor matrix and the latent

ources via maximum likelihood parameter estimation (details in Meth-

ds). To evaluate the performance of the three priors, we used a method

alled “co-smoothing ” Wu et al. (2018) , depicted in Fig. 12 . We first split

he time points into two equal sets by taking the first half as one set and

he latter half as the other set. We took the first set for training (the

lue region) and the second set for inference (the pink region) and test

the yellow region). We trained the model with the neural activity in

he training set to obtain the estimated latent sources 𝐋 ∗ . We then kept

he latent sources fixed for the inference and test purpose. Next we split

he second set into five folds along the voxel axis, four for inference and

ne for test. We used the neural activity 

in the inference set to infer the factor matrix (mapping the latent

ources to the time series) during the inference period given the la-

ent sources 𝐋 ∗ . Finally we predicted the neural activity for the left-out

oxels in the test set given the latent sources and factor matrix. We re-

eated the inference and test step five times in a cross-validation fashion

nd obtained an averaged 𝑅 

2 value representing the performance of the

rior. After the first run, we achieved three 𝑅 

2 values for the three pri-

rs (ridge, smooth and brain kernel). To better visualize the difference,

e normalized the three 𝑅 

2 values so that the maximum was 1 and the

inimum was 0. We then launched a second run by using the second

et as the training set and the first set as the inference and test set. The

nal normalized test 𝑅 

2 value was an average of the two runs. 

We compared the normalized test 𝑅 

2 value for the three priors for

ach ROI ( Fig. 13 ). The error bars indicate standard errors. In most re-

ions, the brain kernel outperformed the ridge prior and the smooth

BF kernel. This implies that when performing Bayesian FA, the brain

ernel provided a superior prior covariance for the latent source matrix

nd may enhance performance in terms of data explanation. 

.2.2. HCP tasks 

We examined the task fMRI datasets in the HCP database with the

ame Bayesian FA model. We collected all the task fMRIs for the same

0 subjects and performed Bayesian FA for each subject in each task.

e implemented the same “co-smoothing ” evaluation and compared

he normalized test 𝑅 

2 for the three priors averaged over all subjects

or each task ( Fig. 14 ). In most tasks, the brain kernel outperformed
11 
he ridge prior and the smooth RBF kernel. This implies that the brain

ernel provided a superior prior covariance for the latent source matrix

nd may enhance performance in terms of data explanation for the HCP

atabase. 

. Discussion 

We introduced the brain kernel model, a new model for the spa-

ial covariance of fMRI data. This model takes the form of a covariance

unction, meaning that it can take any two continuous voxel locations

n the brain as inputs and return the prior covariance of their activi-

ies. Unlike standard smoothness-inducing covariance functions used in

he Gaussian process literature, which assume that correlation falls off

onotonically with distance, the brain kernel allows widely-separated

oxel locations (e.g., on opposite sides of the brain) to have high cor-

elation, while pairs of nearby voxels can be nearly uncorrelated. This

roperty arises from the fact that the nonlinear embedding function,

arametrized with Gaussian processes, warps and stretches the brain in

 higher-dimensional space so that widely-separated pairs of voxels can

e mapped to nearby embedding locations, while pairs of nearby voxels

an be moved far apart in embedding space. 

We fit the brain kernel model using a nonlinear embedding of the

D brain in a 20D space. We introduced an exact inference method for

tting the brain kernel model using block coordinate descent (BCD),

nd estimated the brain kernel using a large publicly-available dataset

f resting-state fMRI measurements from many subjects. We found that

he resulting brain kernel accurately captured the covariance of resting-

tate fMRI measurements. 

We further demonstrated the applicability of the brain kernel using

wo different modeling tasks: brain decoding and factor analysis. In both

ases, we used the brain kernel to define a prior distribution in place of a

ore conventional prior based on 𝓁 2 shrinkage or local smoothness. We

howed that the brain kernel achieved gains in performance, illustrating

hat the correlations in resting-state fMRI may be usefully mined to aid

nalyses of task fMRI. A comprehensive summary of application results

an be found in Appendix B. 

Moreover, to examine other choices of covariance function for

arametrizing the brain kernel, we re-fit the brain kernel to resting-

tate fMRI data using a Matern-3/2 covariance function. We also com-

ared the RBF and Matern-3/2 brain kernels using the working-memory

ecoding task fMRI data shown in the main paper. We found that the

BF covariance function outperformed the Matern-3/2 covariance func-

ion in both modeling the covariance of resting-state data and decod-

ng of working memory task data. More details can be found in Ap-

endix C. We have therefore decided to keep our focus on the brain ker-

el parametrized with RBF covariance in the main paper. But exploring

 wider family of possible covariance functions is indeed a worthwhile

irection for further research. 

The estimation of a good quality of the brain kernel requires as much

MRI data as possible. However, we want to emphasize is that our inten-

ion was not to suggest that experimentalists should collect more data

han needed for their study. We merely meant to suggest that —if there

re pre-existing publicly or privately available datasets that exhibit sim-

lar functional connectivity / covariance structure to patterns of activity

bserved during a particular study, then that additional data might be

everaged using the brain kernel to improve decoding performance or la-

ent variable modeling of the data collected for the study of interest. This

ould indeed incur a computational burden (researchers would need to

t the brain kernel using the pre-existing dataset). However, no addi-

ional data would be needed; on the contrary, the brain kernel would

ake it possible to exploit the structure of the pre-existing data so that

he significance level / effect sizes are larger in the study of interest, thus

ffectively increasing statistical power or reducing data requirements.

or the purpose of using the resting-state brain kernel as an alternative

rior apart from the RBF covariance, people can just download it from
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Fig. 13. Normalized test 𝑅 2 performance on the Sherlock fMRI 

dataset. The x-axis indicates ROIs (PPHG – Posterior Parahip- 

pocampal Gyrus; PAC – Primary Auditory Cortex; PAN – Pri- 

mary Auditory Network; DMN-A – Default Mode Network-A; 

DMN-B – Default Mode Network-B; DLN – Dorsal Language 

Network; VLN – Ventral Language Network; PVC – Primary Vi- 

sual Cortex). The y-axis is the normalized 𝑅 2 performance on 

the test set (higher values indicate better performance). The 

error bars indicate standard errors. We compared our brain 

kernel with a ridge prior and a smooth RBF kernel, color coded. 

Fig. 14. Normalized test 𝑅 2 performance on the HCP task 

fMRI datasets. The x-axis indicates the task. The y-axis is the 

normalized test 𝑅 2 performance averaged over 10 subjects for 

each task (higher values indicate better performance). 

l  

i

L

 

e  

t  

i  

d

 

d  

t  

i  

r  

e  

c  

c  

d  

a  

w  

i  

c  

f  

C  

l  

p  

j  

v  

t  

p  

M  

i  

f  

p  

t  

i  

f  

t

 

r  

a  

s  

p  

p

 

s  

m  

fi  

m  

i  

w  

r

 

a  

o  

c  

r  

t  

t  

b  

l  

e  

t  

p  

t  

t  

a  

b  

v  

a

 

s  

s  

w  

a  

W  

i  

a  

t  

p  

d

ink and use it instead of the RBF covariance, since we have already fit

t with a giant resting-state fMRI dataset from diverse subjects. 

imitations 

Despite the successes presented above, it is important to acknowl-

dge that we applied the brain kernel to several other datasets for both

he decoding and the factor modeling tasks beyond the examples shown

n the main section, for which it did not yield improvements over stan-

ard priors. 

For decoding, we applied the brain kernel to the Sherlock movie

ataset Chen et al. (2017) whose decoded vectors contained seman-

ic descriptions for the movie scenes. We observed that the smooth-

ng prior was better than the brain kernel prior, both better than the

idge prior. Then we investigated the reason of the performance differ-

nce and figured out that the brain kernel was able to impose a strong

ross-covariance assumption over many voxels; but much of the cross-

ovariance didn’t exist in the Sherlock movie data or could hurt the

ecoding performance. The optimal brain kernel prior corresponded to

 small length-scale that led to less smoothing assumptions compared

ith the smoothing kernel. So this Sherlock movie dataset is not an

deal dataset that could leverage most of the resting-state functional

onnectivity to do the decoding task. We also applied it to a public

MRI dataset in which subjects viewed 5000 visual images (BOLD5000)

hang et al. (2019) . The binary labels were living objects versus non-

iving objects. We observed that the brain kernel did not reliably out-

erform the ridge prior and the smoothing prior estimates across sub-

ects. The optimal smoothing prior and the brain kernel prior both con-

erged to the ridge prior after hyperparameter estimation, i.e., the es-

imated length-scale was very small and all three priors had the same

erformance. Therefore, smoothness did not help the classification task.

ore details can be found in Appendix B. For these cases, regulariz-

ng the decoding weights with the brain kernel did not improve per-

ormance, suggesting that the covariance of resting-state fMRI did not

rovide useful information for classifying fMRI measurements in these

asks, or at least that the brain kernel was not capable of captur-

ng it. It remains possible, however, that a brain kernel fit from task

MRI datasets might offer benefits for decoding fMRI data from these

asks. 

For factor modeling, we also applied the brain kernel to the visual

ecognition task and the BOLD5000 dataset except for the HCP dataset
12 
nd the Sherlock movie dataset presented in the main paper. For most

ubjects in both datasets, the brain kernel didn’t show a dominating

erformance over both the ridge prior and the smooth RBF kernel (Ap-

endix B). 

Beyond those reasons, we hypothesize that the lack of benefit ob-

erved on non-HCP (outside the HCP) datasets may arise from a mis-

atch between the covariance of resting-state fMRI observations used to

t the brain kernel and the covariance of task fMRI datasets. However, it

ight also arise from differences in acquisition parameters, preprocess-

ng steps, or alignment between HCP and non-HCP datasets. Although

e aligned all voxels with the MNI template, misalignment might still

esult from differences between processing pipelines. 

We include more analyses about the reasons behind these limitations

nd under which circumstances the brain kernel could be a better prior

ption than the ridge prior and the smoothing prior in Appendix B. We

an show only that if there is similar structure between the covariance of

esting-state data used to estimate the brain kernel and the discrimina-

ive ROIs in the task data, the brain kernel will function as a better prior

han a standard smoothing kernel. For factor modeling applications, the

rain kernel is often more reliably effective because we typically use a

arge number of voxels to infer latents, rather than a few responsive vox-

ls that may be selected in decoding tasks. Similarly, we would expect

he brain kernel to give good performance when the task fMRI is com-

osed of smooth latent sources that resemble the spatial correlation in

he resting-state data. We can fit a best brain kernel or a best RBF kernel

o the sample covariance and evaluate the similarity both qualitatively

nd quantitatively with the negative log-likelihood (NLL) value. If the

est-fitting brain kernel resembles the sample covariance and the NLL

alue of the brain kernel is smaller, it’s promising to use the brain kernel

s a prior for Bayesian factor modeling analysis. 

Given that the computational burden is not higher than that of

tandard smoothing or shrinkage priors (and potentially smaller than

hrinkage-inducing regularizers like LASSO), we hope that researchers

ill incorporate the brain kernel into standard analysis pipelines, and

pply it in cases where it is observed to offer improved performance.

e consider this to analogous to the ways in which existing regular-

zers such as smoothing priors or sparsity-inducing priors like LASSO

re currently employed: researchers may conduct exploratory analyses

o determine whether incorporating smoothness or sparsity improves

erformance, and then adopt these regularizers as warranted by the

ata. 

https://github.com/waq1129/brainkernel/blob/main/brainkernel/brainkernel_latent.mat
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utlook and future directions 

Although the brain kernel did not achieve improved performance

n all datasets and applications we considered, we feel it nevertheless

olds great potential for fMRI data analysis. First, we cast the problem

f estimating covariance of fMRI datasets as that of estimating a non-

inear mapping from 3D brain coordinates to a latent embedding space.

his results in a compact representation of the full brain covariance

atrix, requiring storage of only a 𝑁 𝑣𝑜𝑥𝑒𝑙𝑠 × 20 matrix of embedding lo-

ations (when the embedding dimensionality is 20), as opposed to a full

 𝑣𝑜𝑥𝑒𝑙𝑠 ×𝑁 𝑣𝑜𝑥𝑒𝑙𝑠 covariance matrix. Moreover, because the brain kernel

s a continuous covariance function, we can use it to model the covari-

nce at arbitrary voxel locations, even those not contained in the original

raining dataset. 

In addition to providing a compact parametrization of fMRI covari-

nce, the brain kernel’s nonlinear embedding function may be useful

or gaining insights into the geometry of correlations within and across

rain regions. Examining the embedding of different brain regions (e.g.,

s shown in Fig. 4 ) allows researchers to directly visualize correlations

n terms of distances between embedded voxels. 

Although the brain kernel fit to the HCP resting-state fMRI data did

ot yield improvements on all task fMRI datasets we explored, it is pos-

ible that other methods for training or applying the brain kernel might

roduce bigger gains. For example, one might train the brain kernel on

ask fMRI datasets, or train a hierarchical version that gains statistical

trength from combining datasets, while preserving flexibility to capture

ifferences between the two kinds of data. A more ambitious possibility

s to formulate a hierarchical version of the brain kernel that allows for

er-subject variability. This would produce a hierarchical brain kernel

n which each brain has own specific brain kernel, allowing for detailed

ifferences in correlation maps across brains. All such applications will

enefit from more robust methods for alignment and preprocessing, and

t may be that these alone will be enough to improve the performance

f the brain kernel. Although these directions are beyond the scope of

he current paper, we feel that the idea of the brain kernel is one that

esearchers might extend and apply to novel settings and datasets. 

Finally, an exciting possibility for future work is to combine the

rain kernel with other advanced statistical modeling techniques.

ethods for modeling structured variability, such as topographic ICA

anning et al. (2014) , and methods for structured sparsity, such

s GraphNet Grosenick et al. (2013) , sparse overlapping sets lasso

ao et al. (2013) , and dependent relevance determination Wu et al.

2019, 2014) , rely on capturing dependencies between nearby voxels.

ll such methods might thus be improved by using nearness in func-

ional embedding space provided by the brain kernel, instead of near-

ess in 3D Euclidean space inside the brain. Likewise, methods for linear

lignment of functional data from multiple subjects such as hyperalign-

ent Haxby et al. (2020) ; Xu et al. (2012) might be extended using

onlinear warping of brain coordinates under the brain kernel. There-

ore, we feel that the brain kernel holds promise for inspiring new data-

riven prior distributions and new modeling approaches for capturing

tructure in fMRI data. 

ethods 

lock coordinate descent for the brain kernel model 

The penalized least squares (eq. 18 , PLS) has a computational com-

lexity of 𝑂( 𝑛 2 ) and memory storage of 𝑂( 𝑛 2 ) ; however, the maximum

 posteriori (eq. 15 , MAP) has a computational complexity of 𝑂( 𝑛 3 ) –
o invert the covariance matrix – and memory storage of 𝑂( 𝑛 2 ) . 𝑛 is
he number of voxels, which often exceeds 10K. Gradient descent or

ewton’s method is computationally impractical as the optimizer. Thus,

e need to use a scalable inference method. Existing inference meth-

ds for large datasets Damianou et al. (2014) ; Hensman et al. (2013) ;

awrence (2007) exploit low-rank approximations to the full Gaussian
13 
rocess, which, however, suffer from a loss of accuracy in covariance

stimation. Thus, in this section, we develop a block coordinate descent

lgorithm as an exact inference method for the brain kernel model. Co-

rdinate descent has been successfully applied to solve penalized re-

ression models Wu and Lange (2008) , to estimate covariance graphi-

al lasso models Wang (2014) , and to compute large-scale sparse inverse

ovariance matrices Treister and Turek (2014) . 

Our PLS and MAP estimators are non-convex smooth functions. We

pply an iterative block coordinate descent method solved by the prox-

mal Newton approach Tseng and Yun (2009) . We first divide the voxel

et {1 , … , 𝑛 } into blocks. Next, we iterate over all blocks, minimizing

he functions with respect to the voxels within each block. Without loss

f generality, we split the voxel set into two blocks, {1 , … , 𝑚 } (block

) and { 𝑚 + 1 , … , 𝑛 } (block 2), where 𝑚 ≪ 𝑛 , and focus on the first 𝑚

olumns of 𝐙 for the update. We partition 𝐙 , 𝐂 , 𝐒 , and 𝐊 

−1 as follows: 

 = 
[
𝐙 1 𝐙 2 

]
, 𝐊 −1 = 

[ 
𝐊 −1 11 𝐊 −1 12 
𝐊 − ⊤12 𝐊 −1 22 

] 
, 𝜸 = 

⎡ ⎢ ⎢ ⎣ 
𝑐( 𝐳 1 , 𝐳 1 ) ⋯ 𝑐( 𝐳 1 , 𝐳 𝑚 ) 

⋮ ⋯ ⋮ 
𝑐( 𝐳 𝑚 , 𝐳 1 ) ⋯ 𝑐( 𝐳 𝑚 , 𝐳 𝑚 ) 

⎤ ⎥ ⎥ ⎦ , 
 = 

[ 
𝐒 11 𝐒 12 
𝐒 ⊤12 𝐒 22 

] 
, 𝐂 = 

[ 
𝜸 𝜷

𝜷⊤ 𝐂 22 

] 
, 𝜷 = 

⎡ ⎢ ⎢ ⎣ 
𝑐( 𝐳 1 , 𝐳 𝑚 +1 ) ⋯ 𝑐( 𝐳 1 , 𝐳 𝑛 ) 

⋮ ⋯ ⋮ 
𝑐( 𝐳 𝑚 , 𝐳 𝑚 +1 ) ⋯ 𝑐( 𝐳 𝑚 , 𝐳 𝑛 ) 

⎤ ⎥ ⎥ ⎦ . 
(28) 

ere, subscripts represent the block indices, so 𝐙 1 and 𝐙 2 are the first

 columns and the last 𝑛 − 𝑚 columns of 𝐙 and subscript 12 indicates

he block matrix across the first 𝑚 variables and the last 𝑛 − 𝑚 variables.

nly 𝜷 and 𝜸 contain the active variables in 𝐙 1 to optimize. 𝐙 2 is fixed.

Applying the block representation to eq. 18 , we get the block PLS

bjective function for solving 𝐙 1 : 

 PLS ( 𝐙 1 ) = tr 
[
( 𝐒 11 − 𝜸 − 𝜎2 𝐈 𝑛 )( 𝐒 11 − 𝜸 − 𝜎2 𝐈 𝑛 ) ⊤ + 2( 𝐒 12 − 𝜷)( 𝐒 12 − 𝜷) ⊤

]
+ tr 

[
( 𝐙 1 − 𝐁𝐗 1 ) 𝐊 

−1 
11 ( 𝐙 1 − 𝐁𝐗 1 ) ⊤

+ 2( 𝐙 1 − 𝐁𝐗 1 ) 𝐊 

−1 
12 ( 𝐙 2 − 𝐁𝐗 2 ) ⊤

]
, (29) 

here 𝐗 1 and 𝐗 2 are the first 𝑚 columns and the last 𝑛 − 𝑚 columns of

 . 

To formulate the block MAP estimator for 𝐙 1 , we first apply the block

atrix inversion to 𝐂 , 

 

−1 = 

[ 
( 𝜸 − 𝜷𝐂 

−1 
22 𝜷

⊤) −1 , − 𝜸−1 𝜷( 𝐂 22 − 𝜷⊤𝜸−1 𝜷) −1 

− 𝐂 

−1 
22 𝜷

⊤( 𝜸 − 𝜷𝐂 

−1 
22 𝜷

⊤) −1 , ( 𝐂 22 − 𝜷⊤𝜸−1 𝜷) −1 

] 
. (30) 

ncorporating this matrix inversion into the MAP estimator, we get the

bjective function 

 MAP ( 𝐙 1 ) = log |𝜸 + 𝜎2 𝐈 𝑛 | + tr 
[
𝜷𝐂 

−1 
22 𝐒 22 𝐂 

−1 
22 𝜷

⊤( 𝜸 + 𝜎2 𝐈 𝑛 ) −1 
]

−2 tr 
[
𝐒 12 𝐂 

−1 
22 𝜷

⊤( 𝜸 + 𝜎2 𝐈 𝑛 ) −1 
]
+ tr 

[
𝐒 11 ( 𝜸 + 𝜎2 𝐈 𝑛 ) −1 

]
+ tr 

[
( 𝐙 1 − 𝐁𝐗 1 ) 𝐊 

−1 
11 ( 𝐙 1 − 𝐁𝐗 1 ) ⊤

+ 2( 𝐙 1 − 𝐁𝐗 1 ) 𝐊 

−1 
12 ( 𝐙 2 − 𝐁𝐗 2 ) ⊤

]
. (31) 

he time complexity of the block PLS estimator is 𝑂( 𝑛𝑚 

2 ) per iteration,

here 𝑚 is the size of the block, and the time complexity of the MAP

stimator is 𝑂( 𝑛 2 𝑚 ) per iteration. For comparison, greedy gradient de-

cent has complexity 𝑂( 𝑛 3 ) per iteration. In the experiments, the block

AP estimator for 𝐙 with the block PLS estimator as a warm start is a

ractical optimization approach. 

We now describe the block coordinate descent (BCD) update. We as-

ume that the voxel indices {1 , … , 𝑛 } are divided into 𝑘 blocks { 𝐼 𝑗 } 𝑘 𝑗=1 ,
here 𝐼 𝑗 is the set of indices corresponding to the columns of 𝐙 in the

’th block. Denote 𝐼 𝑗 columns of 𝐙 to be 𝐙 𝐼 𝑗 . We cluster indices into

locks based on the spatial locations of the voxels and assume smooth

easurements for nearby voxels. Thus, the size of a block should be

t least one length-scale of the region defined by the kernel in 𝐱 space

o encourage dependencies among neighboring voxels. This smoothness

ssumption leads to a block-wise but not an element-wise update, which

eparates our BCD method from Informative Vector Machine (IVM)
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awrence (2003) . At each iteration 𝑡 , we choose a nonempty index sub-

et 𝐼 ∈ { 𝐼 𝑗 } 𝑘 𝑗=1 . Then the objective functions 𝑙( 𝐙 𝐼 ) in eq. 29 and 31 are

ptimized w.r.t. 𝐙 𝐼 via L-BFGS Nocedal (1980) . After the 𝑡 ’th iteration,

 𝐼 is updated, holding all other blocks fixed. 

For high-dimensional non-convex problems, a good initialization is

ssential to finding a good optimum in practice. Two steps we exploited

uring implementation to mitigate the optimization issue with multi-

odal, high-dimensional non-convexity. 

First, we assumed the nonlinear latent embedding 𝐳 to be a local

arping of the linear embedding which is the mean of the posterior

istribution for 𝐳 (eq. 8 ). We first found a good estimate of 𝐛 at the be-

inning of the optimization. This is equal to fitting a linear brain kernel

LBK) model. We estimated 𝐁 in eq. 22 which is a matrix form of 𝐛 .
his involves an easier optimization since the parameter space of 𝐛 is
uch smaller than 𝐳. Given the estimated 𝐛 , 𝐳 = ̂𝐳 + 𝐛𝐗 is optimized via

stimating �̂� and fixing 𝐛 . This eases the high-dimensional non-convex

ssue by learning a small parameter 𝐛 and a local warping ̂𝐳 separately.

Secondly, we introduced the Laplacian eigenmap algorithm, an ef-

ective and tractable initialization for a single block of 𝐙 inspired by

aplacian eigenmaps. 

The Laplacian eigenmap (LE) algorithm is a popular dimension-

lity reduction method that solves a generalized eigendecomposi-

ion Belkin and Niyogi (2003) . LE defines a neighborhood graph on

he data { 𝐲 𝑖 ∈ ℝ 

𝑇 } 𝑛 
𝑖 =1 , such as 𝑘 nearest neighbors or an 𝜖-ball graph,

nd weighs each graph edge 𝐲 𝑖 ∼ 𝐲 𝑗 by a symmetric affinity func-

ion 𝑉 ( 𝐲 𝑖 , 𝐲 𝑗 ) = 𝑣 𝑖𝑗 , typically Gaussian: 𝑣 𝑖𝑗 = exp 

( 

− 

||𝐲 𝑖 − 𝐲 𝑗 ||2 
2 𝑠 2 

) 

with 𝑠 the

ength-scale. Given this weighted graph, LE seeks latent points { 𝐳 𝑖 ∈
 

𝑑 } 𝑛 
𝑖 =1 that are solutions to the optimization problem 

in 
𝐙 

tr ( 𝐙 ⊤𝐋𝐙 ) 𝑠.𝑡. 𝐙 ⊤𝐃𝐙 = 𝐈 , 𝐙 ⊤𝐃𝟏 = 𝐈 , (32) 

ith the symmetric affinity matrix 𝐕 ∈ ℝ 

𝑛 ×𝑛 , the degree matrix 𝐃 =
iag ( 

∑𝑛 
𝑖 =1 𝑣 𝑖𝑗 ) ∈ ℝ 

𝑛 ×𝑛 , the graph Laplacian matrix 𝐋 = 𝐃 − 𝐕 ∈ ℝ 

𝑛 ×𝑛 , and

 = [1 , … , 1] ⊤. Constraints eliminate the two trivial solutions 𝐙 = 𝟎 by

etting an arbitrary scale and 𝐳 1 = … = 𝐳 𝑛 by removing 𝟏 , which is an

igenvector of 𝐋 associated with a zero eigenvalue. 

Following the previous two-block example, let 𝐙 be partitioned into

 1 and 𝐙 2 . To update 𝐙 1 given 𝐙 2 , the objective function is: 

in 
𝐙 1 

tr 

( [
𝐙 1 𝐙 2 

][ 𝐋 11 𝐋 12 
𝐋 ⊤12 𝐋 22 

] [ 
𝐙 ⊤1 
𝐙 ⊤2 

] ) 

. (33) 

e don’t need to use the constraints from eq. 32 because the trivial

olutions are removed given 𝐙 2 . The solution is 

̃
 1 = − 𝐙 2 𝐋 ⊤12 𝐋 

−1 
11 . (34) 

iven the current latent embeddings for all other coordinates, the al-

orithm seeks the best latent embedding of the unknown dimensions.

ecause of the computational efficiency of this approach, we use �̃� 1 to
nitialize the BCD algorithm for each iteration and 𝐙 2 collapses all the

xed blocks. 

In addition, if 𝐕 has a Gaussian affinity function, the latent embed-

ing 𝐙 is mapped from the observation 𝐘 with a radial basis function

onlinearity. For covariance estimation, we enforce the resemblance be-

ween another radial basis function (RBF) kernel on 𝐙 and the sam-

le covariance of 𝐘 . We are essentially trying to map the observation

pace to itself with double layers of exponential transformations, which

ould result in a bad latent embedding for initialization. Therefore, in-

tead of using a Gaussian function for the weights 𝐕 , we use a function

hat inverts the RBF nonlinearity on a covariance matrix, defined as

 𝑖𝑗 = − 𝑓 ( 𝐲 𝑖 𝐲 ⊤𝑗 ) . Here, 𝑓 ( 𝑥 ) = sign ( 𝑥 ) log ( |𝑥 | + 1) is the log-modulus trans-

ormation John and Draper (1980) , which distributes the magnitude of

he data while preserving the sign of the data in order to control against

egative covariance values when taking the logarithm. 

We chose the Laplacian eigenmap algorithm because it has the nice

losed-form expression for the conditional expression 𝐙 given 𝐙 . We
1 2 

14 
ere able to use 𝐙 2 to efficiently find a better initial position for 𝐙 1 that

educed the search over the entire parameter space of 𝐙 1 . We tried a

andom start for 𝐙 1 which led to a very bad local optimum. We also

ried to use the previous estimate to initialize 𝐙 1 . That resulted in a

tuck in a bad local optimum that was very close to the previous solu-

ion. So Laplacian eigenmap allowed us to move away from the previous

stimate but also leverage 𝐙 2 effectively. 

yperparameter estimation for the brain kernel model 

Our model includes five hyperparameters: { 𝛿, 𝑟, 𝐁 , 𝜌, 𝜎2 } . We set

hese parameters as follows. 

Estimate 𝛿: 𝛿 is the length-scale of the GP kernel mapping from coor-

inate space to latent space. We can optimize this parameter by taking

he derivative of the GP log-likelihood w.r.t. 𝛿; this involves inverting

he kernel matrix with an 𝑂( 𝑛 3 ) cost, which is computationally infeasi-

le here. An inducing-point method Damianou et al. (2014) introduced

xtra inducing variables to optimize, which further increased the com-

utational burden. Instead, we use a scalable spectral formulation for

earning the length-scale 𝛿 of the GP kernel. 

For a stationary Gaussian process 𝑓 ∼  ( 𝑚, 𝑘 ) , when 𝑓 has a high

egree of smoothness, the prior covariance 𝐊 becomes approximately

ow rank, meaning that it has a small number of non-negligible eigen-

alues. Because the kernel function for 𝐱 space is shift invariant, the

igenspectrum of 𝐊 has a diagonal representation in the Fourier do-

ain, a consequence of Bochner’s theorem Lázaro-Gredilla et al. (2010) ;

u et al. (2017) , 

 ∼  ( 𝛼( 𝝎 ) , Σ( 𝝎 )) , (35)

here 𝑔 is the Fourier transform of 𝑓 , 𝝎 is the frequency, 𝛼( 𝝎 ) is the

ourier transform of the mean function 𝑚 ( 𝐱) , and Σ = diag ( 𝑠 ( 𝝎 )) is di-

gonal. This means that Fourier components are a priori independent,

ith prior variance 

 ( 𝝎 ) = (2 𝜋𝛿2 ) ℎ ∕2 𝑟 exp 
(
−2 𝜋2 𝛿2 𝝎 

2 ), (36) 

here ℎ is the dimension of the input 𝐱. Without loss of generality,

e assume the size of the spectral domain for each input dimension

s 𝑤 , and thus 𝜶 = 𝛼( 𝝎 ) ∈ ℝ 

𝑤 ℎ and 𝚺 = Σ( 𝝎 ) ∈ ℝ 

𝑤 ℎ ×𝑤 ℎ given a spectral

epresentation 𝝎 . The mapping between 𝑓 ( 𝐱) and its Fourier transform

( 𝝎 ) is then 

( 𝐱) = 

∑
𝑗 

𝑒 2 𝜋𝑖 𝐱 
⊤𝝎 𝑗 𝑔( 𝝎 𝑗 ) = 𝐞 ⊤𝑔( 𝝎 ) , (37) 

here 𝐞 is a column vector with entries 𝑒 2 𝜋𝑖 𝐱 
⊤𝝎 𝑗 on the 𝑗’th position for

he 𝑗’th frequency. Let 𝐞 𝑖 ∈ ℝ 

𝑤 ℎ denote the Fourier vector for 𝐱 𝑖 ( 𝑖 is the

ndex for voxels), then we can further define  = ( 𝐞 1 , … , 𝐞 𝑛 ) ∈ ℝ 

𝑤 ℎ ×𝑛 to

e the Fourier matrix for an input coordinate matrix 𝐗 . Let 𝐳 𝑗 ∈ ℝ 

𝑛 de-

ote the 𝑗th latent embedding of 𝐗 and 𝑗 ∈ {1 , … , 𝑑} . Note that 𝐳 𝑗 is

he 𝑗’th row of the matrix 𝐙 . We can write 𝐳 𝑗 = 𝐠 ⊤
𝑗 
 , where 𝐠 𝑗 ∈ ℝ 

𝑤 ℎ ∼
 ( 𝜶𝑗 , 𝚺) . This implies that each latent embedding deterministically de-

ends on a unique spectral function. These spectral functions are all

ampled from multivariate Gaussian priors with different mean func-

ions but the same covariance function in the spectral domain. Bringing

he Fourier matrix  into the Gaussian prior (eq. 35 ), we derive the

aussian prior over the latent 𝐳 𝑗 expressed with the spectral formula-

ion as 

 𝑗 ∼  

(
𝜶⊤𝑗  ,  

⊤𝚺 

)
. (38) 

We can use this representation to optimize 𝛿. If 𝛿 is in a large-

alue regime, we can ignore Fourier components above a certain high-

requency cutoff which leads to a lower-dimensional 𝝎 and a lower-

imensional optimization problem. Because ℎ = 3 in fMRI analyses, we

an control 𝑤 to be small enough so that 𝑤 

ℎ is tractable relative to the

arge 𝑛 , and  is a manageable high-dimensional matrix. Because we
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)
. 
enerally do not assume uniform gridding of coordinates 𝐗 ,  is a non-

niform DFT (not orthogonal). Although the Kronecker tricks cannot be

sed for scaling up with non-uniform DFT, we can employ block ma-

rix inverse lemma to transform the spectral formulation into a lower-

imensional problem. 

Then the standard negative GP log-likelihood to optimize for 𝛿 is 

( 𝛿) = tr 
[
( 𝐙 − 𝐁𝐗 )( 𝐊 + 𝜖𝐈 ) −1 ( 𝐙 − 𝐁𝐗 ) ⊤

]
+ log |𝐊 + 𝜖𝐈 |, (39) 

here 𝜖 is a small noise variance in the latent space to avoid ill-

onditions for 𝐊 . Let 𝐀 = ( 𝜶1 , … , 𝜶𝑑 ) ⊤ ∈ ℝ 

𝑑×𝑤 ℎ . With the spectral rep-

esentation, eq. 39 can be re-written as 

( 𝛿) = tr 
[
( 𝐙 − 𝐀  )(  

⊤𝚺 + 𝜖𝐈 ) −1 ( 𝐙 − 𝐀  ) ⊤
]
+ log | 

⊤𝚺 + 𝜖𝐈 |. (40) 

alculating (  

⊤𝚺 + 𝜖𝐈 ) −1 is still computationally expensive, but with

he spectral factorization, we are able to use the block matrix inverse

emma as in eq. 30 , 

(  

⊤𝚺 + 𝜖𝐈 ) −1 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝐈 −  

⊤
1 ( 𝐏 

−1 
2 +  11 + 𝜖𝐈 ) −1  1 , −  

⊤
1 ( 𝚺 11 + 𝜖𝐈 ) −1 𝚺(  22 𝚺

−  22 𝚺(  11 𝚺 + 𝜖𝐈 ) −1  11 𝚺 + 𝜖𝐈 ) −1  2 
−  

⊤
2 ( 𝚺 22 + 𝜖𝐈 ) −1 𝚺(  11 𝚺 −  11 𝚺(  22 𝚺 + 𝜖𝐈 ) −1  22 𝚺

+ 𝜖𝐈 ) −1  1 , 𝐈 −  

⊤
2 ( 𝐏 

−1 
1 +  22 + 𝜖𝐈 ) −1  2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
here  1 and  2 correspond to the Fourier bases for 𝐗 1 and 𝐗 2 

espectively. Note that neither  1 nor  2 is invertible. Moreover,

 11 =  1  

⊤
1 ,  22 =  2  

⊤
2 , 𝐏 1 = 𝚺 − 𝚺(  11 𝚺 + 𝜖𝐈 ) −1  11 𝚺 and 𝐏 2 = 𝚺 −

(  22 𝚺 + 𝜖𝐈 ) −1  22 𝚺. All matrices have size 𝑤 

ℎ ×𝑤 

ℎ , which is tractable

o invert. We know that the spectral expression of 𝐊 

−1 is (  

⊤𝚺 + 𝜖𝐈 ) −1 .
e can also express 𝐊 

−1 
11 and 𝐊 

−1 
12 with the spectral formulation as 

 

−1 
11 = 𝐈 −  

⊤
1 ( 𝐏 

−1 
2 +  11 + 𝜖𝐈 ) −1  1 , (42) 

 

−1 
12 = −  

⊤
1 ( 𝚺 11 + 𝜖𝐈 ) −1 𝚺(  22 𝚺 −  22 𝚺(  11 𝚺 + 𝜖𝐈 ) −1  11 𝚺 + 𝜖𝐈 ) −1  2 . 

onsequently, the negative GP log-likelihood w.r.t. 𝛿 in the block form

s represented as 

( 𝛿) = ( 𝐙 1 − 𝐀  1 )( 𝐈 −  

⊤
1 ( 𝐏 

−1 
2 +  11 + 𝜖𝐈 ) −1  1 )( 𝐙 1 − 𝐀  1 ) ⊤

+( 𝐙 2 − 𝐀  2 )( 𝐈 −  

⊤
2 ( 𝐏 

−1 
1 +  22 + 𝜖𝐈 ) −1  2 )( 𝐙 2 − 𝐀  2 ) ⊤

+ log |𝚺 22 − 𝚺 11 ( 𝚺 11 + 𝜖𝐈 ) −1 𝚺 22 + 𝜖𝐈 | + log |𝚺 11 + 𝜖𝐈 | (43) 

−2( 𝐙 1 − 𝐀  1 )  

⊤
1 ( 𝚺 11 + 𝜖𝐈 ) −1 𝚺(  22 𝚺 −  22 𝚺(  11 𝚺 + 𝜖𝐈 ) −1 

⋅ 11 𝚺 + 𝜖𝐈 ) −1  2 ( 𝐙 2 − 𝐀  2 ) ⊤. 

ith eq. 43 , the computational cost is reduced to max 
(
𝑂 ( 𝑛𝑤 

ℎ ) , 𝑂 ( 𝑤 

3 ℎ ) 
)
,

here 𝑤 is the dimension of the spectral form per input dimension and ℎ

s the number of input dimensions. This complexity is much smaller than

( 𝑛 3 ) when 𝑛 ≫ 𝑤 and ℎ ≤ 3 . Another benefit of this formulation is that

only exists in the diagonal of 𝚺 (eq. 36 ), which makes the estimation

traightforward. 

Estimate 𝑟 : 𝑟 determines the scale of the latent embedding 𝐙 . Since

 also exists on the diagonal of 𝚺 (eq. 36 ), the optimization for 𝑟 can be

ombined with learning 𝛿 using the same spectral representation in eq.

3 . 

Estimate 𝜌: 𝜌 is the marginal variance of the covariance function.

e assume that the data has been normalized to have zero mean and

ariance one. Thus we set 𝜌 = 1 . 
Estimate 𝐁 : 𝐁 is the linear projection of the mean function. We can

stimate 𝐁 jointly with 𝐙 in each BCD iteration by optimizing the same

bjective function (eq. 29 and 31 ). 

Estimate 𝜎2 : 𝜎2 is the observation noise variance. We estimate
2 using the eigenvalues of the sample covariance 𝐒 Tipping and

ishop (1999) . 

Algorithm 1 describes the complete BCD algorithm for the brain ker-

el model. The convergence of the BCD algorithm (without parameter

stimation) to a stationary point is addressed in the theoretical results in

revious work Tseng and Yun (2009) . There, a general block-coordinate-

escent approach is analyzed to solve minimization problems of the
15 
orm 𝐹 ( 𝑥 ) = 𝑓 ( 𝑥 ) + 𝜆ℎ ( 𝑥 ) , which is composed of the sum of a smooth

unction 𝑓 ( ⋅) and a separable convex function ℎ ( ⋅) , in our case ℎ ( 𝑥 ) = 0 .
ccording to Part (e) of Theorem 4.1 in Tseng and Yun (2009) , if 𝐼 𝑡 at

he 𝑡 ’th iteration is chosen by the generalized Gauss-Seidel rule, ⋃
 =0 , 1 , …,𝑇−1 

𝐽 𝑖 + 𝑡 ⊇  ∀𝑡 = 1 , 2 , … , 𝑇 , (44) 

hich is necessary to ensure that all variables are updated every 𝑇 steps

nd  is the set of all variables, then each coordinate-wise minimum

oint of { 𝐙 𝐼 𝑡 } is a stationary point of 𝑓 ( 𝐙 ) . 

yperparameter optimization and latent variable inference for Bayesian 

actor analysis 

Our goal was to infer the latent variables 𝐋 and 𝐅 and the hyperpa-

ameters for 𝐂 and 𝜎2 , denoted as 𝜃. We assumed that 

 = 𝐋𝐅 + 𝜖 ∼  ( 𝐋𝐅 , 𝜎2 𝐈 ) , (45) 

 𝑗 ∼  ( 𝟎 , 𝐂 ) , for the 𝑗th column, (46) 

nd 

 𝑖 =  ( 𝟎 , 𝐈 ) , for the 𝑖 th column. (47) 

We first aimed at estimating the hyperparameters 𝜃 by marginalizing

ver 𝐋 and 𝐅 . The marginal distribution for 𝐗 is 

 ( 𝐗 ) = ∫  ( 𝐋𝐅 , 𝜎2 𝐈 ) 
𝐾 ∏
𝑗=1 

 ( 𝐋 𝑗 |𝟎 , 𝐂 ) 
𝑇 ∏
𝑖 =1 

 ( 𝐅 𝑖 |𝟎 , 𝐈 ) 𝑑𝐋 1 … 𝑑𝐋 𝐾 𝑑𝐅 1 … 𝑑𝐅 𝑇 

(48) 

hich is intractable. However, we could match the second order mo-

ent of 𝐗 to the sample covariance 𝐒 = �̃� ̃𝐗 

⊤ where �̃� is the standardized

ata sample. The second order moment is derived as follows 

 [ 𝐗𝐗 ⊤] = 𝔼 [ 𝐋𝐅𝐅 ⊤𝐋 ⊤] + 𝜎2 𝑇 𝐈 

= ∫ ∫ 𝐋𝐅𝐅 ⊤𝐋 ⊤
𝐾 ∏
𝑗=1 

 ( 𝐋 𝑗 |𝟎 , 𝐂 ) 𝑇 ∏
𝑖 =1 

 ( 𝐅 𝑖 |𝟎 , 𝐈 ) 𝑑𝐋 1 … 𝑑𝐋 𝐾 𝑑𝐅 1 … 𝑑𝐅 𝑇 + 𝜎2 𝑇 𝐈 

= ∫ 𝐋 
[ 
∫ 𝐅𝐅 ⊤

𝑇 ∏
𝑖 =1 

 ( 𝐅 𝑖 |𝟎 , 𝐈 ) 𝑑𝐅 1 … 𝑑𝐅 𝑇 

] 
𝐋 ⊤

𝐾 ∏
𝑗=1 

 ( 𝐋 𝑗 |𝟎 , 𝐂 ) 𝑑𝐋 1 … 𝑑𝐋 𝐾 + 𝜎2 𝑇 𝐈 

= ∫ 𝐋 
[ 
∫

𝑇 ∑
𝑖 =1 
𝐅 𝑖 𝐅 ⊤𝑖 

𝑇 ∏
𝑖 =1 

 ( 𝐅 𝑖 |𝟎 , 𝐈 ) 𝑑𝐅 1 … 𝑑𝐅 𝑇 

] 
𝐋 ⊤

𝐾 ∏
𝑗=1 

 ( 𝐋 𝑗 |𝟎 , 𝐂 ) 𝑑𝐋 1 … 𝑑𝐋 𝐾 + 𝜎

= ∫ 𝐋 
[ 

𝑇 ∑
𝑖 =1 

∫ 𝐅 𝑖 𝐅 ⊤𝑖  ( 𝐅 𝑖 |𝟎 , 𝐈 ) 𝑑𝐅 𝑖 ] 𝐋 ⊤ 𝐾 ∏
𝑗=1 

 ( 𝐋 𝑗 |𝟎 , 𝐂 ) 𝑑𝐋 1 … 𝑑𝐋 𝐾 + 𝜎2 𝑇 𝐈 

= 𝑇 ∫ 𝐋𝐋 ⊤
𝐾 ∏
𝑗=1 

 ( 𝐋 𝑗 |𝟎 , 𝐂 ) 𝑑𝐋 1 … 𝑑𝐋 𝐾 + 𝜎2 𝑇 𝐈 

= 𝑇 
𝐾 ∑
𝑗=1 

∫ 𝐋 𝑗 𝐋 ⊤𝑗  ( 𝐋 𝑗 |𝟎 , 𝐂 ) 𝑑𝐋 𝑗 + 𝜎2 𝑇 𝐈 
= 𝑇 𝐾𝐂 + 𝜎2 𝑇 𝐈 . (49) 

y matching eq. 49 to the sample covariance 𝐒 , we were able to estimate

he hyperparameters in 𝐂 and 𝜎2 . 

Next, we fixed the estimated hyperparameters and inferred 𝐋 .
arginalizing over 𝐅 we got 

 ( 𝐗 |𝐋 ) =  ( 𝟎 , 𝐋𝐋 ⊤ + 𝜎2 𝐈 ) . (50) 

hen, we obtained the joint distribution between 𝐗 and 𝐋 as 

 ( 𝐗 , 𝐋 ) =  ( 𝟎 , 𝐋𝐋 ⊤ + 𝜎2 𝐈 ) 
𝐾 ∏
𝑗=1 

 ( 𝐋 𝑗 |𝟎 , 𝐂 ) , (51) 

hose log likelihood is written as 

 ( 𝐋 ) = − 

1 
2 
log |𝐋𝐋 ⊤ + 𝜎2 𝐈 | − 

1 
2 𝑇 

Tr 
(
𝐗 

⊤( 𝐋𝐋 ⊤ + 𝜎2 𝐈 ) −1 𝐗 

)
− 

1 
2 𝐾 

Tr 
(
𝐋 ⊤𝐂 

−1 𝐋
(52) 
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h  
e maximized eq. 52 w.r.t. 𝐋 . To speed up the optimization process,

e initialized 𝐋 via finding a closed-form solution approximately max-

mizing eq. 52 . Denoting 𝐋𝐋 ⊤ + 𝜎2 𝐈 as 𝐐 , we rewrote the log likelihood

s 

 ( 𝐐 ) = − 

1 
2 
log |𝐐 | − 

1 
2 𝑇 

Tr 
(
𝐐 

−1 𝐗𝐗 

⊤
)
− 

1 
2 𝐾 

Tr 
(
𝐂 

−1 𝐐 

)
, (53) 

hose derivative is 

𝜕 ( 𝐐 ) 
𝜕𝐐 

= − 

1 
2 
𝐐 

−1 + 

1 
2 𝑇 
𝐐 

−1 𝐗𝐗 

⊤𝐐 

−1 − 

1 
2 𝐾 

𝐂 

−1 . (54) 

etting the derivative to be 0, we arrived at 

1 
𝐾 

𝐐𝐂 

−1 𝐐 + 𝐐 = 

1 
𝑇 
𝐗𝐗 

⊤

⇓

 𝐐 + 

1 
2 
𝐾𝐂 ) 1 

𝐾 

𝐂 

−1 ( 𝐐 + 

1 
2 
𝐾𝐂 ) = 

1 
𝑇 
𝐗𝐗 

⊤ + 

1 
4 
𝐾𝐂 . (55) 

e needed to decompose the right-hand side into the multiplication of

 symmetric matrix, 𝐂 

−1 and the same symmetric matrix. Here is our

olution: 

• Let 𝐏 denote the Cholesky decomposition of 1 
𝐾 
𝐂 

−1 , i.e., 1 
𝐾 
𝐂 

−1 = 𝐏𝐏 ⊤.

• Denote 𝐐 + 

1 
2 𝐾𝐂 = 𝐁𝐁 ⊤ and let 𝐁 = 𝐏 − ⊤𝐀 where 𝐀 is an unknown

square matrix. 
• Then we can rewrite eq. 55 as 

1 
𝐾 
𝐁𝐁 ⊤𝐂 

−1 𝐁𝐁 ⊤ = 

1 
𝑇 
𝐗𝐗 

⊤ + 

1 
4 𝐾𝐂 

⇒ 𝐏 − ⊤𝐀𝐀 

⊤𝐏 −1 𝐏𝐏 ⊤𝐏 − ⊤𝐀𝐀 

⊤𝐏 −1 = 

1 
𝑇 
𝐗𝐗 

⊤ + 

1 
4 𝐾𝐂 

⇒ 𝐏 − ⊤𝐀𝐀 

⊤𝐀𝐀 

⊤𝐏 −1 = 

1 
𝑇 
𝐗𝐗 

⊤ + 

1 
4 𝐾𝐂 

⇒ 𝐀𝐀 

⊤𝐀𝐀 

⊤ = 𝐏 ⊤
(

1 
𝑇 
𝐗𝐗 

⊤ + 

1 
4 𝐾𝐂 

)
𝐏 . 

• Next, we represent 𝐀 with its singular value decomposition (SVD),

i.e., 𝐀 = 𝐔𝐒𝐕 

⊤. 
• Finally we can rewrite eq. 55 as 

𝐀𝐀 

⊤𝐀𝐀 

⊤ = 𝐏 ⊤( 1 
𝑇 
𝐗𝐗 

⊤ + 

1 
4 
𝐾𝐂 ) 𝐏 

⇒ 𝐔𝐒𝐕 

⊤𝐕𝐒𝐔 

⊤𝐔𝐒𝐕 

⊤𝐕𝐒𝐔 

⊤ = 𝐏 ⊤( 1 
𝑇 
𝐗𝐗 

⊤ + 

1 
4 
𝐾𝐂 ) 𝐏 

⇒ 𝐔𝐒 4 𝐔 

⊤ = 𝐏 ⊤( 1 
𝑇 
𝐗𝐗 

⊤ + 

1 
4 
𝐾𝐂 ) 𝐏 . (56) 

• Therefore, to solve eq. 55 , we first factorize 𝐏 ⊤( 1 
𝑇 
𝐗𝐗 

⊤ + 

1 
4 𝐾𝐂 ) 𝐏 us-

ing SVD to obtain 𝐔 and 𝐒 according to eq. 56 . 
• Then 𝐐 = 𝐁𝐁 ⊤ − 

1 
2 𝐾𝐂 = 𝐏 − ⊤𝐀𝐀 

⊤𝐏 −1 − 

1 
2 𝐾𝐂 = 𝐏 − ⊤𝐔𝐒 2 𝐔 

⊤𝐏 −1 −
1 
2 𝐾𝐂 . 

• Ultimately, 𝐋 can be obtained via 𝐋 = 𝐖 ∶ , ∶ 𝐾 𝐃 

1 
2 
∶ 𝐾, ∶ 𝐾 where 𝐖𝐃𝐖 

⊤ is

the eigen-decomposition of 𝐐 − 𝜎2 𝐈 . 

Given the above procedure, we were able to find an ideal initial-

zation for 𝐋 which made the optimization of eq. 52 much easier. Con-

itioned on the optimal 𝐋 ∗ , we turned to inferring the optimal 𝐅 ∗ via

aximizing 

 ( 𝐅 ) = log  ( 𝐗 |𝐋 ∗ 𝐅 , 𝜎2 𝐈 ) 𝑇 ∏
𝑖 =1 

 ( 𝐅 𝑖 |𝟎 , 𝐈 ) , (57) 

hich has a closed-form solution, i.e., 𝐅 ∗ = ( 𝐋 ∗ ⊤𝐋 ∗ + 𝜎2 𝐈 ) −1 𝐋 ∗ ⊤𝐗 . 

Note that in order to obtain 𝐋 = 𝐖 ∶ , ∶ 𝐾 𝐃 

1 
2 
∶ 𝐾, ∶ 𝐾 , we needed to guar-

ntee that we were able to find a positive semi-definite (p.s.d.) matrix

 − 𝜎2 𝐈 . Here are the lemma and the theorem: 

emma. If 𝐀 is p.s.d., and 𝐁 is symmetric p.s.d., then 𝐀𝐁 is also p.s.d. 

roof. If 𝐀 and 𝐁 are both p.s.d. and 𝐁 is also symmetric, then sup-

ose 𝜆 is an eigenvalue of 𝐀𝐁 with corresponding eigenvector 𝐱 ≠ 0 ,
.e., 𝐀𝐁𝐱 = 𝜆𝐱. Then 𝐁𝐀𝐁𝐱 = 𝜆𝐁𝐱 and so 𝐱 ⊤𝐁𝐀𝐁𝐱 = 𝜆𝐱 ⊤𝐁𝐱. It is not

ard to check that 𝐁𝐀𝐁 will also be p.s.d. For 𝐱 s.t. 𝐱 ⊤𝐁𝐱 ≠ 0 , we have

= 

𝐱 ⊤𝐁𝐀𝐁𝐱 
⊤ . Both the numerator and the denominator are non-negative
𝐱 𝐁𝐱 

16 
alues, therefore 𝜆 ≥ 0 . For 𝐱 s.t. 𝐱 ⊤𝐁𝐱 = 0 , we assume 𝐱 = 𝐕𝐞 where 𝐁 =
𝐃𝐕 

⊤ is the eigen-decomposition and 𝐞 is the linear weight vector. Then

 

⊤𝐁𝐱 = 𝐞 ⊤𝐕 

⊤𝐁𝐕𝐞 = 𝐞 ⊤𝐕 

⊤𝐕𝐃𝐞 = 𝐞 ⊤𝐃𝐞 = 0 . Since 𝐃 is a diagonal matrix

ith non-negative values, 𝐞 should have zero elements corresponding to

he non-zero eigenvalues. Therefore 𝐱 is a linear combination of eigen-

ectors of 𝐁 whose eigenvalues are zero, i.e., 𝐱 = 𝐕 0 𝐞 where 𝐕 0 contains

ll zero eigenvectors with 𝐃 0 = 𝟎 and 𝐞 has no zero elements. Follow-

ng that, we have 𝐁𝐱 = 𝐁𝐕 0 𝐞 = 𝐕 0 𝐃 0 𝐞 = 0 ⇒ 𝐀𝐁𝐱 = 𝜆𝐁 𝐀𝐱 = 0 ⇒ 𝜆 = 0 .
ased on the derivation, we arrive at the conclusion that 𝐀𝐁 has non-

egative eigenvalues thus 𝐀𝐁 is p.s.d. □

heorem. If 𝐾𝐂 − 𝜎2 𝐈 is p.s.d., then 𝐐 − 𝜎2 𝐈 is p.s.d. based on the

emma . 

roof. 

𝐂 ⪰ 𝜎2 𝐈 

⇒ 𝐾𝐂 1 
𝑇 
𝐗𝐗 ⊤ ⪰ 𝜎2 1 

𝑇 
𝐗𝐗 ⊤ ( Lemma ) 

⇒ 𝐾𝐂 1 
𝑇 
𝐗𝐗 ⊤ ⪰ 𝜎2 ( 𝐾𝐂 + 𝜎2 𝐈 ) ( This is true because of eq. 40. ) 

⇒ 𝐾𝐂 1 
𝑇 
𝐗𝐗 ⊤ ⪰ 𝜎2 𝐾𝐂 + 𝜎4 𝐈 

⇒
1 
𝐾 

𝐂 −1 1 
𝑇 
𝐗𝐗 ⊤ 1 

𝐾 

𝐂 −1 ⪰ 𝜎2 1 
𝐾 

𝐂 −1 1 
𝐾 

𝐂 −1 + 𝜎4 1 
𝐾 

𝐂 −1 1 
𝐾 

𝐂 −1 1 
𝐾 

𝐂 −1 ( Lemma ) 

⇒ 𝐏 ⊤ 1 
𝑇 
𝐗𝐗 ⊤𝐏 ⪰ 𝜎2 𝐏 ⊤𝐏 + 𝜎4 𝐏 ⊤𝐏𝐏 ⊤𝐏 

⇒ 𝐏 ⊤( 1 
𝑇 
𝐗𝐗 ⊤ + 1 

4 
𝐾𝐂 ) 𝐏 ⪰ 1 

4 
𝐈 + 𝜎2 𝐏 ⊤𝐏 + 𝜎4 𝐏 ⊤𝐏𝐏 ⊤𝐏 

⇒ 𝐔𝐒 4 𝐔 ⊤ ⪰ 1 
4 
𝐈 + 𝜎2 𝐏 ⊤𝐏 + 𝜎4 𝐏 ⊤𝐏𝐏 ⊤𝐏 

⇒ 𝐒 4 ⪰ ( 1 
2 
𝐈 + 𝜎2 𝐔 ⊤𝐏 ⊤𝐏𝐔 )( 1 

2 
𝐈 + 𝜎2 𝐔 ⊤𝐏 ⊤𝐏𝐔 ) 

⇒ ( 𝐒 2 − ( 1 
2 
𝐈 + 𝜎2 𝐔 ⊤𝐏 ⊤𝐏𝐔 )) 𝐒 2 + ( 1 

2 
𝐈 + 𝜎2 𝐔 ⊤𝐏 ⊤𝐏𝐔 )( 𝐒 2 − ( 1 

2 
𝐈 + 𝜎2 𝐔 ⊤𝐏 ⊤𝐏𝐔 )) ⪰ 𝟎

enoting 𝐀 = 

1 
2 𝐈 + 𝜎2 𝐔 

⊤𝐏 ⊤𝐏𝐔 and 𝐁 = 𝐒 2 − ( 1 2 𝐈 + 𝜎2 𝐔 

⊤𝐏 ⊤𝐏𝐔 ) , we can

implify the above inequality as 

𝐒 2 + 𝐀𝐁 ⪰ 𝟎 . (58) 

e now prove that if inequality 58 is true, then 𝐁 ⪰ 𝟎 , using proof by

ontradiction: 

If 𝐁  𝟎 , then there exists an eigenvector 𝐱 s.t. 𝐁𝐱 = 𝜆𝐱, 𝜆 < 0 . Then

 

⊤𝐁𝐒 2 𝐱 = 𝜆𝐱 ⊤𝐒 2 𝐱 ≤ 0 due to the p.s.d. of 𝐒 2 . Similarly, for the same

igenvector 𝐱, we could arrive at the same conclusion for 𝐀𝐁 , i.e.,

 

⊤𝐀𝐁𝐱 = 𝜆𝐱 ⊤𝐀𝐱 ≤ 0 . This implies that 𝐱 ⊤( 𝐁𝐒 2 + 𝐀𝐁 ) 𝐱 ≤ 0 which is con-

radict to inequality 58 . Therefore 𝐁 ⪰ 𝟎 . Now we could continue the

eduction as follows, 

 ⪰ 𝟎 

⇒ 𝐒 2 ⪰ 1 
2 
𝐈 + 𝜎2 𝐔 

⊤𝐏 ⊤𝐏𝐔 

⇒ 𝐔𝐒 2 𝐔 

⊤ ⪰ 1 
2 
𝐈 + 𝜎2 𝐏 ⊤𝐏 

⇒ 𝐏 − ⊤𝐔𝐒 2 𝐔 

⊤𝐏 −1 ⪰ 1 
2 
𝐾𝐂 + 𝜎2 𝐈 

⇒ 𝐐 − 𝜎2 𝐈 ⪰ 𝟎 . 

□

We can easily ensure that 𝐾𝐂 − 𝜎2 𝐈 is p.s.d., which guarantees that

 − 𝜎2 𝐈 is p.s.d. according to the Theorem . Therefore 𝐋 = 𝐖 ∶ , ∶ 𝐾 𝐃 

1 
2 
∶ 𝐾, ∶ 𝐾 

s valid. 
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